1
|
Shang X, Geng X, Lei H, Tan J, Xie C. Preparation and properties of hydrogels with different forms of nanocellulose and low methoxyl pectin. Food Sci Biotechnol 2025; 34:629-636. [PMID: 39958173 PMCID: PMC11822154 DOI: 10.1007/s10068-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 02/18/2025] Open
Abstract
Different proportions of cellulose nanofibers (CNFs)/cellulose nanocrystals (CNCs) and low methoxyl (LM) pectin were used to prepare hydrogels. By analyzing the apparent morphology, gel strength, rheological characteristics, microstructure, and interaction between cellulose and LM pectin, the characteristics of hydrogels created by the combination of different forms of nanocellulose and LM pectin were compared. At the same concentration, the strength of hydrogel formed by the combination of CNCs and LM pectin was higher than hydrogel formed by the combination of CNFs and LM pectin, which was consistent with the gel structure. The gel formed by the combination of LM pectin and CNFs had stronger viscoelasticity than the gel formed by the combination of LM pectin and CNCs. When the ratio of LM pectin to CNFs/CNCs is 0.5/0.5, a better gel network structure is formed, and the viscoelastic properties of the gel formed at this concentration under shock conditions are better protected. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01684-z.
Collapse
Affiliation(s)
- Xiaolan Shang
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Hebei Key Laboratory of Animal Diversity, Langfang, 065000 People’s Republic of China
- Langfang Key Laboratory of Food Nutrition and Safety, Langfang, People’s Republic of China
- Langfang Key Laboratory of Microbial Fermentation, Langfang, People’s Republic of China
| | - Xiaojin Geng
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Technology Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000 People’s Republic of China
| | - Huiping Lei
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
| | - Jing Tan
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
| | - Chunyan Xie
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Langfang Key Laboratory of Food Nutrition and Safety, Langfang, People’s Republic of China
- Langfang Key Laboratory of Microbial Fermentation, Langfang, People’s Republic of China
- Technology Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000 People’s Republic of China
| |
Collapse
|
2
|
Istianah N, Kang HJ, Yuwono SS, Suhartini S, Jung YH. Fed-batch treatment attenuates diffusional limitation while preparing high solid microfibrillated cellulose from Gelidium amansii. BIORESOURCE TECHNOLOGY 2024; 397:130471. [PMID: 38382723 DOI: 10.1016/j.biortech.2024.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study investigates the effects of fed-batch treatment on the fibrillation degree and properties of Gelidium amansii-derived microfibrillated cellulose (MFC). Fed-batch milling was conducted with the initial solid loading of 1 % w/v followed by three stages of feeding to obtain a final solid concentration of 5 % w/v. This process provides a high-solid MFC of around 10 %, while batch milling only provides the maximum solid loading of 4 %. It also reduces approximately 83 % power consumption of batch milling at the same solid loading (4 %). The obtained MFC 5 % has lower fibrils length (14.9 µm) and width (16.46 nm), but higher consistency index (>250 Pa.s) than MFC 1 % (22 µm, 21 nm, 5.88 Pa.s). The crystallinity and maximum decomposition temperatures of both MFCs are comparable, varying at 49-53 % and 318 °C-320 °C. In summary, fed-batch treatment is promising for the techno-economic development of MFC production by lowering energy and maintaining product quality.
Collapse
Affiliation(s)
- Nur Istianah
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Food Science and Biotechnology, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sudarminto Setyo Yuwono
- Department of Food Science and Biotechnology, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Sri Suhartini
- Department of Agro-industrial Technology, Universitas Brawijaya, Malang 65145, Indonesia; Centre of Excellence in Bioenergy and Biorefinery, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Istianah N, Kang HJ, Lee YJ, Choe D, Jung SK, Hong SC, Jung YH. Enhancing the dispersibility of Gelidium amansii-derived microfibrillated cellulose through centrifugal fractionation. Int J Biol Macromol 2024; 262:129909. [PMID: 38368676 DOI: 10.1016/j.ijbiomac.2024.129909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Hydrothermal pretreatment is useful for microfibrillated cellulose (MFC) preparation due to its safety, but the remaining hemicellulose might affect MFC properties. This study aimed to investigate the effect of centrifugation time on hemicellulose removal and the physicochemical properties of MFC obtained after hydrothermal pretreatment and micro-fibrillation. In this study, centrifugation was applied to the MFC suspension at varying duration times. Composition analysis and Fourier transform infrared spectra indicated that fractionated MFC has no hemicellulose content after 10, 20, and 30 min centrifugation. It also showed an approximately 5 times higher than 0.5 % g/g of initial solid concentration, indicated by a lower gel concentration point, than unfractionated MFC. Scanning electron microscope images of the fractionated MFC for 30 min (MFC2C) presented thin, long cellulose fibrils of 517 nm in average diameter and 635-10,000 nm in length that induced a slower sedimentation rate. MFC2C dispersion was also improved by autoclave sterilization by regulating cellulose structure, rheology, and crystallinity. As a result, MFC dispersibility can be enhanced by removing hemicellulose through simple centrifugation.
Collapse
Affiliation(s)
- Nur Istianah
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Food Science and Biotechnology, Universitas Brawijaya, Malang 65145, Indonesia
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Deokyeong Choe
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Koirala P, Sriprablom J, Winuprasith T. Anthocyanin-Rich Butterfly Pea Petal Extract Loaded Double Pickering Emulsion Containing Nanocrystalline Cellulose: Physicochemical Properties, Stability, and Rheology. Foods 2023; 12:4173. [PMID: 38002230 PMCID: PMC10671032 DOI: 10.3390/foods12224173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Butterfly pea petal extract (BPE)-loaded water-in-oil-in-water (W/O/W) emulsions were fabricated using nanocrystalline cellulose (NCC) as a hydrophilic stabilizer and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier. The impact of different concentrations of NCC and PGPR in different phase proportions on the emulsion formation, rheology, and stability of an anthocyanin-loaded (pH ≈ 7.0) emulsion was investigated. The mean droplet size of the emulsions increased as the NCC concentration increased, while color intensity (greenness) decreased as the PGPR and NCC concentrations increased. A microscopic examination confirmed that the NCC nanoparticles stabilized the inner W1/O phase, whereas the excess concentration of non-adsorbing NCC nanoparticles was suspended in the continuous aqueous phase. The rheological results showed that robust emulsion networks were formed when the NCC concentration increased. A network structure between the droplets and the development of the NCC network during the continuous phase were attributed to a gel-like behavior. Over the course of seven days, the emulsions with a higher proportion of NCC remained stable, as in samples 3%P-%N, 5%P-2%N, and 5%P@1%N, the total anthocyanin content decreased from 89.83% to 76.49%, 89.40% to 79.65, and 86.63% to 71.40%, respectively. These findings have significant implications for the accurate formulation of particle-stabilized double emulsions for anthocyanin delivery with higher stability.
Collapse
Affiliation(s)
| | | | - Thunnalin Winuprasith
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73070, Thailand; (P.K.); (J.S.)
| |
Collapse
|
5
|
Mao H, Niu P, Zhang Z, Kong Y, Wang WJ, Yang X. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Carbohydr Polym 2023; 313:120881. [PMID: 37182934 DOI: 10.1016/j.carbpol.2023.120881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Continuous filaments obtained through the wet spinning of nanocellulose have promising mechanical properties with sustainable features. To guarantee proper spinnability for wet spinning, freshly made cellulose nanofibril (CNF) suspension needs to be concentrated to have a concentration above 1 wt%, resulting in energy- and time-consuming, and inferior mechanical properties of the final filaments owing to decreasing the CNF alignment against shear flows. In this study, a CNF spinning suspension at a low concentration (0.4 wt%) can be used right after the fibrillation process without further treatments. The effects of the concentration and re-concentrating process are studied by carefully characterizing the rheological behavior and filament solidification processes, which provides more fundamental understandings on the spinnability and CNF network formation of such colloidal CNF suspensions. Combined with a post stretching process, the final dried CNF filaments have superior mechanical properties with Young's modulus and tensile strength of 35 GPa and 567 MPa, surpassing most literature data. Moreover, different functional particles can be easily incorporated to prepare functional filaments. With facile preparation and superior properties, these CNF filaments may be suitable for advanced composite filler and special textile applications.
Collapse
|
6
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
7
|
Kulkarni SJ. Feedstocks, Synthesis, and Characterization of Cellulosic Materials for Advanced Applications with Emphasis on Microcrystalline Cellulose (MCC). BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
9
|
Blok AE, Bolhuis DP, Arnaudov LN, Velikov KP, Stieger M. Influence of thickeners (microfibrillated cellulose, starch, xanthan gum) on rheological, tribological and sensory properties of low-fat mayonnaises. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Peranidze K, Safronova TV, Kildeeva NR. Electrospun Nanomaterials Based on Cellulose and Its Derivatives for Cell Cultures: Recent Developments and Challenges. Polymers (Basel) 2023; 15:1174. [PMID: 36904415 PMCID: PMC10007370 DOI: 10.3390/polym15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The development of electrospun nanofibers based on cellulose and its derivatives is an inalienable task of modern materials science branches related to biomedical engineering. The considerable compatibility with multiple cell lines and capability to form unaligned nanofibrous frameworks help reproduce the properties of natural extracellular matrix and ensure scaffold applications as cell carriers promoting substantial cell adhesion, growth, and proliferation. In this paper, we are focusing on the structural features of cellulose itself and electrospun cellulosic fibers, including fiber diameter, spacing, and alignment responsible for facilitated cell capture. The study emphasizes the role of the most frequently discussed cellulose derivatives (cellulose acetate, carboxymethylcellulose, hydroxypropyl cellulose, etc.) and composites in scaffolding and cell culturing. The key issues of the electrospinning technique in scaffold design and insufficient micromechanics assessment are discussed. Based on recent studies aiming at the fabrication of artificial 2D and 3D nanofiber matrices, the current research provides the applicability assessment of the scaffolds toward osteoblasts (hFOB line), fibroblastic (NIH/3T3, HDF, HFF-1, L929 lines), endothelial (HUVEC line), and several other cell types. Furthermore, a critical aspect of cell adhesion through the adsorption of proteins on the surfaces is touched upon.
Collapse
Affiliation(s)
- Kristina Peranidze
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Nataliya R. Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin State University of Russia, Malaya Kaluzhskaya 1, 119071 Moscow, Russia
| |
Collapse
|
11
|
Regulation of hydrogen bonding network between cellulose nanofibers by rare earth ion Y 3. Carbohydr Polym 2023; 302:120421. [PMID: 36604083 DOI: 10.1016/j.carbpol.2022.120421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Cellulose is regarded as the most abundant biomass, and nanocellulose derived from it has numerous applications in environmentally friendly materials. However, owing to the abundant hydroxyl groups on surface, nanocellulose is prone to agglomeration when transported, stored, or made into materials, which destroys material performance and limits its use. In this study, a feasible method was presented for regulating the hydrogen bonding strength between cellulose nanofibers (CNFs) by adding a minute quantity of rare earth ions Y3+ during cellulose nanofibrillation. It was found that the strength of hydrogen bonding between CNFs can be regulated by controlling the quantity of Y3+ in the system. The dispersibility and stability of CNFs, as well as the mechanical properties of CNFs films and CNFs-reinforced papers can be improved by 43.07 % and by 64.05 % after adding only 0.05 or 0.075 wt% Y3+. The possible mechanism of CNFs hydrogen bonding network reconstruction was proposed.
Collapse
|
12
|
Aghajanzadeh S, Fayaz G, Soleimanian Y, Ziaiifar AM, Turgeon SL, Khalloufi S. Hornification: Lessons learned from the wood industry for attenuating this phenomenon in plant-based dietary fibers from food wastes. Compr Rev Food Sci Food Saf 2023; 22:4-45. [PMID: 36199175 DOI: 10.1111/1541-4337.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
A significant amount of waste is annually generated worldwide by the supply chain of the food industry. Considering the population growth, the environmental concerns, and the economic opportunities, waste recovery is a promising solution to produce valuable and innovative ingredients for food and nonfood industries. Indeed, plant-based wastes are rich in dietary fibers (DF), which have relevant technical functionalities such as water/oil holding capacity, swelling capacity, viscosity, texture, and physiological properties such as antioxidant activity, cholesterol, and glucose adsorption capacities. Different drying technologies could be applied to extend the shelf life of fresh DF. However, inappropriate drying technologies or process conditions could adversely affect the functionalities of DF via the hornification phenomenon. Hornification is related to the formation of irreversible hydrogen bindings, van der Waals interactions, and covalent lactone bridges between cellulose fibrils during drying. This review aims to capitalize on the knowledge developed in the wood industry to tackle the hornification phenomenon occurring in the food industry. The mechanisms and the parameters affecting hornification as well as the mitigation strategies used in the wood industry that could be successfully applied to foods are summarized. The application of conventional drying technologies such as air or spray-drying increased the occurrence of hornification. In contrast, solvent exchange, supercritical drying, freeze-drying, and spray-freeze-drying approaches were considered effective strategies to limit the consequences of this phenomenon. In addition, incorporating capping agents before drying attenuated the hornification. The knowledge summarized in this review can be used as a basis for process design in the valorization of plant-based wastes and the production of functional DF that present relevant features for the food and packaging industries.
Collapse
Affiliation(s)
- Sara Aghajanzadeh
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Goly Fayaz
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Yasamin Soleimanian
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Aman Mohammad Ziaiifar
- Food Process Engineering Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sylvie L Turgeon
- Institute of Nutrition and functional foods, Laval University, Québec, Canada.,Food Science Department, Laval University, Québec, Canada
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| |
Collapse
|
13
|
Hu L, Xu W, Gustafsson J, Koppolu R, Wang Q, Rosqvist E, Sundberg A, Peltonen J, Willför S, Toivakka M, Xu C. Water-soluble polysaccharides promoting production of redispersible nanocellulose. Carbohydr Polym 2022; 297:119976. [DOI: 10.1016/j.carbpol.2022.119976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
|
14
|
Yu W, Yi Y, Wang H, Yang Y, Xing C, Zeng L, Tang J, Tan Z. Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers. Carbohydr Polym 2022; 298:120112. [DOI: 10.1016/j.carbpol.2022.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
|
15
|
Chipón J, Ramírez K, Morales J, Díaz-Calderón P. Rheological and Thermal Study about the Gelatinization of Different Starches (Potato, Wheat and Waxy) in Blend with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:polym14081560. [PMID: 35458308 PMCID: PMC9025455 DOI: 10.3390/polym14081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to analyze the effect of CNCs on the gelatinization of different starches (potato, wheat and waxy maize) through the characterization of the rheological and thermal properties of starch–CNC blends. CNCs were blended with different starches, adding CNCs at concentrations of 0, 2, 6 and 10% w/w. Starch–CNC blends were processed by rapid visco-analysis (RVA) and cooled to 70 °C. Pasting parameters such as pasting temperature, peak, hold and breakdown viscosity were assessed. After RVA testing, starch–CNC blends were immediately analyzed by rotational and dynamic rheology at 70 °C. Gelatinization temperature and enthalpy were assessed by differential scanning calorimetry. Our results suggest that CNCs modify the starch gelatinization but that this behavior depends on the starch origin. In potato starch, CNCs promoted a less organized structure after gelatinization which would allow a higher interaction amylose–CNC. However, this behavior was not observed in wheat and waxy maize starch. Insights focusing on the role of CNC on gelatinization yielded relevant information for better understanding the structural changes that take place on starch during storage, which are closely related with starch retrogradation. This insight can be used as an input for the tailored design of novel materials oriented towards different technological applications.
Collapse
Affiliation(s)
- Josefina Chipón
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - Kassandra Ramírez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - José Morales
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
- Correspondence:
| |
Collapse
|
16
|
Jannatamani H, Motamedzadegan A, Farsi M, Yousefi H. Rheological properties of wood/bacterial cellulose and chitin nano-hydrogels as a function of concentration and their nano-films properties. IET Nanobiotechnol 2022; 16:158-169. [PMID: 35377555 PMCID: PMC9114446 DOI: 10.1049/nbt2.12083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, rheological properties of the Wood Cellulose NanoFibers (WCNF), Bacterial Cellulose NanoFibers (BCNF), and Chitin NanoFibers (ChNF) as well as physical properties of films prepared from each nano‐hydrogel were investigated. Each nano‐hydrogel was prepared in 2 concentrations of 0.5 and 1 wt% for rheological study. Rheological properties were measured using a rotational rheometer. The flow behaviour data were fitted with rheological models. Apparent viscosity was higher in higher concentrations of nano‐hydrogels. Herschel‐Bulkley model was the best model for flow behaviour data fitting. BCNF nano‐hydrogels had the highest hysteresis loop while WCNF nano‐hydrogels had the best structure recovery and lowest hysteresis loop. At LVE (Linear Viscoelastic Region), G′ (storage modulus) and G″ (loss modulus) had a constant value, but as strain increased their values decreased. Storage modulus was found to be greater than loss modulus in all samples during frequency sweep test. BCNF nano‐hydrogel showed the lowest frequency dependency. Chitin nanofilms had the highest elongation and stress value.
Collapse
Affiliation(s)
- Hesamoddin Jannatamani
- Department of Food Science and Technology Management, Islamic Azad University Sari Branch, Sari, Iran
| | - Ali Motamedzadegan
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Moji, Iran
| | - Mohammad Farsi
- Department of Food Science and Technology Management, Islamic Azad University Sari Branch, Sari, Iran
| | - Hossein Yousefi
- Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Stepanova M, Korzhikova-Vlakh E. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers (Basel) 2022; 14:polym14071477. [PMID: 35406349 PMCID: PMC9003142 DOI: 10.3390/polym14071477] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Aliphatic polyesters/cellulose composites have attracted a lot attention due to the perspectives of their application in biomedicine and the production of disposable materials, food packaging, etc. Both aliphatic polyesters and cellulose are biocompatible and biodegradable polymers, which makes them highly promising for the production of “green” composite materials. However, the main challenge in obtaining composites with favorable properties is the poor compatibility of these polymers. Unlike cellulose, which is very hydrophilic, aliphatic polyesters exhibit strong hydrophobic properties. In recent times, the modification of cellulose micro- and nanomaterials is widely considered as a tool to enhance interfacial biocompatibility with aliphatic polyesters and, consequently, improve the properties of composites. This review summarizes the main types and properties of cellulose micro- and nanomaterials as well as aliphatic polyesters used to produce composites with cellulose. In addition, the methods for noncovalent and covalent modification of cellulose materials with small molecules, polymers and nanoparticles have been comprehensively overviewed and discussed. Composite fabrication techniques, as well as the effect of cellulose modification on the mechanical and thermal properties, rate of degradation, and biological compatibility have been also analyzed.
Collapse
|
18
|
Kristensen K, Warne G, Agarwal D, Foster TJ. Effects of different moisture contents on the structural and functional properties of cellulose with cell wall components in different citrus fibres. Food Funct 2022; 13:2756-2767. [PMID: 35171166 DOI: 10.1039/d1fo02808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research used a multi-method approach to analyse the influence of different moisture levels (low, medium and high) on the structural and functional properties of cellulose with cell wall materials such as pectin, lignin, and hemicellulose present in citrus fibres. The influence of the drying and purification processes and the source of the citrus fibres on these interactions were also considered. A fluidized bed dryer results in a higher aggregation of cellulose fibres, which limits their interactions with water, pectin, lignin, and hemicellulose. Citrus fibre suspension produce by a alcohol washing in combination with a centrifugal drying process showed higher storage modulus (G'), loss modulus (G'') and water retention capacity. The compositions of the citrus fibres and the type of hydrogen bonding (analysed by FTIR) play a key role in generating stable rheological and thermal properties as well as controlling the moisture sorption behaviour of the citrus fibres.
Collapse
Affiliation(s)
- Kaja Kristensen
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - George Warne
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Deepa Agarwal
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. .,The New Zealand Institute of Plant and Food Research, Plant & Food Research Canterbury Agriculture & Science Centre, Gerald St, Lincoln 7608, New Zealand
| | - Tim J Foster
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
19
|
Song HY, Park SY, Kim S, Youn HJ, Hyun K. Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions. Carbohydr Polym 2022; 275:118765. [PMID: 34742451 DOI: 10.1016/j.carbpol.2021.118765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
Linear and nonlinear rheological properties of cellulose nanofiber (CNF) suspensions were measured under small and large amplitude oscillatory shear (SAOS and LAOS) flow. Four different CNFs were produced, two by only mechanical disintegration and two with chemical pretreatments. Linear viscoelastic properties distinguished chemically treated CNFs from two untreated fibers via a different scaling exponent of the elastic modulus. However, different mechanical fibrillation degree was not characterized via linear viscoelastic properties. In contrast, nonlinear viscoelastic properties reflected both effects of chemical pretreatments and mechanical fibrillation. More fibrillated CNFs exhibited nonlinear rheological phenomena at larger deformations. In addition, chemically treated CNFs exhibited greater network stiffness and higher network recovery rates due to the presence of charged functional groups on the fiber surfaces. A material-property co-plot showed that network stiffness and recovery rate were in a trade-off relationship.
Collapse
Affiliation(s)
- Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Shin Young Park
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunhyung Kim
- Platform Technology, Corporate R&D, LG Chem. Ltd., Gwacheon-si, Gyeonggi-do 13818, Republic of Korea
| | - Hye Jung Youn
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu Hyun
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; School of Applied Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
20
|
Ferreira PJT, Lourenço AF. Nanocelluloses: Production, Characterization and Market. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:129-151. [DOI: 10.1007/978-3-030-88071-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Comparing rheological, tribological and sensory properties of microfibrillated cellulose dispersions and xanthan gum solutions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Bouhoute M, Nakajima M, Isoda H. Design of nanoemulgel using Argania spinosa microfibrillated cellulose and natural emulsifiers foreseeing melanogenesis enhancement. Carbohydr Polym 2021; 274:118632. [PMID: 34702455 DOI: 10.1016/j.carbpol.2021.118632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Nanotechnology is a route of choice that improves administration and efficacy of bioactive compounds. In this study, nanoemulgels were prepared using microfibrillated cellulose from Argania spinosa shell (AS-MFC) and Argan shell (ASE) or Argan press cake extracts (APC) as natural emulsifiers. Oil-in-water (O/W) nanoemulsions were prepared using different natural emulsifiers or synthetic emulsifiers and presented a nano size (d3,2 < 140 nm). Following that, the nanoemulsions were incorporated within AS-MFC matrix and rheological properties confirmed a shear thinning behavior. Confocal micrographs of nanoemulgels confirmed the dispersion of nanoemulsions in the AS-MFC network without affecting the nanoemulsions stability. Finally, in vitro bioassay on B16F10 using ASE or APC nanoemulsions was conducted. This study confirmed cell permeation in B16F10 cells of formulated nanoemulsions and the upregulation of melanin content up to 30% more that the untreated cells. This study designed novel MFC nanoemulgel with high potential application in healthcare and cosmetic field.
Collapse
Affiliation(s)
- Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
23
|
Formulation of bionanomaterials: A review of particle design towards oil recovery applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006052. [PMID: 33870553 DOI: 10.1002/adma.202006052] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/20/2023]
Abstract
Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.
Collapse
Affiliation(s)
- Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Robert J Moon
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695-8005, USA
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
26
|
Balasubramaniam SL, Patel AS, Nayak B. Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
28
|
Covino C, Sorrentino A, Di Pierro P, Roscigno G, Vece AP, Masi P. Lignocellulosic fibres from enzyme-treated tomato plants: Characterisation and application in paperboard manufacturing. Int J Biol Macromol 2020; 161:787-796. [DOI: 10.1016/j.ijbiomac.2020.06.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
|
29
|
Pan L, Li P, Tao Y. Preparation and Properties of Microcrystalline Cellulose/Fish Gelatin Composite Film. MATERIALS 2020; 13:ma13194370. [PMID: 33008075 PMCID: PMC7579160 DOI: 10.3390/ma13194370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/30/2022]
Abstract
As a natural macromolecule-based biomaterial, fish gelatin is used in medical materials for its low pathogen infection risk. However, because of poor mechanical properties, its application has been limited. In this study, microcrystalline cellulose-reinforced fish gelatin (FG/MCC) composite films were prepared with a biological cross-linking agent (genipin) under ultrasonic treatment. SEM micrographs showed that the smooth microstructure of FG film became increasingly disordered with the addition of MCC. The infrared spectrum analysis (FTIR) demonstrated the existence of hydrogen bond interaction between MCC and FG. Compared with the pure FG film, the tensile strength (TS) and modulus of elasticity (MOE) of composite films with MCC were improved, and the elongation at break (EAB) and swelling ratios (SR) were decreased. Ultrasonic treatment could further improve TS, MOE, and SR. When the composite film was prepared with 15% MCC and treated with ultrasound, the TS and MOE increased by 115% and 227%, respectively, while the EAB decreased by 35% and the SR decreased by 4% in comparison with pure FG films. Thermo-gravimetric analysis (TGA) showed that the FG/MCC composite films were stable below 100 °C. The above results indicate that the FG/MCC films have optimistic application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ling Pan
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Peng Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Correspondence: (P.L.); (Y.T.)
| | - Yubo Tao
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Correspondence: (P.L.); (Y.T.)
| |
Collapse
|
30
|
Nehra P, Chauhan RP. Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:112-149. [PMID: 32892717 DOI: 10.1080/09205063.2020.1817706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose is the earth's leading natural polymer. It is known for its properties like biocompatibility, high mechanical strength, cost-effectiveness and lightweight. Nanocellulose displays better properties as compared to the native cellulose fibre. The nanocellulose is very remunerative in the arenas of routine application especially in health care, food industry, sanitary products and many more. In the biomedical area, cellulose-based products are utilized in applications like wound healing, dental applications, drug delivery, antimicrobial material, etc. Nanocellulose biomaterials have been commercialised, representing the material of new generation. With the objective to comprehend the contribution of nanocellulose in the current status and future development in biomedical utilisations, the review is focused on cellulose, nanocellulose, types and sources of nanocellulose, its preparation, characteristics, constraints related to its composites through the analysis of certain scientific reports.
Collapse
Affiliation(s)
- Poonam Nehra
- School of Biomedical Engineering, National Institute of Technology, Kurukshetra, India
| | - R P Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
31
|
Hafner J, Oelschlaeger C, Willenbacher N. Microrheology imaging of fiber suspensions - a case study for lyophilized collagen I in HCl solutions. SOFT MATTER 2020; 16:9014-9027. [PMID: 32821895 DOI: 10.1039/d0sm01096k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In fiber suspensions with low optical contrast, the in situ characterization of structural properties with conventional microscopy methods fails. However, overlaying subsequent images of multiple particle tracking (MPT) videos including short trajectories usually discarded in MPT analysis allowed for direct visualization of individual fibers and the network structure of lyophilized collagen I (Coll) distributed in hydrochloric acid solutions. MPT yielded a broad distribution of mean square displacements (MSDs). Freely diffusing tracer particles yielded viscosities indicating that, irrespective of concentration, a constant amount of Coll is dissolved in the aqueous phase. Particles found elastically trapped within fibrous Coll structures exhibited a broad range of time-independent MSDs and we propose a structure comprising multiple fiber bundles with dense regions inaccessible to tracers and elastic regions of different stiffness in between. Bulky aggregates inaccessible to the 0.2 μm tracers exist even at low Coll concentrations, a network of slender fibers evolves above the sol-gel transition and these fibers densify with increasing Coll concentration. This novel MPT-based imaging technique possesses great potential to characterize the fiber distribution in and structural properties of a broad range of biological and technical suspensions showing low contrast when imaged with conventional techniques. Thus, MPT imaging and microrheology will help to better understand the effect of fiber distribution and network structure on the viscoelastic properties of complex suspensions.
Collapse
Affiliation(s)
- Johanna Hafner
- Department of Mechanical Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Claude Oelschlaeger
- Department of Mechanical Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Norbert Willenbacher
- Department of Mechanical Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
32
|
Silva CE, Tam KC, Bernardes JS, Loh W. Double stabilization mechanism of O/W Pickering emulsions using cationic nanofibrillated cellulose. J Colloid Interface Sci 2020; 574:207-216. [DOI: 10.1016/j.jcis.2020.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
|
33
|
Facchine EG, Spontak RJ, Rojas OJ, Khan SA. Shear-Dependent Structures of Flocculated Micro/Nanofibrillated Cellulose (MNFC) in Aqueous Suspensions. Biomacromolecules 2020; 21:3561-3570. [DOI: 10.1021/acs.biomac.0c00586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Orlando J. Rojas
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
34
|
Morales-Medina R, Dong D, Schalow S, Drusch S. Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Tian D, Zhong N, Leung J, Shen F, Hu J, Saddler JN. Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS APPLIED BIO MATERIALS 2020; 3:2201-2208. [PMID: 35025272 DOI: 10.1021/acsabm.0c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The generally high viscosity of micro/nanofibrillated cellulose limits its applications in cream and fluid products. A bleached softwood Kraft (BSK) pulp was refined with increasing energy (500-2500 kWh t-1) to produce micro/nanofibrillated cellulose (MNBSK). Subsequent xylanase treatment was shown to influence the viscosity, gel point, aspect ratio, and fiber surface morphology of the MNBSK. It was apparent that the accessibility to xylanases was increased even at low refining energies (500 kWh t-1). Depending on the initial degree of cellulose fibrillation, xylanase treatment decreased the viscosity of the MNBSK from 4190-2030 to 681-243 Pa·s at a shear rate of 0.01 s-1, corresponding to the reduction in the aspect ratio from 183-296 to 163-194. It was likely that the xylanases were predominantly acting on the xylan present on the fiber surfaces, reducing the cross-linking points on the cellulose fibers and consequently resulting in the reduction in MNBSK viscosity.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.,Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Na Zhong
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jerry Leung
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
36
|
Effects of sucrose addition on the rheological properties of citrus peel fiber suspensions before and after drying. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Albornoz-Palma G, Betancourt F, Mendonça RT, Chinga-Carrasco G, Pereira M. Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr Polym 2020; 230:115588. [DOI: 10.1016/j.carbpol.2019.115588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023]
|
38
|
Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers (Basel) 2019; 11:polym11122119. [PMID: 31861094 PMCID: PMC6960754 DOI: 10.3390/polym11122119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/01/2023] Open
Abstract
Microfibrillated cellulose (MFC) particles were synthesized by a low-pressure alkaline delignification process, and their shape and chemical structure were investigated by SEM and Fourier transformation infrared spectroscopy, respectively. As a novel electrorheological (ER) material, the MFC particulate sample was suspended in insulating oil to fabricate an ER fluid. Its rheological properties—steady shear stress, shear viscosity, yield stress, and dynamic moduli—under electric field strength were characterized by a rotational rheometer. The MFC-based ER fluid demonstrated typical ER characteristics, in which the shear stresses followed the Cho–Choi–Jhon model well under electric field strength. In addition, the solid-like behavior of the ER fluid was investigated with the Schwarzl equation. The elevated value of both dynamic and elastic yield stresses at applied electric field strengths was well described using a power law model (~E1.5). The reversible and quick response of the ER fluid was also illustrated through the on–off test.
Collapse
|
39
|
Impoolsup T, Chiewchan N, Devahastin S. On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydr Polym 2019; 230:115630. [PMID: 31887968 DOI: 10.1016/j.carbpol.2019.115630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Microwave (MW) pretreatment as an energy-efficient method to enhance the production of nanofibrillated cellulose (NFC) from lime (Citrus aurantifolia Swingle) residue after juice extraction is proposed. NFC was prepared by subjecting lime residue to MW pretreatment for up to 3 rounds; this was followed by high-shear and high-pressure homogenization. Repeated application of MW pretreatment helped remove non-cellulosic components and resulted in an increased cellulose content and crystallinity index but a decrease in fiber diameter. Freshly prepared NFC sample exhibited gel-like behavior. G' and G″ of suspension prepared from dried NFC markedly decreased, indicating the loss of gel-like property upon drying. Proper pectin molecular weight as well as pectin content were noted to play an important role in controlling aggregation of NFC during drying and hence water redispersibility of dried NFC. Significant amounts of pectin and limonin could be recovered and utilized as co-products after the first round of MW pretreatment.
Collapse
Affiliation(s)
- Tawee Impoolsup
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand.
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
40
|
Synergy of the flow behaviour and disperse phase of cellulose nanoparticles in enhancing oil recovery at reservoir condition. PLoS One 2019; 14:e0220778. [PMID: 31560699 PMCID: PMC6764795 DOI: 10.1371/journal.pone.0220778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
Ascorbic acid was used for the first time to synthesize cellulose nanoparticles (CNP) extracted from okra mucilage. The physical properties of the CNP including their size distribution, and crystalline structures were investigated. The rheological properties of the cellulose nanofluid (CNF) were compared with the bulk okra mucilage and commercial polymer xanthan. The interfacial properties of the CNF at the interface of oil-water (O/W) system were investigated at different concentrations and temperatures. The effects of the interaction between the electrolyte and ultrasonic were determined. Core flooding experiment was conducted at reservoir condition to justify the effect of the flow behaviour and disperse phase behaviour of CNF on additional oil recovery. The performance of the CNF was compared to conventional EOR chemical. The combined method of ultrasonic, weak-acid hydrolysis and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 51% and preserved crystallinity respectively. The zeta potential result shows that the CNF was stable, and the surface charge signifies long term stability of the fluid when injected into oil field reservoirs. The CNF, okra and xanthan exhibited shear-thinning and pseudoplastic behaviour. The IFT decreased with increase in concentration of CNF, electrolyte and temperature. The pressure drop data confirmed the stability of CNF at 120°C and the formation of oil bank was enough to increase the oil recovery by 20%. CNF was found to be very effective in mobilizing residual oil at high-temperature high-pressure (HTHP) reservoir condition. The energy and cost estimations have shown that investing in ultrasonic-assisted weak-acid hydrolysis is easier, cost-effective, and can reduce energy consumption making the method economically advantageous compared to conventional methods.
Collapse
|
41
|
Mobility of pectin methylesterase in pectin/cellulose gels is enhanced by the presence of cellulose and by its catalytic capacity. Sci Rep 2019; 9:12551. [PMID: 31467440 PMCID: PMC6715659 DOI: 10.1038/s41598-019-49108-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme’s diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.
Collapse
|
42
|
Claro FC, Matos M, Jordão C, Avelino F, Lomonaco D, Magalhães WLE. Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology. Carbohydr Polym 2019; 218:307-314. [DOI: 10.1016/j.carbpol.2019.04.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 11/27/2022]
|
43
|
Souza LO, Lessa OA, Dias MC, Tonoli GHD, Rezende DVB, Martins MA, Neves ICO, de Resende JV, Carvalho EEN, de Barros Vilas Boas EV, de Oliveira JR, Franco M. Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohydr Polym 2019; 214:152-158. [PMID: 30925984 DOI: 10.1016/j.carbpol.2019.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
Cocoa shell was evaluated as a precursor for cellulose nanofibrils (NFCs) using mechanical defibrillation. Its morphology was analysed using optical microscopy and scanning electron microscopy with field emission. Rheological and mechanical behaviour were evaluated through flow curves with a strain rate ranging from 0 to 300 s-1 at 25 °C and by means of oscillatory frequency sweeps (0.01 Hz-10 Hz) and shear stress (3 Pa). The thermal-mechanical behaviour was determined by a temperature sweep with a heating rate of 3 °C min-1 and a temperature range of 25 °C-100 °C. Micrographs identified the presence of protoxilem with a mean diameter of 23.34 nm. The flow curve showed the characteristic behaviour of a pseudoplastic fluid. The storage module (G') and the loss modulus (G″) were dependent on the frequency applied, indicating that the material exhibits a weak gel characteristic. The viscoelastic characteristics were influenced by temperature. Therefore, cocoa shell is a new alternative in the production of nanocellulose.
Collapse
Affiliation(s)
- Lucas Oliveira Souza
- Post-Graduation Program in Engineering and Food Science, State University of Southwest Bahia, 45700-000, Itapetinga, Brazil
| | - Ozana Almeida Lessa
- Post-Graduation Program in Chemical and Biochemical Process Technology, Federal University of Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil
| | - Matheus Cordazzo Dias
- Department of Forest Science, Federal University of Lavras, 37200-000, Lavras, Brazil
| | | | - Denilde Vilas Bôas Rezende
- Laboratory of Biotransformation and Organic Biocatalysis, Department of Exact Sciences and Technology, State University of Santa Cruz, 45654-370, Ilhéus, Brazil
| | - Maria Alice Martins
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentation, 13560-970, São Carlos, Brazil
| | | | | | | | | | - Julieta Rangel de Oliveira
- Laboratory of Biotransformation and Organic Biocatalysis, Department of Exact Sciences and Technology, State University of Santa Cruz, 45654-370, Ilhéus, Brazil
| | - Marcelo Franco
- Laboratory of Biotransformation and Organic Biocatalysis, Department of Exact Sciences and Technology, State University of Santa Cruz, 45654-370, Ilhéus, Brazil.
| |
Collapse
|
44
|
Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength. Carbohydr Polym 2019; 211:315-321. [DOI: 10.1016/j.carbpol.2019.01.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
|
45
|
Study on the wet-web strength and pressability of paper sheet during the press process with the addition of nano-fibrillated cellulose (NFC). Carbohydr Polym 2019; 210:332-338. [DOI: 10.1016/j.carbpol.2019.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 11/22/2022]
|
46
|
Aaen R, Brodin FW, Simon S, Heggset EB, Syverud K. Oil-in-Water Emulsions Stabilized by Cellulose Nanofibrils-The Effects of Ionic Strength and pH. NANOMATERIALS 2019; 9:nano9020259. [PMID: 30769791 PMCID: PMC6409772 DOI: 10.3390/nano9020259] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
Pickering o/w emulsions prepared with 40 wt % rapeseed oil were stabilized with the use of low charged enzymatically treated cellulose nanofibrils (CNFs) and highly charged 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs. The emulsion-forming abilities and storage stability of the two qualities were tested in the presence of NaCl and acetic acid, at concentrations relevant to food applications. Food emulsions may be an important future application area for CNFs due to their availability and excellent viscosifying abilities. The emulsion characterization was carried out by visual inspection, light microscopy, viscosity measurements, dynamic light scattering and mild centrifugation, which showed that stable emulsions could be obtained for both CNF qualities in the absence of salt and acid. In addition, the enzymatically stabilized CNFs were able to stabilize emulsions in the presence of acid and NaCl, with little change in the appearance or droplet size distribution over one month of storage at room temperature. The work showed that enzymatically treated CNFs could be suitable for use in food systems where NaCl and acid are present, while the more highly charged TEMPO-CNFs might be more suited for other applications, where they can contribute to a high emulsion viscosity even at low concentrations.
Collapse
Affiliation(s)
- Ragnhild Aaen
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | - Sébastien Simon
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | - Kristin Syverud
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- RISE PFI, N-7491 Trondheim, Norway.
| |
Collapse
|
47
|
Velásquez-Cock J, Serpa A, Vélez L, Gañán P, Gómez Hoyos C, Castro C, Duizer L, Goff H, Zuluaga R. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Shear and extensional rheology of aqueous suspensions of cellulose nanofibrils for biopolymer-assisted filament spinning. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Use of Cellulose Nanofibers as an Electrode Binder for Lithium Ion Battery Screen Printing on a Paper Separator. NANOMATERIALS 2018; 8:nano8120982. [PMID: 30486473 PMCID: PMC6315574 DOI: 10.3390/nano8120982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
Abstract
Water-based inks were formulated using cellulose nanofibers as a binder in order to directly front/reverse print lithium ion cells on a paper separator. Moreover, the high cohesion of electrodes as provided by cellulose nanofibers allowed for the embedding metallic current collectors in the electrodes during the printing stage, in order to develop a one-step printing and assembling process. Positive and negative inks based on LiFePO4, or graphite, respectively, and cellulose nanofibers, displayed rheological properties complying with a variety of printing processes, as well as with screen printing. Printed cells exhibited high electrical conductivity and adhesion between current collectors and inks, i.e., up to 64 ± 1 J/m2. Electrochemical cycling tests at C/10 showed a reversible capacity during the first cycle of about 80 mAh/g, which slightly decayed upon cycling. Preliminary results and assembling strategies can be considered as promising, and they represent a quick solution for the manufacturing of lithium ion batteries. Work is in progress to improve these processing issues and the cycling performances of Li-ion cells.
Collapse
|