1
|
Ding Y, Huang Z, Luo Y, Lin H, Wang J, Zeng Z, Zhang T, Chen Y, Gong Y, Zhang M, Zhao C. A fibroblast activation protein α-activatable nanoagent co-delivering diethyldithiocarbamate and copper for tumor therapy and imaging. Acta Biomater 2024; 187:316-327. [PMID: 39151666 DOI: 10.1016/j.actbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Disulfiram (DSF), an FDA-approved drug for treating alcoholism, has been verified with Cu2+-dependent anticancer activity by forming Cu(DTC)2, the complex of one of its metabolites diethyldithiocarbamate (DTC) and Cu2+. Nevertheless, the antitumor effect is limited by insufficient Cu(DTC)2 formation in suit and off-target system toxicity. Herein, we developed a fibroblast activation protein α (FAPα) activatable nanoagent (HfD-HID-Cu) for co-delivery of DTC polymeric prodrug and exogenous Cu2+ to achieve enhanced cancer-specific therapy and activatable in situ fluorescence imaging meanwhile. HfD-HID-Cu was simply constructed through the co-assembly of the DTC polymeric prodrug (HA-fap-DTC) and the copper-loaded IR808-conjugated polymer (HA-IR-DPA-Cu), which could serve as the "OFF-to-ON" switch for chemotherapy and fluorescence. With the high expression of FAPα in tumor tissues, HA-fap-DTC could be activated specifically to release DTC, while maintaining inactive in normal tissues. The liberated DTC within tumor tissues could contend for Cu2+ from HA-IR-DPA-Cu, resulting in the formation of highly cytotoxic Cu(DTC)2in situ for chemotherapy, concomitant with the fluorescence recovery of cyanine dye for tumor imaging. This work provides an effective strategy for co-delivery of DTC prodrug and Cu2+ for tumor theranostic with improved selectivity and minimal side effects. STATEMENT OF SIGNIFICANCE: DSF-based antitumor therapy is highly dependent on Cu2+. However, the non-synchronous distribution of DSF/DTC and Cu2+ in tumor tissues attenuates the antitumor efficacy. The insufficient Cu(DTC)2 formation in suit and off-target distribution greatly limit the anti-tumor application. This study provides a nanoagent for co-delivery of DTC polymeric prodrug and Cu2+ by simple co-assembly to achieve their synchronous tumor distribution. It can be selectively activated by FAPα, forming cytotoxic Cu(DTC)2in suit for tumor-specific chemotherapy and reducing the systemic toxicity. In addition to chemotherapy, the nanoagent can emit fluorescence under the sequential triggering of FAPα and released DTC for tumor imaging. Overall, this study renders a promising strategy for improved Cu(DTC)2-based antitumor therapy and imaging.
Collapse
Affiliation(s)
- Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huanxin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jue Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yiwei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yujun Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Mingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
2
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y, Hu X. Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl) 2024; 137:1389-1398. [PMID: 38275022 PMCID: PMC11188872 DOI: 10.1097/cm9.0000000000002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.
Collapse
Affiliation(s)
- Min Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Baibei Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenjie Wei
- Institute of Biochemistry of Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zihan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peiqiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanting Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Xiao C, Li J, Hua A, Wang X, Li S, Li Z, Xu C, Zhang Z, Yang X, Li Z. Hyperbaric Oxygen Boosts Antitumor Efficacy of Copper-Diethyldithiocarbamate Nanoparticles against Pancreatic Ductal Adenocarcinoma by Regulating Cancer Stem Cell Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0335. [PMID: 38766644 PMCID: PMC11100349 DOI: 10.34133/research.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.
Collapse
Affiliation(s)
- Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Rohilla A, Rohilla S. Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs. Curr Drug Discov Technol 2024; 21:e101023222023. [PMID: 38629171 DOI: 10.2174/0115701638253929230922115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 04/19/2024]
Abstract
Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
6
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
7
|
Ding LF, Hu GX, Liu YY, Wang QH, Li ZJ, Shen MX, Zhu GF, Wu XD, Su J. Eudesmane-type sesquiterpenoids from the aerial parts of Artemisia lavandulaefolia and their anti-pancreatic cancer activities. PHYTOCHEMISTRY 2023; 216:113871. [PMID: 37777165 DOI: 10.1016/j.phytochem.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Five undescribed eudesmane sesquiterpenoids, artemilavanins A-E, and one undescribed rearranged eudesmane sesquiterpenoid, artemilavanin F, were isolated from the 95% ethanol extract of the aerial parts of Artemisia lavandulaefolia DC., along with ten known compounds. The structures and configurations of undescribed compounds were mainly elucidated by spectroscopic analyses and single-crystal X-ray diffraction analysis. Among all isolated compounds, artemilavanin F exhibited inhibitory activity on PANC-1 pancreatic cancer cells with IC50 of 9.69 ± 2.39 μM. Artemilavanin F inhibited PANC-1 cell proliferation by induction of G2/M cell cycle arrest and apoptosis mediated by downregulation of cyclin-dependent kinases and accumulation of reactive oxygen species. Moreover, artemilavanin F inhibited the colony formation, cell migration and sphere formation of PANC-1 cells, indicating the suppression of stem-cell-like phenotype of PANC-1 cells. Further results confirmed that the expression of cancer stem cell markers such as Bmi1, CD44, CD133 were inhibited by artemilavanin F. Downregulation of epithelial-mesenchymal transition (EMT) markers such as N-cadherin and Oct-4 indicated the potential of artemilavanin F in prevention of metastasis.
Collapse
Affiliation(s)
- Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guo-Xian Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yu-Yao Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiu-Hua Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhang-Juan Li
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Meng-Xia Shen
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Gui-Fa Zhu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Xing-De Wu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Jia Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
8
|
Elebo N, Abdel-Shafy EA, Cacciatore S, Nweke EE. Exploiting the molecular subtypes and genetic landscape in pancreatic cancer: the quest to find effective drugs. Front Genet 2023; 14:1170571. [PMID: 37790705 PMCID: PMC10544984 DOI: 10.3389/fgene.2023.1170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically presents at an advanced stage and is non-compliant with most treatments. Recent technologies have helped delineate associated molecular subtypes and genetic variations yielding important insights into the pathophysiology of this disease and having implications for the identification of new therapeutic targets. Drug repurposing has been evaluated as a new paradigm in oncology to accelerate the application of approved or failed target-specific molecules for the treatment of cancer patients. This review focuses on the impact of molecular subtypes on key genomic alterations in PDAC, and the progress made thus far. Importantly, these alterations are discussed in light of the potential role of drug repurposing in PDAC.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ebtesam A. Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
9
|
Mekapogu AR, Xu Z, Pothula S, Perera C, Pang T, Hosen SMZ, Damalanka V, Janetka J, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met pathway inhibition combined with chemotherapy increases cytotoxic T-cell infiltration and inhibits pancreatic tumour growth and metastasis. Cancer Lett 2023:216286. [PMID: 37354984 DOI: 10.1016/j.canlet.2023.216286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic cancer (PC) is a deadly cancer with a high mortality rate. The unique characteristics of PC, including desmoplasia and immunosuppression, have made it difficult to develop effective treatment strategies. Pancreatic stellate cells (PSCs) play a crucial role in the progression of the disease by interacting with cancer cells. One of the key mediators of PSC - cancer cell interactions is the hepatocyte growth factor (HGF)/c-MET pathway. Using an immunocompetent in vivo model of PC as well as in vitro experiments, this study has shown that a combined approach using HGF/c-MET inhibitors to target stromal-tumour interactions and chemotherapy (gemcitabine) to target cancer cells effectively decreases tumour volume, EMT, and stemness, and importantly, eliminates metastasis. Notably, HGF/c-MET inhibition decreases TGF-β secretion by cancer cells, resulting in an increase in cytotoxic T-cell infiltration, thus contributing to cancer cell death in tumours. HGF/c-MET inhibition + chemotherapy was also found to normalise the gut microbiome and improve gut microbial diversity. These findings provide a strong platform for assessment of this triple therapy (HGF/c-MET inhibition + chemotherapy) approach in the clinical setting.
Collapse
Affiliation(s)
- Alpha Raj Mekapogu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Srinivasa Pothula
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia; AbCellera, Beaconsfield, New South Wales, United Kingdom
| | - Chamini Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Tony Pang
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia; Surgical Innovations Unit, Westmead Hospital, Sydney, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - S M Zahid Hosen
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Vishnu Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - James Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - David Goldstein
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Romano Pirola
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Minoti Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia.
| |
Collapse
|
10
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
11
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
12
|
Bubin R, Uljanovs R, Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087030. [PMID: 37108193 PMCID: PMC10138709 DOI: 10.3390/ijms24087030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Collapse
Affiliation(s)
- Roman Bubin
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
13
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
15
|
Feng Z, Hom ME, Bearrood TE, Rosenthal ZC, Fernández D, Ondrus AE, Gu Y, McCormick AK, Tomaske MG, Marshall CR, Kline T, Chen CH, Mochly-Rosen D, Kuo CJ, Chen JK. Targeting colorectal cancer with small-molecule inhibitors of ALDH1B1. Nat Chem Biol 2022; 18:1065-1075. [PMID: 35788181 PMCID: PMC9529790 DOI: 10.1038/s41589-022-01048-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are promising cancer drug targets, as certain isoforms are required for the survival of stem-like tumor cells. We have discovered selective inhibitors of ALDH1B1, a mitochondrial enzyme that promotes colorectal and pancreatic cancer. We describe bicyclic imidazoliums and guanidines that target the ALDH1B1 active site with comparable molecular interactions and potencies. Both pharmacophores abrogate ALDH1B1 function in cells; however, the guanidines circumvent an off-target mitochondrial toxicity exhibited by the imidazoliums. Our lead isoform-selective guanidinyl antagonists of ALDHs exhibit proteome-wide target specificity, and they selectively block the growth of colon cancer spheroids and organoids. Finally, we have used genetic and chemical perturbations to elucidate the ALDH1B1-dependent transcriptome, which includes genes that regulate mitochondrial metabolism and ribosomal function. Our findings support an essential role for ALDH1B1 in colorectal cancer, provide molecular probes for studying ALDH1B1 functions and yield leads for developing ALDH1B1-targeting therapies.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Marisa E Hom
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas E Bearrood
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Zachary C Rosenthal
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Daniel Fernández
- Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Alison E Ondrus
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuchao Gu
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Cody R Marshall
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Toni Kline
- SPARK at Stanford, Stanford University, Stanford, CA, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Yao Z, Li X, Gao J, Wang Y, Xiao L, Chang X, Liu F, Feng Z, Zhang X. Transcription factor p8 regulates autophagy in response to disulfiram via PI3K/mTOR/p70S6K signaling pathway in pancreatic cancer cells. Hum Cell 2022; 35:1464-1474. [PMID: 35749047 DOI: 10.1007/s13577-022-00731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Disulfiram (DSF), which is an inhibitor of aldehyde dehydrogenase (ALDH) and approved by the FDA for the treatment of alcoholism previously, has been repurposed for use as a cancer treatment because of its potent effect in preclinical studies. In this study, we found that disulfiram forms potent complexes with copper (DSF/Cu) inhibited cell proliferation, induced apoptosis in human pancreatic cancer cells, which was detected by flow cytometry and western blotting. Meanwhile, autophagy and autophagic flux also clearly observed by transmission electron microscopy, confocal microscopy and flow cytometry. Our results also showed that DSF/Cu induced transcription factor p8 upregulation and PI3K/mTOR signaling pathway activation detected by real-time PCR and western blotting. Additionally, suppression of p8 inactivated the mTOR signaling pathway and autophagic flux maintained. Furthermore, mechanism study indicated that autophagy induced by DSF/Cu was regulated by p8 and was related to PI3K/mTOR/p70S6K signaling pathway in pancreatic cancer cells. Our findings provide insights into the role of p8 in regulating autophagy induced by DSF/Cu effects in pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhangyu Yao
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Xiang Li
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Jun Gao
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Yutao Wang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Linmei Xiao
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Xinxia Chang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Fangzhou Liu
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Xiao Zhang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
17
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
18
|
Zhang G, Wang Y, Fuchs BC, Guo W, Drum DL, Erstad DJ, Shi B, DeLeo AB, Zheng H, Cai L, Zhang L, Tanabe KK, Wang X. Improving the Therapeutic Efficacy of Sorafenib for Hepatocellular Carcinoma by Repurposing Disulfiram. Front Oncol 2022; 12:913736. [PMID: 35912209 PMCID: PMC9329590 DOI: 10.3389/fonc.2022.913736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundSorafenib, a kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC) but provides only a limited survival benefit. Disulfiram (DSF), a drug for treating alcoholism and a chelator of copper (Cu), forms a complex with Cu (DSF/Cu). DSF/Cu is a potent inducer of autophagic apoptosis of cancer stem cells, which can demonstrate drug resistance. Thus, we hypothesized that DSF/Cu could increase the sensitivity of HCC cells to sorafenib by targeting hepatic cancer stem cells.MethodsThe synergistic effect of DSF/Cu and sorafenib on human HCC cell lines was assessed by cell viability MTT assay. Changes in stemness gene expression in HCC cells were investigated by assessing the presence of hepatic cancer stem cells (HCSCs) (defined as ALDH+ cells) using flow cytometry, sphere formation ability as an index of in vitro tumorigenicity, and expression of stemness gene-encoded proteins by western blot. Autophagic apoptosis and the ERK signaling pathway were also assessed by western blot. Most importantly, the in vivo anti-tumor efficacy of DSF/Cu and sorafenib was tested using orthotopic HCC xenografts in mice.ResultsCompared with sorafenib alone, DSF/Cu + sorafenib synergistically inhibited proliferation of all HCC cell lines, decreased the stemness of HCC cells, and increased the autophagy and apoptosis of HCC cells. The mechanism by which DSF/Cu mediated these phenomena with sorafenib was sustained activation of the ERK pathway. The combination of DSF/Cu (formed with endogenous Cu2+) and sorafenib was significantly more effective than sorafenib alone in inhibiting the growth of orthotopic HCC xenografts in mice. This in vivo anti-tumor efficacy was associated with decreased stemness in treated HCC tumors.ConclusionsDSF/Cu and sorafenib can synergistically and effectively treat HCC by targeting HCSCs in vitro and in vivo. Our data provide a foundation for clinical translation.
Collapse
Affiliation(s)
- Gong Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bryan C. Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Guo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David L. Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Derek J. Erstad
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Baomin Shi
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Albert B. DeLeo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lei Cai
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Liyuan Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Xinhui Wang,
| |
Collapse
|
19
|
Sun F, Wang H, Nie J, Hong B. Repurposing disulfiram as a chemo-therapeutic sensitizer: molecular targets and mechanisms. Anticancer Agents Med Chem 2022; 22:2920-2926. [PMID: 35430981 DOI: 10.2174/1871520621666220415102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Currently, chemo-therapy is still the main strategy for cancer treatment. However, chemo-therapy resistance remains its main challenge. Disulfiram [DSF] is a drug approved by FDA for the treatment of alcohol addiction, but it is later discovered that it has the anticancer activity. Importantly, there have been many literatures reporting that DSF can be used as a chemo-therapeutic sensitizer to enhance the anticancer activity of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinic trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potential repurposed drug to sensitize cancer cells to chemo-therapy in clinic.
Collapse
Affiliation(s)
- Feilong Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
20
|
Chen C, Nie D, Huang Y, Yu X, Chen Z, Zhong M, Liu X, Wang X, Sui S, Liu Z, Tan J, Yu Z, Li Y, Zeng C. Anticancer effects of disulfiram in T-cell malignancies through NPL4-mediated ubiquitin-proteasome pathway. J Leukoc Biol 2022; 112:919-929. [PMID: 35363385 DOI: 10.1002/jlb.5ma1121-644r] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are characterized by inferior treatment effects, high heterogeneity, poor prognosis, and a lack of specific therapeutic targets and drugs to improve outcome. Disulfiram (DSF) is a drug used to clinically control alcoholism that has recently been shown to be cytotoxic for multiple cancers. However, the underlying effects and mechanisms of DFS treatment in patients with T-cell malignancies are not well characterized. In this study, we report that DSF promotes apoptosis and inhibits the proliferation of malignant T-cell cell lines and primary T-ALL cells. We provide evidence that DSF exerts anticancer activity in T-cell malignancies by targeting the NPL4-mediated ubiquitin-proteasome pathway. Notably, high expression of NPL4 and 2 ubiquitin-proteasome pathway genes, anaphase-promoting complex subunit 1 (ANAPC1) and proteasome 26S subunit ubiquitin receptor, non-ATPase 2 (PSMD2), was significantly associated with unfavorable overall survival (OS) for patients with TCL and T-ALL (p < 0.05). More importantly, the weighted combination of NPL4, ANAPC1, and PSMD2 could visually display the 1-, 3-, and 5-year OS rates for patients with T-cell malignancies in a nomogram model and facilitate risk stratification. Specifically, risk stratification was an independent predictor of OS for patients with T-cell malignancies. In conclusion, DSF might induce apoptosis and inhibit the proliferation of malignant T-cells via the NPL4-mediated ubiquitin-proteasome pathway and offer a potential therapeutic option for T-cell malignancies.
Collapse
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Dingrui Nie
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Youxue Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xibao Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Zheng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xin Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Songnan Sui
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhuandi Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Disulfiram/copper induces antitumor activity against gastric cancer cells in vitro and in vivo by inhibiting S6K1 and c-Myc. Cancer Chemother Pharmacol 2022; 89:451-458. [PMID: 35201421 DOI: 10.1007/s00280-022-04398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Disulfiram (DSF) is an approved drug for the treatment of alcohol dependence. Accumulating evidence indicates that DSF, alone or in combination with copper (Cu), possesses strong antitumor activity in various malignancies. This study investigated the effects of DSF on gastric cancer (GC) and the potential mechanisms involved. METHODS GC cell proliferation and apoptosis upon treatment with DSF with or without copper were analyzed using CCK-8 assay, colony formation assay, and flow cytometry. Glucose metabolism was investigated using glucose consumption and lactate production assays. The expression of caspase-3, Bcl-2, LC-3, P62, S6K1, c-Myc, GLUT1, PKM2, and LDHA was analyzed using western blot assay. In vivo nude mice studies were performed to verify the findings from in vitro analyses. RESULTS Our study showed that DSF was highly toxic to GC cells in a Cu-dependent manner. Nontoxic concentrations of Cu enhanced the inhibitory effects of DSF on cell viability and colony formation. DSF also induced apoptotic and autophagic cell death in the presence of Cu. In addition, DSF/Cu inhibited glycolysis and xenograft growth of GC cells by suppressing the expression of S6K1, c-Myc, and their downstream molecules, including GLUT1, PKM2, and LDHA. CONCLUSION Our study demonstrated that DSF/Cu exerted antitumor activity against GC cells both in vitro and in vivo. DSF/Cu may represent a promising therapeutic strategy for the treatment of GC.
Collapse
|
22
|
Yan H, Yang H, Wang L, Sun X, Han L, Cong P, Chen X, Lu D, Che C. Disulfiram inhibits IL-1β secretion and inflammatory cells recruitment in Aspergillus fumigatus keratitis. Int Immunopharmacol 2021; 102:108401. [PMID: 34883353 DOI: 10.1016/j.intimp.2021.108401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Disulfiram, an inhibitor of gasdermin D-induced pore formation, is known to suppress interleukin (IL)-1β secretion and pyroptosis. However, its effects on fungal keratitis remain unknown. Therefore, we investigated the role of disulfiram in Aspergillus fumigatus keratitis. METHODS In vitro, Cell Count Kit-8 (CCK8) assay and cell scratch test were performed to determine optimal concentration. In vivo and in vitro experiments were conducted in a mouse model, human neutrophils, and mouse peritoneal macrophages. We pre-treated the mice or cells with disulfiram and infected them with A. fumigatus at specific times. We subsequently evaluated the development of fungal keratitis lesions, the recruitment of inflammatory cells, and the production of inflammatory cytokines using slit lamp microscopy, clinical evaluation, quantitative reverse transcription polymerase chain reaction, immunofluorescence staining, enzyme-linked immunosorbent assay, and western blotting. We also used slit lamp microscopy and clinical evaluation to assess the effect of natamycin with or without disulfiram. RESULTS Disulfiram at 20 μM has no significant cytotoxic effect and does not affect cell migration. In the mouse model, disulfiram significantly suppressed inflammatory responses, reduced neutrophil and macrophage recruitment, and down-regulated myeloperoxidase and nitric oxide synthase levels at earlier stages of infection. Disulfiram had no effect on IL-1β production and maturation, but it inhibited IL-1β secretion in macrophages. Disulfiram combined with natamycin significantly increased corneal transparency in the mice model. CONCLUSION Overall, disulfiram reduced the host immune response in fungal keratitis by attenuating neutrophil and macrophage recruitment and inhibiting IL-1β secretion in macrophages. Disulfiram in combination with antifungal agents may serve as a novel therapeutic method for reducing corneal opacity in fungal keratitis.
Collapse
Affiliation(s)
- Haijing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Limei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Han
- Gout Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peishan Cong
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaomeng Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Danli Lu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
23
|
Xu Y, Lu L, Luo J, Wang L, Zhang Q, Cao J, Jiao Y. Disulfiram Alone Functions as a Radiosensitizer for Pancreatic Cancer Both In Vitro and In Vivo. Front Oncol 2021; 11:683695. [PMID: 34631519 PMCID: PMC8494980 DOI: 10.3389/fonc.2021.683695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of pancreatic cancer remains very poor worldwide, partly due to the lack of specificity of early symptoms and innate resistance to chemo-/radiotherapy. Disulfiram (DSF), an anti-alcoholism drug widely used in the clinic, has been known for decades for its antitumor effects when simultaneously applied with copper ions, including pancreatic cancer. However, controversy still exists in the context of the antitumor effects of DSF alone in pancreatic cancer and related mechanisms, especially in its potential roles as a sensitizer for cancer radiotherapy. In the present study, we focused on whether and how DSF could facilitate ionizing radiation (IR) to eliminate pancreatic cancer. DSF alone significantly suppressed the survival of pancreatic cancer cells after exposure to IR, both in vitro and in vivo. Additionally, DSF treatment alone caused DNA double-strand breaks (DSBs) and further enhanced IR-induced DSBs in pancreatic cancer cells. In addition, DSF alone boosted IR-induced cell cycle G2/M phase arrest and apoptosis in pancreatic cancer exposed to IR. RNA sequencing and bioinformatics analysis results suggested that DSF could trigger cell adhesion molecule (CAM) signaling, which might be involved in its function in regulating the radiosensitivity of pancreatic cancer cells. In conclusion, we suggest that DSF alone may function as a radiosensitizer for pancreatic cancer, probably by regulating IR-induced DNA damage, cell cycle arrest and apoptosis, at least partially through the CAM signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lunjie Lu
- Department of Radiation Physics, Qingdao Central Hospital, Qingdao, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lili Wang
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Li Z, Xie X, Tan G, Xie F, Liu N, Li W, Sun X. Disulfiram Synergizes with SRC Inhibitors to Suppress the Growth of Pancreatic Ductal Adenocarcinoma Cells in Vitro and in Vivo. Biol Pharm Bull 2021; 44:1323-1331. [PMID: 34471060 DOI: 10.1248/bpb.b21-00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disulfiram (DSF), an old anti-alcoholism drug, has emerged as a candidate for drug repurposing in oncology. In exploratory studies on its therapeutic effects, we unexpectedly discovered that DSF increased the phosphorylation of SRC, a proto-oncogene tyrosine-protein kinase elevated in 70% of pancreatic ductal adenocarcinoma (PDAC) cases. This serendipitous and novel finding led to our hypothesis for the current study which proposes DSF may synergize with SRC inhibitors in suppressing PDAC. Human PDAC PANC-1 and BXPC-3 cells were incubated with DSF chelated with copper (Cu2+), SRC inhibitors (PP2 and dasatinib), or transfected with lentiviral short hairpin RNA (shRNA), and their proliferation and apoptosis were analyzed. A xenograft model was employed to verify the in vitro results. The expression of key molecules was detected. DSF significantly inhibited cell proliferation and induced cell apoptosis by increasing the cleavage of poly ADP ribose polymerase (PARP), downregulating Bcl-2 and upregulating p27 in concentration- and time-dependent manners. DSF had little effect on signal transducer and activator of transcription 3 (STAT3) expression but inhibited its phosphorylation. DSF did not alter SRC expression but significantly increased its phosphorylation through upregulating actin filament associated protein 1 like 2 (AFAP1L2). DSF exhibited a synergistic effect, as analyzed by drug coefficient interactions, with either PP2, or dasatinib, or SRC depletion in suppressing PDAC cells in vitro and/or in vivo. The present results indicate DSF is a potential therapeutic drug, particularly when it is combined with SRC inhibitors, and warrant further studies on the pharmacological utility of DSF as a promising adjunct therapy for the treatment of PDAC.
Collapse
Affiliation(s)
- Ziyi Li
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University
| | - Xiangjun Xie
- Department of Gastroenterology, Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Gang Tan
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University
| | - Fangyu Xie
- Department of Cardiology, Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Nianjiao Liu
- Department of Endocrinology, the First Hospital Affiliated of Harbin Medical University
| | - Weidong Li
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University.,Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University
| | - Xueying Sun
- Hepatosplenic Surgery Center, the First Affiliated Hospital of Harbin Medical University
| |
Collapse
|
25
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
26
|
Zhao P, Tang X, Huang Y. Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. VIEW 2021. [DOI: 10.1002/viw.20200127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pengfei Zhao
- School of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Xueping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- Artemisinin Research Center Guangzhou University of Chinese Medicine Guangzhou China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients Shanghai China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development Chinese Academy of Sciences Zhongshan China
| |
Collapse
|
27
|
Jia Y, Huang T. Overview of Antabuse ® (Disulfiram) in Radiation and Cancer Biology. Cancer Manag Res 2021; 13:4095-4101. [PMID: 34045896 PMCID: PMC8146747 DOI: 10.2147/cmar.s308168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Antabuse®, generic name disulfiram, has been extensively used in daily clinical practice to treat alcohol abuse. In vivo and in vitro experiments have demonstrated that disulfiram was capable of inhibiting tumor cell proliferation; clinical studies have indicated that the administration of this drug was associated with favorable survival, whilst in vitro experiments have elucidated the anticancer mechanism of disulfiram. In addition, radiation and cancer biology studies have shown that disulfiram can protect normal cells and sensitize tumor cells during radiotherapy. This review aims at describing the antitumor activity of disulfiram in both preclinical studies and clinical trials, whilst focusing on the advances of this drug in radiation and cancer biology, and the promise of repurposing it as a novel sensitizer to, and protector against, radiation on the incoming clinical studies.
Collapse
Affiliation(s)
- Yaqi Jia
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tao Huang
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
28
|
Li M, Liu Y, Deng Y, Pan L, Fu H, Han X, Li Y, Shi H, Wang T. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review). Oncol Rep 2021; 45:68. [PMID: 33760221 PMCID: PMC8020202 DOI: 10.3892/or.2021.8019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S), the third gas signal molecule, is associated with the modulation of various physiological and pathological processes. Recent studies have reevealed that endogenous H2S may promote proliferation, induce angiogenesis and inhibit apoptosis, thereby stimulating oncogenesis. Conversely, decreased endogenous H2S release suppresses growth of various tumors including breast cancer. This observation suggests an alternative tumor therapy strategy by inhibiting H2S-producing enzymes to reduce the release of endogenous H2S. Breast cancer is the most common type of cancer in women. Due to the lack of approved targeted therapy, its recurrence and metastasis still affect its clinical treatment. In recent years, significant progress has been made in the control of breast cancer by using inhibitors on H2S-producing enzymes. This review summarized the roles of endogenous H2S-producing enzymes in breast cancer and the effects of the enzyme inhibitors on anticancer and anti-metastasis, with the aim of providing new insights for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ming Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuying Deng
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Limin Pan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Han Fu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xue Han
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuxi Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haimei Shi
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tianxiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
29
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Zhang Y, He L, Sadagopan A, Ma T, Dotti G, Wang Y, Zheng H, Gao X, Wang D, DeLeo AB, Fan S, Sun R, Yu L, Zhang L, Wang G, Ferrone S, Wang X. Targeting Radiation-Resistant Prostate Cancer Stem Cells by B7-H3 CAR T Cells. Mol Cancer Ther 2021; 20:577-588. [PMID: 33653946 PMCID: PMC7952034 DOI: 10.1158/1535-7163.mct-20-0446] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023]
Abstract
Radiotherapy (RT) is a key treatment for prostate cancer. However, RT resistance can contribute to treatment failure. Prostate cancer stem cells (PCSCs) are radioresistant. We recently found that fractionated irradiation (FIR) upregulates expression of the immune checkpoint B7-H3 (CD276) on PCSCs and bulk cells in each prostate cancer cell line tested. These findings prompted us to investigate whether B7-H3 targeting chimeric antigen receptor (CAR) T cells, which may abrogate function of an immune checkpoint and mediate lysis of targeted cells, can target RT-resistant PCSCs in vitro and in vivo. B7-H3 expression is naturally higher on PCSCs than bulk prostate cancer cells and cytotoxicity of B7-H3 CAR T cells to PCSCs is more potent than to bulk prostate cancer cells. Furthermore, FIR significantly upregulates B7-H3 expression on PCSCs and bulk prostate cancer cells. The duration of FIR or single-dose irradiation-induced further upregulation of B7-H3 on bulk prostate cancer cells and PCSCs lasts for up to 3 days. B7-H3 CAR T-cell cytotoxicity against FIR-resistant PCSCs at a low effector to target ratio of 1:1 was assessed by flow cytometry and sphere formation assays. Further upregulation of B7-H3 expression by FIR made PCSCs even more sensitive to B7-H3 CAR T-cell-mediated killing. Consequently, the FIR and B7-H3 CAR T-cell therapy combination is much more effective than FIR or CAR T cells alone in growth inhibition of hormone-insensitive prostate cancer xenografts in immunodeficient mice. Our work provides a sound basis for further development of this unique combinatorial model of RT and B7-H3 CAR T-cell therapy for prostate cancer. SIGNIFICANCE: We demonstrate that FIR significantly upregulates B7-H3 expression by RT-resistant PCSCs and bulk cells; cytotoxicity of B7-H3 CAR T cells to FIR-treated PCSCs is potent and results in significantly improved antitumor efficacy in mice.
Collapse
Affiliation(s)
- Yida Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lile He
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ananthan Sadagopan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tao Ma
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Yufeng Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xin Gao
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dian Wang
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
| | - Albert B DeLeo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Song Fan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ruochuan Sun
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ling Yu
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Liyuan Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Wang K, Michelakos T, Wang B, Shang Z, DeLeo AB, Duan Z, Hornicek FJ, Schwab JH, Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett 2021; 505:37-48. [PMID: 33582212 PMCID: PMC8969896 DOI: 10.1016/j.canlet.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Overcoming the radiosensitivity of chondrosarcoma (CS), the second most common primary bone tumor, is needed. Radioresistance is attributed to cancer stem cells (CSCs) in many malignancies. Disulfiram (DSF), an FDA-approved anti-alcoholism drug, complexed with Cu (DSF/Cu) can radiosensitize epithelial CSCs. This prompted us to investigate the radiosensitizing effect of DSF/Cu on CS CSCs (CCSCs). The radiosensitizing effects of DSF/Cu on CCSCs were investigated in vitro using cell lines SW1353 and CS-1. Stemness was identified independently by flow cytometry for CCSCs (ALDH+CD133+), sphere-forming ability, and Western blot analysis of stemness gene protein expression. The radiosensitizing effect of DSF/Cu was studied in an orthotopic CS xenograft mouse model by analyzing xenograft growth and residual xenografts for stemness. CCSCs were found to be resistant to single-dose (IR) and fractionated irradiation (FIR). IR and FIR increased CS stemness. Combined with DSF/Cu in vitro and in vivo, IR and FIR eliminated CS stemness. RT + DSF/Cu was safer and more effective than either RT ± DSF in inhibiting growth of orthotopic CS xenografts. In conclusion, DSF/Cu radiosensitizes CCSCs. These results can be translated into clinical trials for CS patients requiring RT for improved outcomes.
Collapse
Affiliation(s)
- Kun Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Theodoros Michelakos
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zikun Shang
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Albert B DeLeo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
32
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
33
|
Lu C, Li X, Ren Y, Zhang X. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol 2021; 87:159-172. [PMID: 33426580 DOI: 10.1007/s00280-020-04216-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a major health issue worldwide and the global burden of cancer is expected to reduce the costs of treatment as well as prolong the survival time. One of the promising approaches is drug repurposing, because it reduces costs and shortens the production cycle of research and development. Disulfiram (DSF), which was originally approved as an anti-alcoholism drug, has been proven safe and shows the potential to target tumours. Its anti-tumour effect has been reported in many preclinical studies and recently on seven types of cancer in humans: non-small cell lung cancer (NSCLC), liver cancer, breast cancer, prostate cancer, pancreatic cancer, glioblastoma (GBM) and melanoma and has a successful breakthrough in the treatment of NSCLC and GBM. The mechanisms, particularly the intracellular signalling pathways, still remain to be completely elucidated. As shown in our previous study, DSF inhibits NF-kB signalling, proteasome activity, and aldehyde dehydrogenase (ALDH) activity. It induces endoplasmic reticulum (ER) stress and autophagy and has been used as an adjuvant therapy with irradiation or chemotherapy drugs. On the other hand, DSF not only kills the normal cancer cells but also has the ability to target cancer stem cells, which provides a new approach to prevent tumour recurrence and metastasis. Furthermore, other researchers have reported the ability of DSF to bind to nuclear protein localization protein 4 (NPL4), induce its immobilization and dysfunction, ultimately leading to cell death. Here, we provide an overview of DSF repurposing as a treatment in preclinical studies and clinical trials, and review studies describing the mechanisms underlying its anti-neoplastic effects.
Collapse
Affiliation(s)
- Chen Lu
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Xinyan Li
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Yongya Ren
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China
| | - Xiao Zhang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Zhao Y, Lin Z, Lin Z, Zhou C, Liu G, Lin J, Zhang D, Lin D. Overexpression of Mucin 1 Suppresses the Therapeutical Efficacy of Disulfiram against Canine Mammary Tumor. Animals (Basel) 2020; 11:ani11010037. [PMID: 33375426 PMCID: PMC7823863 DOI: 10.3390/ani11010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Canine mammary tumor is one of the most prevalent canine tumor types in China. Clinical studies showed that the high expression of mucin 1 (MUC1) protein is significantly associated with the malignancy and poor prognosis of canine mammary tumor. Therefore, it is worthwhile to investigate the expression of mucin 1 in developing treatments against canine mammary tumors. In the present study, it is demonstrated that disulfiram, an approved medication in treating human alcoholism, also has inhibitory effects on the growth of canine mammary tumor cells both in vitro and in vivo. With the overexpression of MUC1, the inhibitory effects of disulfiram decrease accordingly. Moreover, disulfiram is shown to inhibit phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) signaling transduction, which is attenuated by MUC1 overexpression. Overall, these results indicate that the expression level of MUC1 is detrimental to determining the anti-tumor activity of disulfiram. Further consideration should be given when treating the canine mammary tumor with disulfiram or other PI3K/Akt inhibitors. Abstract Mucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2. In addition, overexpression of MUC1 in CIPp-MUC1 cells inhibited the suppressing activity of disulfiram on the growth and metastasis of tumor cells, as well as inhibiting the pro-apoptotic effect of disulfiram. In vivo studies, on the other side, showed more rapid tumor growth and stronger resistance to disulfiram treatment in CIPp-MUC1 xenograft mice than in wild-type control. In conclusion, our study demonstrated the importance of MUC1 in affecting the therapeutical efficiency of disulfiram against canine mammary tumors, indicating that the expression level of MUC1 should be considered for clinical use of disulfiram or other drugs targeting PI3K/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Di Zhang
- Correspondence: (D.Z.); (D.L.); Tel.: +86-1369-326-2510 (D.Z.); +86-1380-105-8458 (D.L.)
| | - Degui Lin
- Correspondence: (D.Z.); (D.L.); Tel.: +86-1369-326-2510 (D.Z.); +86-1380-105-8458 (D.L.)
| |
Collapse
|
35
|
Wang R, Shen J, Yan H, Gao X, Dong T, Wang P, Zhou J. The Evolving Role of Disulfiram in Radiobiology and the Treatment of Breast Cancer. Onco Targets Ther 2020; 13:10441-10446. [PMID: 33116623 PMCID: PMC7569069 DOI: 10.2147/ott.s271532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022] Open
Abstract
Disulfiram (DSF), also known as “Antabuse”, has been widely used in clinical practice to treat alcoholism. In the past decades, both in vivo and in vitro experiments showed that DSF has strong anti-cancer activity, there were some clinical studies indicated the administration of this drug was associated with favorable survival in breast cancer. It is also evident that DSF has a radioprotective effect on normal cells and could be utilized during the course of radiation therapy. Moreover, increasing evidences demonstrated the role of DSF in enhancing the radiosensitivity of tumor cells in number of alternative mechanisms. Recent studies have also elaborated the anticancer mechanism of DSF in tumor cells. This review summarizes the anticancer activity of DSF both in preclinical studies and clinical trials, focuses on the advances of this drug in radiobiology and the treatment of breast cancer, and reveals the promising of repurposing DSF as a novel radiosensitizer and radioprotector in further clinical trials.
Collapse
Affiliation(s)
- Rui Wang
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jun Shen
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Huanhuan Yan
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Xitao Gao
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Tianfu Dong
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Peishun Wang
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jun Zhou
- Department of Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
36
|
|
37
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
38
|
Yang Q, Yao Y, Li K, Jiao L, Zhu J, Ni C, Li M, Dou QP, Yang H. An Updated Review of Disulfiram: Molecular Targets and Strategies for Cancer Treatment. Curr Pharm Des 2020; 25:3248-3256. [PMID: 31419930 DOI: 10.2174/1381612825666190816233755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Repurposing already approved drugs as new anticancer agents is a promising strategy considering the advantages such as low costs, low risks and less time-consumption. Disulfiram (DSF), as the first drug for antialcoholism, was approved by the U.S. Food and Drug Administration (FDA) over 60 years ago. Increasing evidence indicates that DSF has great potential for the treatment of various human cancers. Several mechanisms and targets of DSF related to cancer therapy have been proposed, including the inhibition of ubiquitin-proteasome system (UPS), cancer cell stemness and cancer metastasis, and alteration of the intracellular reactive oxygen species (ROS). This article provides a brief review about the history of the use of DSF in humans and its molecular mechanisms and targets of anticancer therapy, describes DSF delivery strategies for cancer treatment, summarizes completed and ongoing cancer clinical trials involving DSF, and offers strategies to better use DSF in cancer therapies.
Collapse
Affiliation(s)
- Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lin Jiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiazhen Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cheng Ni
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, United States
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
39
|
Zhang J, Pu K, Bai S, Peng Y, Li F, Ji R, Guo Q, Sun W, Wang Y. The anti-alcohol dependency drug disulfiram inhibits the viability and progression of gastric cancer cells by regulating the Wnt and NF-κB pathways. J Int Med Res 2020; 48:300060520925996. [PMID: 32529870 PMCID: PMC7294493 DOI: 10.1177/0300060520925996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Disulfiram is commonly used for alcohol abuse; however, recent studies have revealed its potential as an anti-cancer treatment. This study investigated the effects of disulfiram on gastric cancer and its underlying mechanisms of action. METHODS The gastric cancer cell lines MKN-45 and SGC-7901 were used for all experiments. Cell proliferation was investigated using cell counting kit-8, cell migration and invasion were examined using Transwell assays, the proliferation and metastasis related proteins PCNA and MMP-2, respectively, were detected by ELISA. To explore the underlying molecular mechanisms, we also examined levels of proteins involved in the Wnt and NF-κB pathways by ELISA. RESULTS Disulfiram significantly inhibited the proliferation, migration, and invasion of gastric cancer cells and decreased PCNA and MMP-2 levels. Additionally, disulfiram-treated MKN-45 and SGC-7901 cells showed reduced expression of Wnt, β-catenin, and NF-κB. CONCLUSION Disulfiram regulates the Wnt and NF-κB pathways, and thus could be a potential treatment for managing gastric cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Suyang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yukui Peng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
41
|
Zhong Y, Sun R, Geng Y, Zhou Q, Piao Y, Xie T, Zhou R, Shen Y. N-Oxide polymer-cupric ion nanogels potentiate disulfiram for cancer therapy. Biomater Sci 2020; 8:1726-1733. [PMID: 31995039 DOI: 10.1039/c9bm01841g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfiram (DSF) exerts potent anticancer activity via the formation of chelates with copper or zinc ions in tumor tissues, but the low abundance of these ions in the tumor cannot sustain its antitumor activity. Herein, we show that a zwitterionic water-soluble N-oxide polymer, poly[2-(N-oxide-N,N-dimethylamino)ethyl methacrylate] (OPDMA), can complex cupric ions and form nanogels (OPDMA/Cu), which efficiently deliver copper ions to tumor tissue to potentiate DSF significantly for effective antitumor therapy.
Collapse
Affiliation(s)
- Yin Zhong
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Rui Sun
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Yu Geng
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Quan Zhou
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Ying Piao
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Tao Xie
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| | - Youqing Shen
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| |
Collapse
|
42
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
43
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
44
|
Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin Cancer Biol 2019; 68:105-122. [PMID: 31883910 DOI: 10.1016/j.semcancer.2019.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.
Collapse
|
45
|
Hamy AS, Derosa L, Valdelièvre C, Yonekura S, Opolon P, Priour M, Guerin J, Pierga JY, Asselain B, De Croze D, Pinheiro A, Lae M, Talagrand LS, Laas E, Darrigues L, Grandal B, Marangoni E, Montaudon E, Kroemer G, Zitvogel L, Reyal F. Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer. Oncoimmunology 2019; 9:1677427. [PMID: 32002287 PMCID: PMC6959439 DOI: 10.1080/2162402x.2019.1677427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Immunosurveillance plays an important role in breast cancer (BC) prognosis and progression, and can be geared by immunogenic chemotherapy. In a cohort of 1023 BC patients treated with neoadjuvant chemotherapy (NAC), 40% of the individuals took comedications mostly linked to aging and comorbidities. We systematically analyzed the off-target effects of 1178 concurrent comedications (classified according to the Anatomical Therapeutic Chemical (ATC) Classification System) on the density of tumor-infiltrating lymphocytes (TILs) and pathological complete responses (pCR). At level 1 of the ATC system, the main anatomical classes of drugs were those targeting the nervous system (class N, 39.1%), cardiovascular disorders (class C, 26.6%), alimentary and metabolism (class A, 16.9%), or hormonal preparations (class H, 6.5%). At level 2, the most frequent therapeutic classes were psycholeptics (N05), analgesics (N02), and psychoanaleptics (N06). Pre-NAC TIL density in triple-negative BC (TNBC) was influenced by medications from class H, N, and A, while TIL density in HER2+ BC was associated with the use of class C. Psycholeptics (N05) and agents acting on the renin-angiotensin system (C09) were independently associated with pCR in the whole population of BC or TNBC, and in HER2-positive BC, respectively. Importantly, level 3 hypnotics (N05C) alone were able to reduce tumor growth in BC bearing mice and increased the anti-cancer activity of cyclophosphamide in a T cell-dependent manner. These findings prompt for further exploration of drugs interactions in cancer, and for prospective drug-repositioning strategies to improve the efficacy of NAC in BC.
Collapse
Affiliation(s)
- Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Satoru Yonekura
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Paule Opolon
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Maël Priour
- Informatics Department, Institut Curie, Paris, France
| | - Julien Guerin
- Informatics Department, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | | | | | - Alice Pinheiro
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France
| | - Marick Lae
- Tumor Biology, Institut Curie, Paris, France
| | | | - Enora Laas
- Department of Surgery, Institut Curie, Paris, France
| | | | | | - Elisabetta Marangoni
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Elodie Montaudon
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Cell Biology and Metabolomics platforms, Villejuif, France.,INSERM, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy and Institut Curie, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Surgery, Institut Curie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
46
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
47
|
Di Carlo C, Brandi J, Cecconi D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J Stem Cells 2018; 10:172-182. [PMID: 30631392 PMCID: PMC6325076 DOI: 10.4252/wjsc.v10.i11.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive solid tumours of the pancreas, characterised by a five-year survival rate less than 8%. Recent reports that pancreatic cancer stem cells (PCSCs) contribute to the tumorigenesis, progression, and chemoresistance of pancreatic cancer have prompted the investigation of new therapeutic approaches able to directly target PCSCs. In the present paper the non-cancer related drugs that have been proposed to target CSCs that could potentially combat pancreatic cancer are reviewed and evaluated. The role of some pathways and deregulated proteins in PCSCs as new therapeutic targets are also discussed with a focus on selected specific inhibitors. Finally, advances in the development of nanoparticles for targeting PCSCs and site-specific drug delivery are highlighted, and their limitations considered.
Collapse
Affiliation(s)
- Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| |
Collapse
|
48
|
Koh HK, Seo SY, Kim JH, Kim HJ, Chie EK, Kim SK, Kim IH. Disulfiram, a Re-positioned Aldehyde Dehydrogenase Inhibitor, Enhances Radiosensitivity of Human Glioblastoma Cells In Vitro. Cancer Res Treat 2018; 51:696-705. [PMID: 30121967 PMCID: PMC6473295 DOI: 10.4143/crt.2018.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
Purpose Glioblastoma, the most common brain tumor in adults, has poor prognosis. The purpose of this study was to determine the effect of disulfiram (DSF), an aldehyde dehydrogenase inhibitor, on in vitro radiosensitivity of glioblastoma cells with different methylation status of O6-methylguanine-DNA methyltransferase (MGMT) promoter and the underlying mechanism of such effect. Materials and Methods Five human glioblastoma cells (U138MG, T98G, U251MG, U87MG, and U373MG) and one normal human astrocyte (NHA) cell were cultured and treated with DSF or 6MV X-rays (0, 2, 4, 6, and 8 Gy). For combined treatment, cells were treated with DSF before irradiation. Surviving fractions fit from cell survival based on colony forming ability. Apoptosis, DNA damage repair, and cell cycle distributionwere assayed bywestern blot for cleaved caspase-3, γH2AX staining, and flow cytometry, respectively. Results DSF induced radiosensitization in most of the glioblastoma cells, especially, in the cells with radioresistance as wildtype unmethylated promoter (MGMT-wt), but did not in normal NHA cell. DSF augmented or induced cleavage of caspase-3 in all cells after irradiation. DSF inhibited repair of radiation-induced DNA damage in MGMT-wt cells, but not in cells with methylated MGMT promoter. DSF abrogated radiation-induced G2/M arrest in T98G and U251MG cells. Conclusion Radiosensitivity of glioblastoma cells were preferentially enhanced by pre-irradiation DSF treatment compared to normal cell, especially radioresistant cells such as MGMT-wt cells. Induction of apoptosis or inhibition of DNA damage repair may underlie DSF-induced radiosensitization. Clinical benefit of combining DSF with radiotherapy should be investigated in the future.
Collapse
Affiliation(s)
- Hyeon Kang Koh
- Department of Radiation Oncology, Konkuk University Medical Center, Seoul, Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Yeon Seo
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
49
|
Gao X, Cui R, Ji G, Liu Z. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. NANOSCALE 2018; 10:6205-6211. [PMID: 29560986 DOI: 10.1039/c7nr08892b] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Benefiting from their porous structures, metal-organic frameworks (MOFs) have attracted intensive attention for use in drug release. However, the controllable synthesis of MOFs with proper particle sizes is still very challenging, which largely limits its applications. Here, UIO-66-NH2 with controlled particle sizes in the range of 20-200 nm has been achieved successfully. The amine on UIO-66-NH2 is demonstrated for the feasible post-modifying of UIO-66-NH2 to obtain multifunctional MOFs, overcoming the limitations of functional simplicity and broadening the range of applications. After covalent grafting the targeting reagent folic acid (FA) and the fluorescence imaging agent 5-carboxyfluorescein (5-FAM), UIO-66-NH2-FA-5-FAM/5-FU can target the cancer cells HePG-2 and display excellent fluorescence imaging in vitro. Moreover, the in vivo biodistribution and antitumor assays indicate that UIO-66-NH2-FA-5-FAM/5-FU can accumulate in the tumor and display stronger antitumor efficiency due to the long-time drug release. Taken together, this study integrates the imaging section and the treated section in a single platform successfully and the present approach can be a good use of therapeutic MOFs to achieve the desired objective, a better treatment.
Collapse
Affiliation(s)
- Xuechuan Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.
| | - Ruixue Cui
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.
| | - Guanfeng Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China.
| |
Collapse
|
50
|
Abstract
Abstract
Background
The current successful clinical use of agents promoting robust anti-tumor immunity in cancer patients warrants noting that radiation therapy (RT) induces immunogenic cell death (ICD) of tumor cells, which can generate anti-tumor immune responses. However, breast cancer stem cells (BCSCs) are resistant to RT and RT alone usually failed to mount an anti-tumor immune response.
Methods
High aldehyde dehydrogenase activity (ALDH)bright and CD44+/CD24−/ESA+ cancer cells, previously shown to have BCSC properties, were isolated from human MDA-MB-231 and UACC-812 breast cancer cell lines by flow cytometer. Flow sorted BCSCs and non-BCSCs were further tested for their characteristic of stemness by mammosphere formation assay. Induction of ICD in BCSCs vs. non-BCSCs in response to different in vitro treatments was determined by assessing cell apoptosis and a panel of damage-associated molecular pattern molecules (DAMPs) by flow and enzyme-linked immunosorbent assay (ELISA).
Results
We found that ionizing radiation (IR) triggered a lower level of ICD in BCSCs than non-BCSCs. We then investigated the ability of disulfiram/cooper (DSF/Cu) which is known to preferentially induce cancer stem cells (CSCs) apoptosis to enhance IR-induced ICD of BCSCs. The results indicate that DSF/Cu induced a similar extent of IDC in both BCSCs and non-BCSCs and rendered IR-resistant BCSCs as sensitive as non-BCSCs to IR-induced ICD. IR and DSF/Cu induced ICD of BCSCs could be partly reversed by pre-treatment of BCSCs with a reactive oxygen species (ROS) scavenger and XBP1s inhibitors.
Conclusion
DSF/Cu rendered IR-resistant BCSCs as sensitive as non-BCSCs to IR-induced ICD. Our data demonstrate the potential of IR and DSF/Cu to induce ICD in BCSCs and non-BCSCs leading to robust immune responses against not only differentiated/differentiating breast cancer cells but also BCSCs, the root cause of cancer formation, progression and metastasis.
Graphical abstract
Collapse
|