1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich Switzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, and Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- sLaboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Sun X, Yang Z, Li M, Gong S, Miao X, Wang B, Kong X, Zhu Q. Interferon regulatory factor 1 contributes to metabolic dysfunction associated steatotic liver disease. Life Sci 2025; 370:123575. [PMID: 40132726 DOI: 10.1016/j.lfs.2025.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction associated steatotic liver disease (MASLD), has reached epidemic levels in multiple regions worldwide and contributes to cirrhosis and hepatocellular carcinoma. We have previously reported that the CC motif chemokine ligand 11 (CCL11) is a key regulator of MASLD. Expression of interferon regulatory factor 1 (IRF1) can be up-regulated by CCL11 treatment in hepatocytes, the relevance of which is not clear. In the present study we investigated the role of IRF1 in NAFLD pathogenesis. METHODS AND MATERIALS MASLD was investigated in mice fed a high-fat high carbohydrate (HFHC) diet or in the genetically predisposed obese mice (db/db). KEY FINDINGS Hepatocytes from CCL11 knockout mice displayed a less severe MASLD phenotype, when treated with palmitic acid (PA), compared to wild type hepatocytes, which could be normalized by IRF1 over-expression. On the contrary, IRF1 knockdown in hepatocytes significantly down-regulated expression of pro-inflammatory mediators and dampened lipid accumulation induced by PA treatment. More importantly, IRF1 knockdown in hepatocytes led to amelioration of MASLD in mice. RNA-seq and CUT&Tag-seq identified pro-MASLD genes, including Osbpl3, Ddit4, and Ccl2, as potential targets for IRF1 in hepatocytes. SIGNIFICANCE Our data reveal a novel regulatory role of IRF1 in MASLD pathogenesis. Targeting IRF1 can be considered as a reasonable approach for MASLD intervention.
Collapse
Affiliation(s)
- Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Zhen Yang
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Min Li
- Center for Experimental Medicine, Department of Pathophysiology, Jiangsu Health Vocational College, China
| | - Shanwen Gong
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Bo Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, the Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qiang Zhu
- Department of Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Huang M, Yang B, Yang X, Hou J, Li X. Guanylate-binding protein 5-mediated autophagy can promote the clearance of intracellular F. nucleatum in dental pulp cells during pulpitis. BMC Oral Health 2024; 24:1510. [PMID: 39702141 DOI: 10.1186/s12903-024-05295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND IFN-γ is crucial in induction of inducible cell-autonomous immunity, and IFN-γ signaling pathway is activated in pulpitis. Guanylate-binding proteins (GBPs) are a family of IFN-inducible GTPases and could utilize autophagy or pyroptosis to mitigate infection. GBP5 is abundantly expressed in inflamed pulp and human dental pulp cells (HDPCs). Therefore, we hypothesize that GBP5 in HDPCs exerts an immune-regulatory role in defending against bacterium infection. METHODS Fusobacterium nucleatum (F. nucleatum) was used to infect HDPCs, and immunoblotting and qRT-PCR were used to detect pyroptosis and autophagy. Pharmacological or genetic approaches were used to enhance or knock down GBP5 expression in HDPCs. Blood agar plate counting and immunoblotting were used to observe bacteria clearance effect and activation of autophagy. Student's t-test and one-way ANOVA were individually used for comparisons between two and multiple groups. Statistical significance was set at P < 0.05. RESULTS Following F. nucleatum infection in HDPCs, the autophagy marker LC3B was significantly upregulated while the mRNA and protein expression levels of p62 were increased. IFN-γ priming significantly inhibited the intracellular survival of F. nucleatum and enhanced the autophagic activity of HDPCs. GBP5 overexpression significantly increased the efficiency of HDPCs in clearing intracellular F. nucleatum and activated autophagic flux in HDPCs, while downregulating GBP5 in HDPCs suppressed autophagic flux. CONCLUSION IFN-γ-mediated GBP5 overexpression in HDPCs during F. nucleatum infection exerts an anti-microbial function through autophagy activation.
Collapse
Affiliation(s)
- Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Sun C, Sun H, Wei J, Fan X, Simon SI, Passerini AG. IRF-1 Regulates Mitochondrial Respiration and Intrinsic Apoptosis Under Metabolic Stress through ATP Synthase Ancillary Factor TMEM70. Inflammation 2024:10.1007/s10753-024-02209-w. [PMID: 39641858 DOI: 10.1007/s10753-024-02209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated. Here targeted deletion of IRF-1 by siRNA in HAEC aggravated oxLDL-induced, mitochondria-mediated intrinsic apoptosis, as evidenced by increased Caspase-3 and Caspase-9 activation, and chromosomal DNA breakage. The increased apoptosis was concomitant with accumulation of mitochondrial ROS, decrease in intracellular ATP production and respiratory oxygen consumption, and abnormal mitochondrial structure. RNA profiling of endothelial cells isolated from wild type and Irf1 knockout mice, followed by quantitative PCR, luciferase activity assay and chromatin immunoprecipitation (ChIP), revealed that IRF-1 directly regulated the expression of transmembrane protein 70 (TMEM70), an ancillary factor required for the assembly of ATP synthase and conversion of an electrochemical gradient to ATP synthesis. Mirroring the effect of IRF1 knockdown, depletion of TMEM70 in HAEC resulted in impaired mitochondrial function and enhanced cell apoptosis. In contrast, overexpression of TMEM70 rescued ATP biosynthesis and suppressed apoptosis in oxLDL-treated, IRF-1-deficient HAEC. These results reveal a novel homeostatic role for IRF-1 in the regulation of mitochondrial function and associated stress-induced apoptosis.
Collapse
Affiliation(s)
- ChongXiu Sun
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, People's Republic of China.
| | - Haotian Sun
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, People's Republic of China
| | - Jiahao Wei
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, People's Republic of China
| | - Xing Fan
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, People's Republic of China
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Zhang G, Wang Q, Yuan R, Zhang Y, Chen K, Yu J, Ye T, Jia X, Zhou Y, Li G, Chen K. Oncolytic vaccinia virus harboring aphrocallistes vastus lectin exerts anti-tumor effects by directly oncolysis and inducing immune response through enhancing ROS in human ovarian cancer. Biochem Biophys Res Commun 2024; 730:150355. [PMID: 38996784 DOI: 10.1016/j.bbrc.2024.150355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Aphrocallistes vastus lectin (AVL) is a Ca2+ dependent C-type lectin produced by sponges. Previous studies have demonstrated that oncolytic vaccinia virus harboring AVL (oncoVV-AVL) effectively triggers cell death in various tumors. However, the effects of oncoVV-AVL on human ovarian cancer (OV) remain unknown. This study aims to investigate the mechanism-of-action of oncoVV-AVL in human OV cell lines and in tumor-bearing nude mice. We found that oncoVV-AVL could directly induce apoptosis and autophagy in ovarian cancer cells. Additionally, our results showed that oncoVV-AVL increased the serum levels of mouse IFN-γ (mIFN-γ), leading to the activation of M1-polarized macrophages. Conversely, NADPH, a reducing agent by providing reducing equivalents, reduced the production of mIFN-γ, and suppressed M1-polarization of macrophage. Based on these findings, we propose that oncoVV-AVL not only contributes to direct cytolysis, but also enhances host immune response by promoting ROS levels.
Collapse
Affiliation(s)
- Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rentao Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; Hangzhou Gongchu Biotechnology Co., Ltd., Hangzhou, China.
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
6
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Qu X, Zhang Y, Li H, Tan Y. The m 5C/m 6A/m 7G-related non-apoptotic regulatory cell death genes for the prediction of the prognosis and immune infiltration status in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4714-4735. [PMID: 39430855 PMCID: PMC11483456 DOI: 10.21037/tcr-24-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients. Methods We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, drug response, and cell communication between tumor cells and immune cells in high-risk groups. Results We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways. Conclusions We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of immunotherapy and chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yigang Zhang
- Department of Plastic Surgery, Bengbu Third People’s Hospital, Bengbu, China
| | - Haoling Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
9
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Chen T, Li S, Deng D, Zhang W, Zhang J, Shen Z. Key role of interferon regulatory factor 1 (IRF-1) in regulating liver disease: progress and outlook. J Zhejiang Univ Sci B 2024; 25:451-470. [PMID: 38910492 PMCID: PMC11199090 DOI: 10.1631/jzus.b2300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 06/25/2024]
Abstract
Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1, as an important medium, has all of the advantages of full cell cycle regulation, cell death signaling transduction, and reinforcing immune surveillance, which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases, including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E), alleviating the progression of liver fibrosis, and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients, which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally, the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD), cholangiocarcinoma suppression, and uncommon traits in other liver diseases that had previously received little attention. Intriguingly, several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper, we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.
Collapse
Affiliation(s)
- Tao Chen
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Shipeng Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Dewen Deng
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
| | - Weiye Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Jianjun Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China.
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
11
|
Yan S, Wang W, Feng Z, Xue J, Liang W, Wu X, Tan Z, Zhang X, Zhang S, Li X, Zhang C. Immune checkpoint inhibitors in colorectal cancer: limitation and challenges. Front Immunol 2024; 15:1403533. [PMID: 38919624 PMCID: PMC11196401 DOI: 10.3389/fimmu.2024.1403533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer exhibits a notable prevalence and propensity for metastasis, but the current therapeutic interventions for metastatic colorectal cancer have yielded suboptimal results. ICIs can decrease tumor development by preventing the tumor's immune evasion, presenting cancer patients with a new treatment alternative. The increased use of immune checkpoint inhibitors (ICIs) in CRC has brought several issues. In particular, ICIs have demonstrated significant clinical effectiveness in patients with MSI-H CRC, whereas their efficacy is limited in MSS. Acquired resistance can still occur in patients with a positive response to ICIs. This paper describes the efficacy of ICIs currently in the clinical treatment of CRC, discusses the mechanisms by which acquired resistance occurs, primarily related to loss and impaired presentation of tumor antigens, reduced response of IFN-λ and cytokine or metabolic dysregulation, and summarizes the incidence of adverse effects. We posit that the future of ICIs hinges upon the advancement of precise prediction biomarkers and the implementation of combination therapies. This study aims to elucidate the constraints associated with ICIs in CRC and foster targeted problem-solving approaches, thereby enhancing the potential benefits for more patients.
Collapse
Affiliation(s)
- Suying Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanting Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhiquan Tan
- Department of Scientific and Technical Information, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| |
Collapse
|
12
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
13
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Shalhoub H, Gonzalez P, Dos Santos A, Guillermet-Guibert J, Moniaux N, Dupont N, Faivre J. Simultaneous activation and blockade of autophagy to fight hepatocellular carcinoma. AUTOPHAGY REPORTS 2024; 3:2326241. [PMID: 40395533 PMCID: PMC11864649 DOI: 10.1080/27694127.2024.2326241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2025]
Abstract
Autophagy is considered a target for cancer treatment, although few compounds manipulating this process have been added to the anticancer arsenal in humans. Pharmacological manipulation of autophagy has therefore been considered in the treatment and chemosensitization of hepatocellular carcinoma (HCC), a heterogeneous malignancy that remains difficult to treat (limited impact of genomic discoveries for the implementation of personalized precision medicine). We analyzed the autophagy marker proteins p62 and LC3 in paired tumor and adjacent cirrhotic non-tumor tissues of human HCC. We show strong variability in p62 and LC3-II levels between tumor parts of different HCC patients and between tumor and non-tumor HCC in the same patient, suggesting heterogeneity in autophagy flux. This diversity in flux led us to consider a non-personalized method of autophagy targeting, combining simultaneous activation and blockade of autophagy, which could, in theory, benefit a substantial number of HCC patients, irrespective of tumor autophagic flux. We show that the combination of sodium butyrate (NaB, autophagy inducer) and chloroquine (CQ, autophagy blocker) has a marked and synergistic cytotoxic effect in vitro on all human liver cancer cell lines studied, compared with the cellular effect of each product separately, and with no deleterious effect on normal hepatocytes in culture. Cancer cell death was associated with accumulation of autophagosomes, induction of lysosome membrane permeabilization and increased oxidative stress. Our results suggest that simultaneous activation and blockade of autophagy may be a valuable approach against HCC, and that microbiota-derived products improve the sensitivity of HCC cells to antitumor agents. Abbreviations AV: annexin V; CI: combination index; CTSB: Cathepsin B; CTSD: Cathepsin D; CTSF: Cathepsin F; CQ: chloroquine; DEN: N-diethylnitrosamine; DMEM: Dulbecco's modified eagle medium; FBS: fetal bovine serum; FSC: forward scatter; GNS: N-acetylglucosamine-6-sulfatase; HCC: hepatocellular carcinoma; HDACi: histone deacetylase inhibitor; HCQ: hydroxychloroquine; LMP: lysosomal membrane permeabilization; LAMP1: lysosome-associated membrane protein; LIPA: Lysosomal acid lipase; LSR: Lysosomal staining cells; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; NaB: sodium butyrate; NASH: non-alcoholic steatohepatitis; NRF2: nuclear factor erythroid 2-related factor 2; PI: propidium iodide; PMSF: phenylmethanesulfonyl fluoride; ROS: reactive oxygen species; SCARB2: Scavenger receptor class B member 2; SQSTM1/p62: sequestosome 1; SMPD1: Sphingomyelin phosphodiesterase 1; SSC: side scatter; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Hala Shalhoub
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS, Université Toulouse III, Toulouse, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University. Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
15
|
Ishteyaque S, Singh G, Yadav KS, Verma S, Sharma RK, Sen S, Srivastava AK, Mitra K, Lahiri A, Bawankule DU, Rath SK, Kumar D, Mugale MN. Cooperative STAT3-NFkB signaling modulates mitochondrial dysfunction and metabolic profiling in hepatocellular carcinoma. Metabolism 2024; 152:155771. [PMID: 38184165 DOI: 10.1016/j.metabol.2023.155771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκβ), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκβ and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION STAT3-NFκβ signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.
Collapse
Affiliation(s)
- Sharmeen Ishteyaque
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gurvinder Singh
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karan Singh Yadav
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Sharma
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumati Sen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anurag Kumar Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Lahiri
- Pharmacology Division, CSIR - Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Madhav Nilakanth Mugale
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Feng F, Li T, Liang Y, Gao W, Yang L. Structural changes and anti-hepatocellular carcinoma activity of interferon-γ after interaction with sinensetin. Int J Biol Macromol 2023; 253:126392. [PMID: 37595707 DOI: 10.1016/j.ijbiomac.2023.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Exploring the interaction of small molecules with therapeutic proteins can provide useful information about development of ligand-protein complexes as synergistically therapeutic platforms. In this study, the interaction of sinensetin with human interferon gamma (IFNγ) was evaluated experimentally and theoretically. Also, the synergistic effects of IFNγ- sinensetin complex on the inhibition of hepatocellular carcinoma HepG2 cell proliferation were assessed by cell viability and quantitative real time PCR assays. It was realized that sinensetin interacts with IFNγ through a static quenching mechanism and hydrophobic forces mediated by presence of Lys55 and Lys58 amino acid residues in the binding site were the main contributing forces in the spontaneous formation of IFNγ-sinensetin complex. Also, the interaction of sinensetin with IFNγ did not induce a significant change in the secondary and tertiary structure of the protein. Cellular assays revealed a synergistic effect of sinensetin on IFNγ -triggered anticancer action in HepG2 cells through overexpression of caspase-3 mRNA and protein. In conclusion, this study may hold great promise for the development of potential ligand- protein complexes for therapeutic purposes.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Tiehua Li
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yingchao Liang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Wei Gao
- Department of Radiation Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Liang Yang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| |
Collapse
|
17
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
18
|
Hu B, Xin Y, Hu G, Li K, Tan Y. Fluid shear stress enhances natural killer cell's cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng 2023; 7:036108. [PMID: 37575881 PMCID: PMC10423075 DOI: 10.1063/5.0156628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Tumor cells metastasize to distant organs mainly via hematogenous dissemination, in which circulating tumor cells (CTCs) are relatively vulnerable, and eliminating these cells has great potential to prevent metastasis. In vasculature, natural killer (NK) cells are the major effector lymphocytes for efficient killing of CTCs under fluid shear stress (FSS), which is an important mechanical cue in tumor metastasis. However, the influence of FSS on the cytotoxicity of NK cells against CTCs remains elusive. We report that the death rate of CTCs under both NK cells and FSS is much higher than the combined death induced by either NK cells or FSS, suggesting that FSS may enhance NK cell's cytotoxicity. This death increment is elicited by shear-induced NK activation and granzyme B entry into target cells rather than the death ligand TRAIL or secreted cytokines TNF-α and IFN-γ. When NK cells form conjugates with CTCs or adhere to MICA-coated substrates, NK cell activating receptor NKG2D can directly sense FSS to induce NK activation and degranulation. These findings reveal the promotive effect of FSS on NK cell's cytotoxicity toward CTCs, thus providing new insight into immune surveillance of CTCs within circulation.
Collapse
Affiliation(s)
| | | | | | | | - Youhua Tan
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | | | - Nicolino Esposito
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| |
Collapse
|
21
|
Yu B, Zhou Y, He J. TRIM13 inhibits cell proliferation and induces autophagy in lung adenocarcinoma by regulating KEAP1/NRF2 pathway. Cell Cycle 2023; 22:1496-1513. [PMID: 37245083 PMCID: PMC10281484 DOI: 10.1080/15384101.2023.2216504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Tripartite motif 13 (TRIM13) is a member of TRIM protein family and is downregulated in multiple cancers, especially non-small cell lung cancers (NSCLC). In this study, we investigated anti-tumor mechanism of TRIM13 in non-small cell lung cancer tissues and cell lines. First, the mRNA and protein levels of TRIM13 in LUAD tissue and cells were measured. TRIM13 was overexpressed on LUAD cells to investigate the effects on cell proliferation, apoptosis, oxidative stress, p62 ubiquitination, and autophagy activation. Finally, mechanistic role of TRIM13 in regulating the Keap1/Nrf2 pathway was investigated. Results indicated that low level of TRIM13 mRNA and protein expression was found in LUAD tissue and cells. Overexpression of TRIM13 in LUAD cancer cells suppressed their proliferation, increased apoptosis, and oxidative stress, ubiquitinated p62, and activated autophagy via the RING finger domain of TRIM13. Furthermore, TRIM13 showed interaction with p62 and mediated its ubiquitination and degradation in LUAD cells. Mechanistically, TRIM13 exerted the tumor suppressor functions in LUAD cells by negatively regulating Nrf2 signaling and downstream antioxidants, which was further confirmed by in vivo data from xenografts. In conclusion, TRIM13 behaves like a tumor suppressor and triggers autophagy in LUAD cells by mediating p62 ubiquitination via KEAP1/Nrf2 pathway. Our findings provide a novel insight into targeted therapy plans for LUAD.
Collapse
Affiliation(s)
- Bo Yu
- Department of thoracic surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhou
- Department of Scientific Research, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinxi He
- Department of thoracic surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
22
|
Inhibition of Checkpoint Kinase 1 (CHK1) Upregulates Interferon Regulatory Factor 1 (IRF1) to Promote Apoptosis and Activate Anti-Tumor Immunity via MICA in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2023; 15:cancers15030850. [PMID: 36765808 PMCID: PMC9913340 DOI: 10.3390/cancers15030850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND CHK1 is considered a key cell cycle checkpoint kinase in DNA damage response (DDR) pathway to communicate with several signaling pathways involved in the tumor microenvironment (TME) in numerous cancers. However, the mechanism of CHK1 signaling regulating TME in hepatocellular carcinoma (HCC) remains unclear. METHODS CHK1 expression in HCC tissue was determined by IHC staining assay. DNA damage and apoptosis in HCC cells induced by cisplatin or CHK1 inhibition were detected by WB and flow cytometry. The interaction of CHK1 and IRF1 was analyzed by single-cell RNA-sequence, WB, and immunoprecipitation assay. The mechanism of IRF1 regulating MICA was investigated by ChIP-qPCR. RESULTS CHK1 expression is upregulated in human HCC tumors compared to the background liver. High CHK1 mRNA level predicts advanced tumor stage and worse prognosis. Cisplatin and CHK1 inhibition augment cellular DNA damage and apoptosis. Overexpressed CHK1 suppresses IRF1 expression through proteolysis. Furthermore, single-cell RNA-sequence analyses confirmed that MICA expression positively correlated with IRF1 in HCC cells. Immunoprecipitation assay showed the binding between CHK1 and IRF1. Cisplatin and CHK1 inhibition upregulate MICA expression through IRF1-mediated transcriptional effects. A novel specific cis-acting IRF response element was identified at -1756 bp in the MICA promoter region that bound IRF1 to induce MICA gene transcription. MICA may increase NK cell and CD8+T cell infiltration in HCC. CONCLUSIONS DNA damage regulates the interaction of CHK1 and IRF1 to activate anti-tumor immunity via the IRF1-MICA pathway in HCC.
Collapse
|
23
|
Growth Arrest of Alveolar Cells in Response to Cytokines from Spike S1-Activated Macrophages: Role of IFN-γ. Biomedicines 2022; 10:biomedicines10123085. [PMID: 36551841 PMCID: PMC9775973 DOI: 10.3390/biomedicines10123085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia and high-permeability pulmonary edema. A hallmark of the disease is the presence of lung inflammation with features of diffuse alveolar damage. The molecular pathogenetic mechanisms of COVID-19-associated ARDS (CARDS), secondary to SARS-CoV-2 infection, are still not fully understood. Here, we investigate the effects of a cytokine-enriched conditioned medium from Spike S1-activated macrophage on alveolar epithelial A549 cells in terms of cell proliferation, induction of autophagy, and expression of genes related to protein degradation. The protective effect of baricitinib, employed as an inhibitor of JAK-STAT, has been also tested. The results obtained indicate that A549 exhibits profound changes in cell morphology associated to a proliferative arrest in the G0/G1 phase. Other alterations occur, such as a blockade of protein synthesis and the activation of autophagy, along with an increase of the intracellular amino acids content, which is likely ascribable to the activation of protein degradation. These changes correlate to the induction of IFN-regulatory factor 1 (IRF-1) due to an increased secretion of IFN-γ in the conditioned medium from S1-activated macrophages. The addition of baricitinib prevents the observed effects. In conclusion, our findings suggest that the IFN-γ-IRF-1 signaling pathway may play a role in the alveolar epithelial damage observed in COVID-19-related ARDS.
Collapse
|
24
|
Yuan J, Liu Z, Wu Z, Yang J, Yang J. Construction and validation of an IRF4 risk score to predict prognosis and response to immunotherapy in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109411. [DOI: 10.1016/j.intimp.2022.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
|
25
|
Chen YL, Lowery AKT, Lin S, Walker AM, Chen KHE. Tumor cell-derived asymmetric dimethylarginine regulates macrophage functions and polarization. Cancer Cell Int 2022; 22:351. [PMID: 36376929 PMCID: PMC9664648 DOI: 10.1186/s12935-022-02769-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. METHODS Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. RESULTS For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. CONCLUSION Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - AKaychia T Lowery
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA
| | - Samuel Lin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Kuan-Hui E Chen
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA.
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA.
- Department of Biological Sciences, Texas Tech University, 79409, Lubbock, TX, USA.
| |
Collapse
|
26
|
Zhang J, Zhao J, Wei S, Huang P, Tu X, Su G, Gan Y, Gong W, Xiang B. Developing and Validating an Autophagy Gene-Set-Based Prognostic Signature in Hepatocellular Carcinoma Patients. Int J Gen Med 2022; 15:8399-8415. [DOI: 10.2147/ijgm.s388592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
27
|
HDAC8 Promotes Liver Metastasis of Colorectal Cancer via Inhibition of IRF1 and Upregulation of SUCNR1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2815187. [PMID: 36035205 PMCID: PMC9400431 DOI: 10.1155/2022/2815187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Histone deacetylases (HDACs) are well-characterized for their involvement in tumor progression. Herein, the current study set out to unravel the association of HDAC8 with colorectal cancer (CRC). Bioinformatics analyses were carried out to retrieve the expression patterns of HDAC8 in CRC and the underlying mechanism. Following expression determination, the specific roles of HDAC8, IRF1, and SUCNR1 in CRC cell functions were analyzed following different interventions. Additionally, tumor formation and liver metastasis in nude mice were operated to verify the fore experiment. Bioinformatics analyses predicted the involvement of the HDAC8/IRF1/SUCNR1 axis in CRC. In vitro cell experiments showed that HDAC8 induced the CRC cell growth by reducing IRF1 expression. Meanwhile, IRF1 limited SUCNR1 expression by binding to its promoter. SUCNR1 triggered the growth and metastasis of CRC by inhibiting cell autophagy. HDAC8 blocked IRF1-mediated SUCNR1 inhibition and thereby inhibited autophagy, accelerating CRC cell growth. Lastly, HDAC8 facilitated the development of CRC and liver metastasis by regulating the IRF1/SUCNR1 axis in vivo. Taken together, our findings highlighted the critical role for the HDAC8/IRF1/SUCNR1 axis in the regulation of autophagy and the resultant liver metastasis in CRC.
Collapse
|
28
|
Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y, Li X. Exploring immunotherapy in colorectal cancer. J Hematol Oncol 2022; 15:95. [PMID: 35842707 PMCID: PMC9288068 DOI: 10.1186/s13045-022-01294-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy combined with or without targeted therapy is the fundamental treatment for metastatic colorectal cancer (mCRC). Due to the adverse effects of chemotherapeutic drugs and the biological characteristics of the tumor cells, it is difficult to make breakthroughs in traditional strategies. The immune checkpoint blockades (ICB) therapy has made significant progress in the treatment of advanced malignant tumors, and patients who benefit from this therapy may obtain a long-lasting response. Unfortunately, immunotherapy is only effective in a limited number of patients with microsatellite instability-high (MSI-H), and segment initial responders can subsequently develop acquired resistance. From September 4, 2014, the first anti-PD-1/PD-L1 drug Pembrolizumab was approved by the FDA for the second-line treatment of advanced malignant melanoma. Subsequently, it was approved for mCRC second-line treatment in 2017. Immunotherapy has rapidly developed in the past 7 years. The in-depth research of the ICB treatment indicated that the mechanism of colorectal cancer immune-resistance has become gradually clear, and new predictive biomarkers are constantly emerging. Clinical trials examining the effect of immune checkpoints are actively carried out, in order to produce long-lasting effects for mCRC patients. This review summarizes the treatment strategies for mCRC patients, discusses the mechanism and application of ICB in mCRC treatment, outlines the potential markers of the ICB efficacy, lists the key results of the clinical trials, and collects the recent basic research results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.
Collapse
Affiliation(s)
- Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Ruoxin Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China.
| |
Collapse
|
29
|
Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nat Commun 2022; 13:3072. [PMID: 35654768 PMCID: PMC9163141 DOI: 10.1038/s41467-022-30654-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Recognition of pathogen-or-damage-associated molecular patterns is critical to inflammation. However, most pathogen-or-damage-associated molecular patterns exist within intact microbes/cells and are typically part of non-diffusible, stable macromolecules that are not optimally immunostimulatory or available for immune detection. Partial digestion of microbes/cells following phagocytosis potentially generates new diffusible pathogen-or-damage-associated molecular patterns, however, our current understanding of phagosomal biology would have these molecules sequestered and destroyed within phagolysosomes. Here, we show the controlled release of partially-digested, soluble material from phagolysosomes of macrophages through transient, iterative fusion-fission events between mature phagolysosomes and the plasma membrane, a process we term eructophagy. Eructophagy is most active in proinflammatory macrophages and further induced by toll like receptor engagement. Eructophagy is mediated by genes encoding proteins required for autophagy and can activate vicinal cells by release of phagolysosomally-processed, partially-digested pathogen associated molecular patterns. We propose that eructophagy allows macrophages to amplify local inflammation through the processing and dissemination of pathogen-or-damage-associated molecular patterns. The detection of conserved motifs by pattern recognition receptors is a crucial component of the innate detection of pathogens and danger signals via conserved pattern recognition receptors. Here the authors define a pathway that transfers partially digested material from the phagolysosomal pathway of macrophages to release at the plasma membrane which is associated with enhanced inflammatory potential, by a process they introduce as eructophagy.
Collapse
|
30
|
Todorović-Raković N. The role of cytokines in the evolution of cancer: IFN-γ paradigm. Cytokine 2022; 151:155442. [PMID: 33509640 DOI: 10.1016/j.cyto.2021.155442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
The evolution of malignant cells implies an increase in oncogenic fitness of cells which arises in active and reciprocal interaction with the tumor microenvironment. The mechanisms facilitating the adaptive evolution of cancer cells involve clonal selection of cancer cells, in a direction of increased adaptive potential under the selective pressure of host defensive strategies. Once reached, this potential could go the other way, changing the same evolutionary force in the tumor microenvironment which influenced its emergence and favoring cancer progression. The immunological system as a part of host defensive mechanisms could be an effective modulator of cancer evolution/progression since it is also a major source of cellular intermediators, such as cytokines. The exemplar of IFN-γ actions during cancer evolution could help the revealing of these mutual interactions and enable better insight into the complex nature of cancer disease, leading to a new approach to treatment strategies.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| |
Collapse
|
31
|
Zhou JC, Wang JL, Ren HZ, Shi XL. Autophagy plays a double-edged sword role in liver diseases. J Physiol Biochem 2022; 78:9-17. [PMID: 34657993 PMCID: PMC8873123 DOI: 10.1007/s13105-021-00844-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
As a highly evolutionarily conserved process, autophagy can be found in all types of eukaryotic cells. Such a constitutive process maintains cellular homeostasis in a wide variety of cell types through the encapsulation of damaged proteins or organelles into double-membrane vesicles. Autophagy not only simply eliminates materials but also serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Previous studies have primarily recognized the role of autophagy in the degradation of dysfunctional proteins and unwanted organelles. However, there are findings of autophagy in physiological and pathological processes. In hepatocytes, autophagy is not only essential for homeostatic functions but also implicated in some diseases, such as viral hepatitis, alcoholic hepatitis, and hepatic failure. In the present review, we summarized the molecular mechanisms of autophagy and its role in several liver diseases and put forward several new strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Jing-Chao Zhou
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Lin Wang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xiao-Lei Shi
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
32
|
Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2022; 36:3946320221078476. [PMID: 35226515 PMCID: PMC8891922 DOI: 10.1177/03946320221078476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) as a chronic liver condition is largely associated with immune responses. Previous studies have revealed that different subsets of lymphocytes play fundamental roles in controlling or improving the development and outcome of solid tumors like HCC. Hence, this study aimed to investigate whether immune system changes were related to disease development in HCC patients. Methods: Peripheral blood mononuclear cells were isolated from 30 HCC patients and 30 healthy volunteers using Ficoll density centrifugation. The isolated cells were stained with different primary antibodies and percentages of different immune cells were determined by flow cytometry. Results: HCC patients indicated significant reductions in the numbers of CD4+ cells, Tbet+IFNγ+cells, and GATA+IL-4+cells in peripheral blood in comparison with healthy individuals (p < 0.05). There was no significant change in IL-17+RORγt+cells between patient and healthy groups. In contrast, Foxp3+CD127lowcell frequency was significantly higher in patients than healthy subjects (p < 0.0001). The numbers of Th1, Th2, and Th17 cells were significantly lower in HCC patients than healthy control (p < 0.0001), although the reduction in Th2 cell numbers was not statistically significant. On the contrary, Treg percentage showed a significant increase in patients compared to healthy subjects (p < 0.0001). Other data revealed that Th1, Th2, and Th17 cell frequencies were significantly higher in healthy individuals than patients with different TNM stages of HCC, with the exception of Th2 in patients with stage II HCC (p < 0.01-0.05). Treg percentage was significantly increased in patients with different TNM stages (p < 0.0001). Among all CD4+ T cells, the frequency of Th2 cell was significantly associated with TNM stages of HCC (p < 0.05). Conclusion: Our data provide further evidence to show that immune changes may participate in determining HCC progression and disease outcome. However, it should be mentioned that more investigations are needed to clarify our results and explain possible impacts of other immune cells on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza F Saidi
- Division of Transplant Services, Department of Surgery, 12302SUNY Upstate Medical University Syracuse, Syracuse, NY, USA
| | - Hamid Reza Banafshe
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Arbabi
- Department of Medical Parasitology, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Lotfinia
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
34
|
Li S, He J, Xu H, Yang J, Luo Y, Song W, Qiao B, Zhang H. Autophagic activation of IRF-1 aggravates hepatic ischemia-reperfusion injury via JNK signaling. MedComm (Beijing) 2021; 2:91-100. [PMID: 34766137 PMCID: PMC8491206 DOI: 10.1002/mco2.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has accrued indicating that autophagy is associated with hepatic ischemia-reperfusion injury (IRI). This report demonstrates that interferon regulatory factor-1 (IRF-1) was upregulated in response to hepatic IRI and was associated with autophagic activation. As a result of these processes, there is an aggravation of liver damage, effects that can be offset by IRF-1 depletion. In addition, these effects of IRF-1 are associated with JNK pathway activation followed by increases in Beclin1 protein levels. This JNK-induced autophagic cell death then leads to cell failure, and plays an important role in liver function damage. We conclude that IRF-1 activates autophagy through JNK-mediated autophagy. Accordingly, these findings indicating that the IRF-1/JNK pathway activates autophagy to exacerbate liver IRI in this mouse model may provide new insights into novel protective therapies for hepatic IRI.
Collapse
Affiliation(s)
- Shipeng Li
- Department of Hepatobiliary Surgery First Affiliated Hospital of Xinxiang Medical University Xinxiang China
| | - Jindan He
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Hongwei Xu
- Department of Hepatobiliary Surgery First Affiliated Hospital of Xinxiang Medical University Xinxiang China
| | - Jiaxing Yang
- Department of Hepatobiliary Surgery First Affiliated Hospital of Xinxiang Medical University Xinxiang China
| | - Yutian Luo
- Department of Hepatobiliary Surgery First Affiliated Hospital of Xinxiang Medical University Xinxiang China
| | - Wenyue Song
- Department of Obstetrics and Gynecology Jiaozuo Women and Children Hospital Jiaozuo China
| | - Bingbing Qiao
- Department of Hepatobiliary Surgery First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Haiming Zhang
- Department of Liver Transplantation Beijing Friendship Hospital, Capital Medical University Beijing China
| |
Collapse
|
35
|
Ali H, Dong SXM, Gajanayaka N, Cassol E, Angel JB, Kumar A. Selective Induction of Cell Death in Human M1 Macrophages by Smac Mimetics Is Mediated by cIAP-2 and RIPK-1/3 through the Activation of mTORC. THE JOURNAL OF IMMUNOLOGY 2021; 207:2359-2373. [PMID: 34561230 DOI: 10.4049/jimmunol.2100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory macrophages have been implicated in many diseases, including rheumatoid arthritis and inflammatory bowel disease. Therefore, targeting macrophage function and activation may represent a potential strategy to treat macrophage-associated diseases. We have previously shown that IFN-γ-induced differentiation of human M0 macrophages toward proinflammatory M1 state rendered them highly susceptible to the cytocidal effects of second mitochondria-derived activator of caspases mimetics (SMs), antagonist of the inhibitors of apoptosis proteins (IAPs), whereas M0 and anti-inflammatory M2c macrophages were resistant. In this study, we investigated the mechanism governing SM-induced cell death during differentiation into M1 macrophages and in polarized M1 macrophages. IFN-γ stimulation conferred on M0 macrophages the sensitivity to SM-induced cell death through the Jak/STAT, IFN regulatory factor-1, and mammalian target of rapamycin complex-1 (mTORC-1)/ribosomal protein S6 kinase pathways. Interestingly, mTORC-1 regulated SM-induced cell death independent of M1 differentiation. In contrast, SM-induced cell death in polarized M1 macrophages is regulated by the mTORC-2 pathway. Moreover, SM-induced cell death is regulated by cellular IAP (cIAP)-2, receptor-interacting protein kinase (RIPK)-1, and RIPK-3 degradation through mTORC activation during differentiation into M1 macrophages and in polarized M1 macrophages. In contrast to cancer cell lines, SM-induced cell death in M1 macrophages is independent of endogenously produced TNF-α, as well as the NF-κB pathway. Collectively, selective induction of cell death in human M1 macrophages by SMs may be mediated by cIAP-2, RIPK-1, and RIPK-3 degradation through mTORC activation. Moreover, blocking cIAP-1/2, mTORC, or IFN regulatory factor-1 may represent a promising therapeutic strategy to control M1-associated diseases.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Simon Xin Min Dong
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Niranjala Gajanayaka
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Movaqar A, Yaghoubi A, Rezaee SAR, Jamehdar SA, Soleimanpour S. Coronaviruses construct an interconnection way with ERAD and autophagy. Future Microbiol 2021; 16:1135-1151. [PMID: 34468179 PMCID: PMC8412035 DOI: 10.2217/fmb-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses quickly became a pandemic or epidemic, affecting large numbers of humans, due to their structural features and also because of their impacts on intracellular communications. The knowledge of the intracellular mechanism of virus distribution could help understand the coronavirus's proper effects on different pathways that lead to the infections. They protect themselves from recognition and damage the infected cell by using an enclosed membrane through hijacking the autophagy and endoplasmic reticulum-associated protein degradation pathways. The present study is a comprehensive review of the coronavirus strategy in upregulating the communication network of autophagy and endoplasmic reticulum-associated protein degradation.
Collapse
Affiliation(s)
- Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SA Rahim Rezaee
- Inflammation & Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid A Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Kong R, Wang N, Han W, Bao W, Lu J. IFNγ-mediated repression of system xc - drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol 2021; 110:301-314. [PMID: 34318944 DOI: 10.1002/jlb.3ma1220-815rrr] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
IFNγ released from CD8+ T cells or natural killer cells plays a crucial role in antitumor host immunity. Several studies have found that IFNγ is involved in regulating tumor cell proliferation and apoptosis. However, few studies have examined its role in cell ferroptosis. Here, we found that IFNγ treatment enhanced glutathione depletion, promoted cell cycle arrested in G0/G1 phase, increased lipid peroxidation, and sensitized cells to ferroptosis activators. Additionally, IFNγ down-regulated the mRNA and protein levels of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc- via activating the JAK/STAT pathway in hepatocellular carcinoma (HCC) cell lines. Furthermore, IFNγ increased reactive oxygen species levels and decreased mitochondiral membrane potential in Bel7402 and HepG2 cells. These changes were accompanied by decreased system xc- activity. Cancer cells exposed to TGFβ1 for 48 h showed sensitization to IFNγ + erastin-induced ferroptosis, with decreased system xc- expression. In conclusion, IFNγ repressed system xc- activation via activating JAK/STAT signaling. Additionally, enhanced lipid peroxidation was associated with altered mitochondrial function in HCC cells. Our findings identified a role for IFNγ in sensitizing HCC cells to ferroptosis, which provided new insights for applying IFNγ as a cancer treatment.
Collapse
Affiliation(s)
- Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University, School of Medicine, Shanghai, China
| | - Nan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University, School of Medicine, Shanghai, China
| | - Wei Han
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University, School of Medicine, Shanghai, China
| | - Wen Bao
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University, School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Fang C, Weng T, Hu S, Yuan Z, Xiong H, Huang B, Cai Y, Li L, Fu X. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology 2021; 10:1962591. [PMID: 34408924 PMCID: PMC8366549 DOI: 10.1080/2162402x.2021.1962591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a major effector molecule of immunity and a common feature of tumors responding to immunotherapy. Active IFN-γ signaling can directly trigger apoptosis and cell cycle arrest in human cancer cells. However, the mechanisms underlying these actions remain unclear. Here, we report that IFN-γ rapidly increases protein synthesis and causes the unfolded protein response (UPR), as evidenced by the increased expression of glucose-regulated protein 78, activating transcription factor-4, and c/EBP homologous protein (CHOP) in cells treated with IFN-γ. The JAK1/2-STAT1 and AKT-mTOR signaling pathways are required for IFN-γ-induced UPR. Endoplasmic reticulum (ER) stress promotes autophagy and restores homeostasis. Surprisingly, in IFN-γ-treated cells, autophagy was impaired at the step of autophagosome-lysosomal fusion and caused by a significant decline in the expression of lysosomal membrane protein-1 and −2 (LAMP-1/LAMP-2). The ER stress inhibitor 4-PBA restored LAMP expression in IFN-γ-treated cells. IFN-γ stimulation activated the protein kinase-like ER kinase (PERK)-eukaryotic initiation factor 2a subunit (eIF2α) axis and caused a reduction in global protein synthesis. The PERK inhibitor, GSK2606414, partially restored global protein synthesis and LAMP expression in cells treated with IFN-γ. We further investigated the functional consequences of IFN-γ-induced ER stress. We show that inhibition of ER stress significantly prevents IFN-γ-triggered apoptosis. CHOP knockdown abrogated IFN-γ-mediated apoptosis. Inhibition of ER stress also restored cyclin D1 expression in IFN-γ-treated cells. Thus, ER stress and the UPR caused by IFN-γ represent novel mechanisms underlying IFN-γ-mediated anticancer effects. This study expands our understanding of IFN-γ-mediated signaling and its cellular actions in tumor cells.
Collapse
Affiliation(s)
- Can Fang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Weng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xiong
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Huang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Yuan L, Zhang X, Cheng K, Li L, Guo Z, Zeng L. IRF1 Inhibits Autophagy-Mediated Proliferation of Colorectal Cancer via Targeting ATG13. Cancer Invest 2021; 40:35-45. [PMID: 34313498 DOI: 10.1080/07357907.2021.1961265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
IRF1 is a nuclear transcription factor that mediates interferon effects and appears to have anti-tumor activity. To determine the roles of IRF1 in colorectal cancer (CRC), we investigated the effects of IRF1 in CRC cells. We found that IRF1 inhibit cell proliferation and tumor growth. Under starvation conditions, IRF1 enhanced apoptosis and reduced autophagic flux. ATG13, an important factor of autophagy complex, was confirmed as a target of IRF1. These findings indicated that IRF1 function as a tumor suppressor in CRC and inhibit autophagy through ATG13, targeting this pathway may provide new insights into the molecular mechanisms of CRC progression.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Cheng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liping Li
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhongming Guo
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Xi X, Guo Y, Zhu M, Qiu F, Lei F, Li G, Du B. Identification of new potential antigen recognized by γδT cells in hepatocellular carcinoma. Cancer Immunol Immunother 2021; 70:1917-1927. [PMID: 33399933 PMCID: PMC10992768 DOI: 10.1007/s00262-020-02826-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
In recent years, the application of chimeric antigen receptor T-cell (CAR-T) therapy based on gamma delta T (γδT) cells in hepatocellular carcinoma (HCC) immunotherapy has attracted more and more attention. However, specific antigens recognized by γδT cells are rarely identified, which has become the main restriction on such therapeutic application of γδT cells. In this report, we identified a new peptide and protein antigen recognized by γδT cells in HCC using our previous established strategy. First, we investigated the diversity of the γ9/δ2 T-cell immunorepertoire by sequence analyses of the expressed complementarity-determining region 3 (CDR3) in HCC patients. Then, we constructed γ9/δ2 T-cell receptor (TCR)-transfected cell lines expressing significant HCC CDR3 sequence and identified a series of peptides capable of binding to γδT cells specifically. Next, we identified, further tested and verified the biological functions of these peptides and their matched protein by bioinformatics analysis. We identified that the new protein hepatocyte growth factor-like protein, also called as macrophage-stimulating protein (MSP), and peptide HP1, not only bound to HCC-predominant γδTCR but also effectively activated γδT cells isolated from HCC patients. Moreover, they could stimulate γδT cells in peripheral blood from HCC patients to produce cytokines, which contributed to inhibiting HCC and played an important role in mediating cytotoxicity to HCC cell lines. In conclusion, we identified MSP and HP1, which showed potential as candidates for antigens recognized by γδT cells in HCC.
Collapse
Affiliation(s)
- Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Min Zhu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Feifei Lei
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Gang Li
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
41
|
Piran M, Sepahi N, Moattari A, Rahimi A, Ghanbariasad A. Systems Biomedicine of Primary and Metastatic Colorectal Cancer Reveals Potential Therapeutic Targets. Front Oncol 2021; 11:597536. [PMID: 34249670 PMCID: PMC8263939 DOI: 10.3389/fonc.2021.597536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer deaths across the world. Patients' survival at time of diagnosis depends mainly on stage of the tumor. Therefore, understanding the molecular mechanisms from low-grade to high-grade stages of cancer that lead to cellular migration from one tissue/organ to another tissue/organ is essential for implementing therapeutic approaches. To this end, we performed a unique meta-analysis flowchart by identifying differentially expressed genes (DEGs) between normal, primary (primary sites), and metastatic samples (Colorectal metastatic lesions in liver and lung) in some Test datasets. DEGs were employed to construct a protein-protein interaction (PPI) network. A smaller network containing 39 DEGs was then extracted from the PPI network whose nodes expression induction or suppression alone or in combination with each other would inhibit tumor progression or metastasis. These DEGs were then verified by gene expression profiling, survival analysis, and multiple Validation datasets. We suggested for the first time that downregulation of mitochondrial genes, including ETHE1, SQOR, TST, and GPX3, would help colorectal cancer cells to produce more energy under hypoxic conditions through mechanisms that are different from "Warburg Effect". Augmentation of given antioxidants and repression of P4HA1 and COL1A2 genes could be a choice of CRC treatment. Moreover, promoting active GSK-3β together with expression control of EIF2B would prevent EMT. We also proposed that OAS1 expression enhancement can induce the anti-cancer effects of interferon-gamma, while suppression of CTSH hinders formation of focal adhesions. ATF5 expression suppression sensitizes cancer cells to anchorage-dependent death signals, while LGALS4 induction recovers cell-cell junctions. These inhibitions and inductions would be another combinatory mechanism that inhibits EMT and cell migration. Furthermore, expression inhibition of TMPO, TOP2A, RFC3, GINS1, and CKS2 genes could prevent tumor growth. Besides, TRIB3 suppression would be a promising target for anti-angiogenic therapy. SORD is a poorly studied enzyme in cancer, found to be upregulated in CRC. Finally, TMEM131 and DARS genes were identified in this study whose roles have never been interrogated in any kind of cancer, neither as a biomarker nor curative target. All the mentioned mechanisms must be further validated by experimental wet-lab techniques.
Collapse
Affiliation(s)
- Mehran Piran
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Department of Bacteriology and Virology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rahimi
- Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
42
|
Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, Zhou K, Wen F, Lei W, Zhang N, Huang J, Li Q. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res 2021; 405:112678. [PMID: 34171351 DOI: 10.1016/j.yexcr.2021.112678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Tumor cell apoptosis evasion is one of the main reasons for easy metastasis occurrence, chemotherapy resistance, and the low five-year survival rate of digestive system tumors. Current research has shown that non-apoptotic cell death plays an important role in tumors of the digestive system. Therefore, increasing the proportion of non-apoptotic tumor cells is one of the effective methods of improving therapeutic efficacies for digestive system tumors. Non-apoptotic cell death modes mainly include autophagic cell death, pyroptosis, ferroptosis, in addition to other cell death modes. This review covers a systematic review relating to the research progress made into autophagic cell death, pyroptosis, ferroptosis, and other cell death modes in the treatment of digestive system tumors. It also highlights how treatment is a reasonable prospect based on clinical experience and provides reliable guidance for the further development of digestive system tumor treatments.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
43
|
Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 2021; 125:101-111. [PMID: 33772151 DOI: 10.1038/s41416-021-01337-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear. METHODS CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3'UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry. RESULTS CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3'UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation. CONCLUSIONS IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.
Collapse
|
44
|
Yan Y, Zheng L, Du Q, Yazdani H, Dong K, Guo Y, Geller DA. Interferon regulatory factor 1(IRF-1) activates anti-tumor immunity via CXCL10/CXCR3 axis in hepatocellular carcinoma (HCC). Cancer Lett 2021; 506:95-106. [PMID: 33689775 DOI: 10.1016/j.canlet.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor 1 (IRF-1) is a tumor suppressor gene in cancer biology with anti-proliferative and pro-apoptotic effect on cancer cells, however mechanisms of IRF-1 regulating tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remain only partially characterized. Here, we investigated that IRF-1 regulates C-X-C motif chemokine 10 (CXCL10) and chemokine receptor 3 (CXCR3) to activate anti-tumor immunity in HCC. We found that IRF-1 mRNA expression was positively correlated with CXCL10 and CXCR3 through qRT-PCR assay in HCC tumors and in analysis of the TCGA database. IRF-1 response elements were identified in the CXCL10 promoter region, and ChIP-qPCR confirmed IRF-1 binding to promote CXCL10 transcription. IRF-2 is a competitive antagonist for IRF-1 mediated transcriptional effects, and overexpression of IRF-2 decreased basal and IFN-γ induced CXCL10 expression. Although IRF-1 upregulated CXCR3 expression in HCC cells, it inhibited proliferation and exerted pro-apoptotic effects, which overcome proliferation partly mediated by activating the CXCL10/CXCR3 autocrine axis. In vitro and in vivo studies showed that IRF-1 increased CD8+ T cells, NK and NKT cells migration, and activated IFN-γ secretion in NK and NKT cells to induce tumor apoptosis through the CXCL10/CXCR3 paracrine axis. Conversely, this effect was markedly abrogated in HCC tumor bearing mice deficient in CXCR3. Therefore, the IRF-1/CXCL10/CXCR3 axis contributes to the anti-tumor microenvironment in HCC.
Collapse
Affiliation(s)
- Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China; Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA; Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Hamza Yazdani
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Kun Dong
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Yarong Guo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
45
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
46
|
Keerqin C, Rhayat L, Zhang ZH, Gharib-Naseri K, Kheravii SK, Devillard E, Crowley TM, Wu SB. Probiotic Bacillus subtilis 29,784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition. Poult Sci 2021; 100:100981. [PMID: 33647722 PMCID: PMC7921872 DOI: 10.1016/j.psj.2021.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
The study investigated the benefit of a Bacillus subtilis probiotic (Bs 29,784) in necrotic enteritis (NE)-challenged broilers. Four treatments were performed with 312 male day-old Ross 308 reared in floor pens from day 0 to day 35: 2 groups fed control diet without or with NE challenge (CtrlNC and CtrlNE); 2 groups fed probiotic and antibiotic supplements in the control diet with NE challenge (ProNE and AntNE). Necrotic enteritis challenge procedures commenced with inoculation of Eimeria spp 1 mL/bird per os at day 9 and Clostridium perfringens EHE-NE18 (approximately 108 cfu/mL) 1 mL/bird per os at day 14 and day 15. Performance parameters were measured on day 16 and day 35. Lesion, cecal microbiota, and jejunal gene expression were analyzed on day 16. Necrotic enteritis challenge significantly suppressed the performance parameters compared with CtrlNC: 27% weight gain reduction, 11 points feed conversion ratio (FCR) increase at day 16, and 12% weight gain reduction, 5-point FCR increase at day 35. By day 35, ProNE and AntNE treatments enabled significantly higher weight gain (4 and 9%, respectively) than CtrlNE. Compared with CtlrNE and contrary to AntNE, ProNE treatment exhibited upregulation of genes coding for tight junctions proteins (CLDN1, JAM2, TJP1), cytokines (IL12, interferon gamma, TGFβ), and Toll-like receptors (TLR5, TLR21) suggesting enhanced immunity and intestinal integrity. 16S NGS analysis of cecal microbiota at day 16 showed a decreased alpha diversity in challenged groups. Principal component analysis of operational taxonomic unit (OTU) abundance revealed that ProNE and AntNE grouped closely while both distantly from CtrlNC and CtrlNE, which were separately grouped, indicating the similar effects of ProNE and AntNE on the OTU diversity that were however different from both CtrlNC and CtrlNE. Microbiota analysis revealed an increase of genera Faecalibacterium, Oscillospira, and Butyricicoccus; and a decrease of genera Ruminococcus, Lactobacillus, and Bacteroides; and an increase of the Firmicutes-to-Bacteroidetes ratio in ProNE and AntNE groups compared with the CtlrNE group. It is concluded that Bs 29,784 may enable improved health of broiler chickens under NE conditions thus performance implications.
Collapse
Affiliation(s)
- C Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - L Rhayat
- Center of Expertise and Research in Nutrition, Adisseo France S.A.S. CERN, Commentry, France
| | - Z-H Zhang
- School of Medicine, MMR, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia
| | - K Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - E Devillard
- Center of Expertise and Research in Nutrition, Adisseo France S.A.S. CERN, Commentry, France
| | - T M Crowley
- School of Medicine, MMR, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia; School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S-B Wu
- School of Environmental and Rural Science, University of New England, Armidale, Australia.
| |
Collapse
|
47
|
Fang Q, Chen H. Development of a Novel Autophagy-Related Prognostic Signature and Nomogram for Hepatocellular Carcinoma. Front Oncol 2020; 10:591356. [PMID: 33392087 PMCID: PMC7775646 DOI: 10.3389/fonc.2020.591356] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the seventh most common malignancy and the second most common cause of cancer-related deaths. Autophagy plays a crucial role in the development and progression of HCC. METHODS Univariate and Lasso Cox regression analyses were performed to determine a gene model that was optimal for overall survival (OS) prediction. Patients in the GSE14520 and GSE54236 datasets of the Cancer Genome Atlas (TCGA) were divided into the high-risk and low-risk groups according to established ATG models. Univariate and multivariate Cox regression analyses were used to identify risk factors for OS for the purpose of constructing nomograms. Calibration and receiver operating characteristic (ROC) curves were used to evaluate model performance. Real-time PCR was used to validate the effects of the presence or absence of an autophagy inhibitor on gene expression in HepG2 and Huh7 cell lines. RESULTS OS in the high-risk group was significantly shorter than that in the low-risk group. Gene set enrichment analysis (GSEA) indicated that the association between the low-risk group and autophagy- as well as immune-related pathways was significant. ULK2, PPP3CC, and NAFTC1 may play vital roles in preventing HCC progression. Furthermore, tumor environment analysis via ESTIMATION indicated that the low-risk group was associated with high immune and stromal scores. Based on EPIC prediction, CD8+ T and B cell fractions in the TCGA and GSE54236 datasets were significantly higher in the low-risk group than those in the high-risk group. Finally, based on the results of univariate and multivariate analyses three variables were selected for nomogram development. The calibration plots showed good agreement between nomogram prediction and actual observations. Inhibition of autophagy resulted in the overexpression of genes constituting the gene model in HepG2 and Huh7 cells. CONCLUSIONS The current study determined the role played by autophagy-related genes (ATGs) in the progression of HCC and constructed a novel nomogram that predicts OS in HCC patients, through a combined analysis of TCGA and gene expression omnibus (GEO) databases.
Collapse
Affiliation(s)
| | - Hongsong Chen
- Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
48
|
Zhang K, Zhang M, Luo Z, Wen Z, Yan X. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J Genet Genomics 2020; 47:497-512. [PMID: 33339765 DOI: 10.1016/j.jgg.2020.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and one of the most prevalent and life-threatening malignancies globally. One of the hallmarks in HCC is the sustained cell survival and proliferative signals, which are determined by the balance between oncogenes and tumor suppressors. Transforming growth factor beta (TGF-β) is an effective growth inhibitor of epithelial cells including hepatocytes, through induction of cell cycle arrest, apoptosis, cellular senescence, or autophagy. The antitumorigenic effects of TGF-β are bypassed during liver tumorigenesis via multiple mechanisms. Furthermore, along with malignant progression, TGF-β switches to promote cancer cell survival and proliferation. This dichotomous nature of TGF-β is one of the barriers to therapeutic targeting in liver cancer. Thereafter, understanding the underlying molecular mechanisms is a prerequisite for discovering novel antitumor drugs that may specifically disable the growth-promoting branch of TGF-β signaling or restore its tumor-suppressive arm. This review summarizes how TGF-β inhibits or promotes liver cancer cell survival and proliferation, highlighting the functional switch mechanisms during the process.
Collapse
Affiliation(s)
- Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Meiping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Zhijun Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang, 330031, China.
| |
Collapse
|
49
|
Yan B, Luo J, Kaltenmeier C, Du Q, Stolz DB, Loughran P, Yan Y, Cui X, Geller DA. Interferon Regulatory Factor-1 (IRF1) activates autophagy to promote liver ischemia/reperfusion injury by inhibiting β-catenin in mice. PLoS One 2020; 15:e0239119. [PMID: 33137133 PMCID: PMC7605671 DOI: 10.1371/journal.pone.0239119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an important factor in liver ischemia-reperfusion injury. In the current study we investigate the function of interferon regulatory factor-1 (IRF1) in regulating autophagy to promote hepatic ischemia reperfusion injury (IR). The high expression of IRF1 during hepatic IR exhibited increased liver damage and was associated with activation of autophagy shown by Western blot markers, as well as immunofluorescent staining for autophagosomes. These effects were diminished by IRF1 deficiency in IRF1 knock out (KO) mice. Moreover, the autophagy inhibitor 3-MA decreased IR-induced liver necrosis and markedly abrogated the rise in liver injury tests (AST/ALT). β-catenin expression decreased during liver IR and was increased in the IRF1 KO mice. Immunoprecipitation assay showed the binding between IRF1 and β-catenin. Overexpression of IRF1 induced autophagy and also inhibited the expression of β-catenin. β-catenin inhibitor increased autophagy while β-catenin agonist suppressed autophagy in primary mouse hepatocytes. These results indicate that IRF1 induced autophagy aggravates hepatic IR injury in part by inhibiting β-catenin and suggests that targeting IRF1 may be an effective strategy in reducing hepatic IR injury.
Collapse
Affiliation(s)
- Bing Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christof Kaltenmeier
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States of America
| | - Patricia Loughran
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States of America
| | - Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wang DP, Yu ZX, He ZC, Liao JF, Shen XB, Zhu PL, Chen WN, Lin X, Xu SH. Apolipoprotein L1 is transcriptionally regulated by SP1, IRF1 and IRF2 in hepatoma cells. FEBS Lett 2020; 594:3108-3121. [PMID: 32671843 DOI: 10.1002/1873-3468.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 11/07/2022]
Abstract
Apolipoprotein L1 (APOL1) participates in lipid metabolism. Here, we investigate the mechanisms regulating APOL1 gene expression in hepatoma cells. We demonstrate that the -80-nt to +31-nt region of the APOL1 promoter, which contains one SP transcription factor binding GT box and an interferon regulatory factor (IRF) binding ISRE element, maintains the maximum activity. Mutation of the GT box and ISRE element dramatically reduces APOL1 promoter activity. EMSA and chromatin immunoprecipitation assay reveal that the transcription factors Sp1, IRF1 and IRF2 could interact with their cognate binding sites on the APOL1 promoter. Overexpression of Sp1, IRF1 and IRF2 increases promoter activity, leading to increased APOL1 mRNA and protein levels, while knockdown of Sp1, IRF1 and IRF2 has the opposite effects. These results demonstrate that the APOL1 gene could be regulated by Sp1, IRF1 and IRF2 in hepatoma cells.
Collapse
Affiliation(s)
- De-Ping Wang
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endocrinology and Metabolism, Hongqi Hospital of MuDanJiang Medical College, Mudanjiang, China
| | - Zhao-Xi Yu
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zong-Cun He
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jin-Fu Liao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xue-Bin Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Peng-Li Zhu
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shang-Hua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| |
Collapse
|