1
|
BEN OUADA H, AMMAR J. Production of Biomass and Bioactives by Microalgae. BIOREACTOR IMPLEMENTATION IN THE AGRO‐FOOD INDUSTRIES 2024:239-264. [DOI: 10.1002/9781394340538.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Zhang Y, Ai S, Chen X, Zhao Y, Zhang Y, Wu C, Ma C, Tang Z, Yu D, Yao C, Ge B. The accumulation and inhibition mechanism of extracellular polymeric substances of Chlorella vulgaris during cycling cultivation under different light qualities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123176. [PMID: 39500171 DOI: 10.1016/j.jenvman.2024.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
The secretion, accumulation, and composition of extracellular polymeric substances (EPS) are pivotal factors influencing microalgal growth as well as wastewater recycling. Until now, the accumulation and inhibition mechanism of EPS of Chlorella vulgaris during cycling cultivation is not fully understood. The purpose of this study was to explore how different light qualities regulate the secretion, chemical composition, and structure of microalgal EPS, and subsequently influence the recycling of culture wastewater. After four cycles of cultivation, C. vulgaris under green light produced the highest EPS production and lowest biomass production, which were 82% higher and 17% lower, respectively, compared to white light, which yielded the least EPS production and the highest biomass production. EPS under different light qualities all exhibited a fibrillar structure with a sheet-like surface, but differed in composition. Compared with the other groups, EPS under green light showed a significant increase in polysaccharides, proteins, and humic acid-like compounds, as well as an increased proportion of arabinose and rhamnose, according to monosaccharide composition analysis. Transcriptome analysis indicated that the up-regulation of metabolic pathways linked to glycolysis/gluconeogenesis, TCA cycle, lipid synthesis, and ABC transporters promoted EPS accumulation. Additionally, EPS could target light-harvesting complex (LHC) and electron transport chain, down-regulating the photosynthetic pathway, which ultimately inhibited microalgal growth under green light. This study provides a theoretical foundation for the light regulation and circulation culture of microalgae, as well as for microalgal wastewater treatment.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Sihan Ai
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xue Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yabin Zhao
- College of Life Science, Yantai University, Yantai, 264003, PR China
| | - Yuxuan Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chenxi Wu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chen Ma
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Zhihong Tang
- College of Life Science, Yantai University, Yantai, 264003, PR China.
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chaonan Yao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
3
|
Wang X, Li Y, Zhang X, Chen X, Wang X, Yu D, Ge B. The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd 2+) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134244. [PMID: 38598879 DOI: 10.1016/j.jhazmat.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.
Collapse
Affiliation(s)
- Xiufeng Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhui Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojing Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
4
|
Chen H, Yu S, Yu Z, Ma M, Liu M, Pei H. Phycoremediation Potential of Salt-Tolerant Microalgal Species: Motion, Metabolic Characteristics, and Their Application for Saline-Alkali Soil Improvement in Eco-Farms. Microorganisms 2024; 12:676. [PMID: 38674620 PMCID: PMC11052205 DOI: 10.3390/microorganisms12040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae have great potential for remediating salt-affected soil. In this study, the microalgae species Coelastrella sp. SDEC-28, Dunaliella salina SDEC-36, and Spirulina subsalsa FACHB-351 were investigated for their potential to rehabilitate salt-affected soils. Nylon screens with optimal aperture sizes and layer numbers were identified to efficiently intercept and harvest biomass, suggesting a correlation between underflow capability and the tough cell walls, strong motility, and intertwining characteristics of the algae. Our investigations proved the feasibility of incorporating monosodium glutamate residue (MSGR) into soil extracts at dilution ratios of 1/200, 1/2000, and 1/500 to serve as the optimal medium for the three microalgae species, respectively. After one growth period of these three species, the electrical conductivities of the media decreased by 0.21, 1.18, and 1.78 mS/cm, respectively, and the pH remained stable at 7.7, 8.6, and 8.4. The hypotheses that microalgae can remediate soil and return profits have been verified through theoretical calculations, demonstrating the potential of employing specific microalgal strains to enhance soil conditions in eco-farms, thereby broadening the range of crops that can be cultivated, including those that are intolerant to saline-alkali environments.
Collapse
Affiliation(s)
- Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Siteng Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Ze Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
5
|
de Souza Celente G, de Cassia de Souza Schneider R, Medianeira Rizzetti T, Lobo EA, Sui Y. Using wastewater as a cultivation alternative for microalga Dunaliella salina: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168812. [PMID: 38000734 DOI: 10.1016/j.scitotenv.2023.168812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Untreated or poorly treated wastewater still represents environmental issues world-widely. Wastewater, especially saline wastewater treatment, is still primarily associated with high costs from physical and chemical processes, as high salinity hinders biological treatment. One favourable way is to find the suitable biological pathways and organisms to improve the biological treatment efficiency. In this context, halophilic microorganisms could be strong candidates to address the economics and effectiveness of the saline wastewater treatment process. Dunaliella salina is a photoautotrophic microalga that grows in saline environments. It is known for producing marketable bio-compounds such as carotenoids, lipids, and proteins. A biological treatment based on D. salina cultivation offers the opportunity to treat saline wastewater, reducing the threat of possible eutrophication from inappropriate discharge. At the same time, D. salina cultivation could yield compounds of industrial relevance to turn saline wastewater treatment into a profitable and sustainable process. Most research on D. salina has primarily focused on bioproduct generation, leaving thorough reviews of its application in wastewater treatment inadequate. This paper discusses the future challenges and opportunities of using D. salina to treat wastewater from different sources. The main conclusions are (1) D. salina effectively recovers some heavy metals (driven by metal binding capacity and exposure time) and nutrients (driven by pH, their bioavailability, and functional groups in the cell); (2) salinity plays a significant role in bioproducts generation, and (3) wastewater can be combined with the generation of bioproducts.
Collapse
Affiliation(s)
- Gleison de Souza Celente
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Tiele Medianeira Rizzetti
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Eduardo Alcayaga Lobo
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Yixing Sui
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
6
|
Zhao B, Li H, Tian K, Su Y, Zou Z. Synthesis and antitumor activity of bagasse xylan derivatives modified by graft-esterification and cross-linking. Int J Biol Macromol 2023; 253:126867. [PMID: 37730005 DOI: 10.1016/j.ijbiomac.2023.126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
A crucial aspect in achieving sustainable development of biomass materials is the modification of renewable polysaccharides to create various high-value functional materials. In this paper, bagasse xylan (BX) was used as a raw material to introduce benzyl methacrylate (BMA) through graft copolymerization reaction to generate the intermediate product BX-g-BMA. Subsequently, the target product (CA-BX-g-BMA) was synthesized by catalytic esterification of BX-g-BMA with citric acid (CA) in AmimCl ionic liquid. Meanwhile, the characterization and bioactivity studies of CA-BX-g-BMA were carried out. The graft copolymerization and esterification reactions induced significant changes in the morphological structure of BX and obviously improved its thermal stability and crystallinity. The application of density functional theory (DFT), molecular electrostatic potential (MEP) and molecular docking has revealed that CA-BX-g-BMA possesses multiple active sites, strong biological activity and a strong binding affinity to 6RCF tumor protein with a binding energy of -32.26 kJ/mol. The in vitro antitumor activity of this novel derivative was tested by MTT assay, and the results showed that CA-BX-g-BMA was non-toxic to normal cells and inhibited MDA-MB-231 (breast cancer cells) by up to 32.16 % ± 4.89 %, which is approximately 11 times higher than that of BX. The exploration of these properties is essential to promote future multidisciplinary applications of BX derivatives.
Collapse
Affiliation(s)
- Bin Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Kexin Tian
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yue Su
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Qi Z, Wang Z, Yu Y, Yu X, Sun R, Wang K, Xiong D. Formation of oil-particle aggregates in the presence of marine algae. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1438-1448. [PMID: 37424387 DOI: 10.1039/d3em00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
After an oil spill, the formation of oil-particle aggregates (OPAs) is associated with the interaction between dispersed oil and marine particulate matter such as phytoplankton, bacteria and mineral particles. Until recently, the combined effect of minerals and marine algae in influencing oil dispersion and OPA formation has rarely been investigated in detail. In this paper, the impacts of a species of flagellate algae Heterosigma akashiwo on oil dispersion and aggregation with montmorillonite were investigated. This study has found that oil coalescence is inhibited due to the adhesion of algal cells on the droplet surface, causing fewer large droplets to be dispersed into the water column and small OPAs to form. Due to the role of biosurfactants in the algae and the inhibition of algae on the swelling of mineral particles, both the oil dispersion efficiency and oil sinking efficiency were improved, which reached 77.6% and 23.5%, respectively at an algal cell concentration (Ca) of 1.0 × 106 cells per mL and a mineral concentration of 300 mg L-1. The volumetric mean diameter of the OPAs decreased from 38.4 μm to 31.5 μm when Ca increased from 0 to 1.0 × 106 cells per mL. At higher turbulent energy, more oil tended to form larger OPAs. The findings may add knowledge about the fate and transport of spilled oil and provide fundamental data for oil spill migration modelling.
Collapse
Affiliation(s)
- Zhixin Qi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhennan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yue Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
- National Maritime Environmental Monitoring Center, Dalian 116023, China
| | - Xinping Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Ruiyang Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kaiming Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
8
|
Stephenus FN, Benjamin MAZ, Anuar A, Awang MA. Effect of Temperatures on Drying Kinetics, Extraction Yield, Phenolics, Flavonoids, and Antioxidant Activity of Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Fruits. Foods 2023; 12:2859. [PMID: 37569127 PMCID: PMC10417056 DOI: 10.3390/foods12152859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/13/2023] Open
Abstract
Phaleria macrocarpa (Scheff.) Boerl. or 'Mahkota Dewa' is a popular plant found in Malaysia as it is a valuable source of phytochemicals and therapeutic properties. Drying is an essential step in the storage of P. macrocarpa fruits at an industrial level to ensure their availability for a prolonged shelf life as well as preserving their bioactive compounds. Hence, this study evaluates the effect of different temperatures on the drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of P. macrocarpa fruits. The oven-drying process was carried out in this study at temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. Six thin-layer drying models (i.e., Lewis, Page, Henderson and Pabis, two-term exponential, Logarithmic, and Midilli and Kucuk models) were evaluated to study the behaviour of oven-dried P. macrocarpa fruits based on the coefficient of determination (R2), root mean square error (RMSE), and chi-square (χ2). The quality of the oven-dried P. macrocarpa fruits was determined based on their extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl) using ultrasound-assisted extraction. The results showed that the time for moisture removal correspondingly increased in the oven-dried P. macrocarpa fruits. Apparently, the Midilli and Kucuk model is the most appropriate model to describe the drying process. The range of effective moisture diffusivity was 1.22 × 10-8 to 4.86 × 10-8 m2/s, and the activation energy was 32.33 kJ/mol. The oven-dried P. macrocarpa fruits resulted in the highest extraction yield (33.99 ± 0.05%), TPC (55.39 ± 0.03 mg GAE/g), TFC (15.47 ± 0.00 mg RE/g), and DPPH inhibition activity (84.49 ± 0.02%) at 60 °C based on the significant difference (p < 0.05). A strong correlation was seen between the antioxidant activity, TPC, and TFC in the oven-dried P. macrocarpa fruits. The current study suggests that the oven-drying method improved the TPC, TFC, and antioxidant activity of the P. macrocarpa fruits, which can be used to produce functional ingredients in foods and nutraceuticals.
Collapse
Affiliation(s)
- Fatin Nurain Stephenus
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohammad Amil Zulhilmi Benjamin
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Adilah Anuar
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kampus UniCITI Alam, Sungai Chuchuh, Padang Besar 02100, Perlis, Malaysia
| | - Mohd Azrie Awang
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
9
|
Guo J, Guo X, Yang H, Zhang D, Jiang X. Construction of Bio-TiO 2/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103882. [PMID: 37241509 DOI: 10.3390/ma16103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO2 NPs)-microalgae synergetic system (Bio-TiO2/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO2 NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO2/Algae complex may be attributed to the synergetic interaction of bio-TiO2 NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application.
Collapse
Affiliation(s)
- Jinxin Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoman Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haiyan Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaogeng Jiang
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
10
|
Polat E, Yavuztürk-Gül B, Ünver H, Altınbaş M. Biotechnological product potential of Auxenochlorella protothecoides including biologically active compounds (BACs) under nitrogen stress conditions. World J Microbiol Biotechnol 2023; 39:198. [PMID: 37188850 DOI: 10.1007/s11274-023-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen stress can influence microalgae's growth characteristics, and microalgae grown in nitrogen-deficient conditions may produce higher or lower levels of biotechnological products as a result of metabolic changes. In photoautotrophic and heterotrophic cultures, nitrogen limitation has been proven effective in promoting lipid accumulation. In spite of this, no study has demonstrated a significant correlation between lipid content and other biotechnological products such as bioactive compounds (BACs). This research examines a strategy for lipid accumulation as well as the potential production of BACs with antibacterial properties in parallel with that strategy. This concept involved the treatment of the microalga Auxenochlorella protothecoides with low and high concentrations of ammonium (NH4+). This particular experiment reached a maximum lipid content of 59.5% using a 0.8 mM NH4+ concentration, resulting in the yellowing of the chlorophyll levels. Agar diffusion assays were conducted to determine the antibacterial activity of different extracts derived from the biomass when stressed with different levels of nitrogen. Algal extracts prepared by a variety of solvents showed different levels of antibacterial activity against representative strains of both gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria. Among the extracts tested, 500 mg/L ethyl acetate extract had the greatest antibacterial activity against Escherichia coli. In order to identify the components responsible for the extract's antibacterial activity, fatty acid methyl ester (FAME) analysis was performed. It has been suggested that the lipid fraction may be a valuable indicator of these activities since some lipid components are known to possess antimicrobial properties. In this regard, it was found that the amount of polyunsaturated fatty acid (PUFA) significantly decreased by 53.4% under the conditions with the highest antibacterial activity observed.
Collapse
Affiliation(s)
- Ece Polat
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Sinop University, 57000, Sinop, Türkiye.
| | - Bahar Yavuztürk-Gül
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
- Dincer Topacık National Research Center on Membrane Technologies (MEM-TEK), Istanbul, Türkiye
| | - Hülya Ünver
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Mahmut Altınbaş
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| |
Collapse
|
11
|
Tavares J, Silva TP, Paixão SM, Alves L. Development of a bench-scale photobioreactor with a novel recirculation system for continuous cultivation of microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117418. [PMID: 36753845 DOI: 10.1016/j.jenvman.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation can be used to increase the sustainability of carbon emitting processes, converting the CO2 from exhaust gases into fuels, food and chemicals. Many of the carbon emitting industries operate in a continuous manner, for periods that can span days or months, resulting in a continuous stream of gas emissions. Biogenic CO2 from industrial microbiological processes is one example, since in many cases it becomes unsustainable to stop these processes on a daily or weekly basis. To correctly sequester these emissions, microalgae systems must be operated under continuous constant conditions, requiring photobioreactors (PBRs) that can act as chemostats for long periods of time. However, in order to optimize culture parameters or study metabolic responses, bench-scale setups are necessary. Currently there is a lack of studies and design alternatives using chemostat, since most works focus on batch assays or semi-continuous cultures. Therefore, this work focused on the development of a continuous bench-scale PBR, which combines a retention vessel, a photocollector and a degasser, with an innovative recirculation system, that allows it to operate as an autotrophic chemostat, to study carbon sequestration from a biogenic CO2-rich constant air stream. To assess its applicability, the PBR was used to cultivate the green microalga Haematococcus pluvialis using as sole carbon source the CO2 produced by a coupled heterotrophic bacterial chemostat. An air stream containing ≈0.35 vol% of CO2, was fed to the system, and it was evaluated in terms of stability, carbon fixation and biomass productivity, for dilution rates ranging from 0.1 to 0.5 d-1. The PBR was able to operate under chemostat conditions for more than 100 days, producing a stable culture that generated proportional responses to the stimuli it was subjected to, attaining a maximum biomass productivity of 183 mg/L/d with a carbon fixation efficiency of ≈39% at 0.3 d-1. These results reinforce the effectiveness of the developed PBR system, making it suitable for laboratory-scale studies of continuous photoautotrophic microalgae cultivation.
Collapse
Affiliation(s)
- João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
12
|
Xu R, Fang F, Wang L, Luo J, Cao J. Insight into the interaction between trimethoprim and soluble microbial products produced from biological wastewater treatment processes. J Environ Sci (China) 2023; 124:130-138. [PMID: 36182123 DOI: 10.1016/j.jes.2021.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/16/2023]
Abstract
Soluble microbial products (SMPs), dissolved organic matter excreted by activated sludge, can interact with antibiotics in wastewater and natural water bodies. Interactions between SMPs and antibiotics can influence antibiotic migration, transformation, and toxicity but the mechanisms involved in such interactions are not fully understood. In this study, integrated spectroscopy approaches were used to investigate the mechanisms involved in interactions between SMPs and a representative antibiotic, trimethoprim (TMP), which has a low biodegradation rate and has been detected in wastewater. The results of liquid chromatography-organic carbon detection-organic nitrogen detection indicated that the SMPs used in the study contained 15% biopolymers and 28% humic-like substances (based on the total dissolved organic carbon concentration) so would have contained sites that could interact with TMP. A linear relationship of fluorescent intensities of tryptophan protein-like substances in SMP was observed (R2>0.99), indicating that the fluorescence enhancement between SMP and TMP occurred. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that carboxyl, carbonyl, and hydroxyl groups were the main functional groups involved in the interactions. The electrostatic and π-π interactions were discovered by the UV-vis spectra and 1H nuclear magnetic resonance spectra. Structural representations of the interactions between representative SMP subcomponents and TMP were calculated using density functional theory, and the results confirmed the conclusions drawn from the 1H nuclear magnetic resonance spectra. The results help characterize SMP-TMP complexes and will help understand antibiotic transformations in wastewater treatment plants and aquatic environments.
Collapse
Affiliation(s)
- Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Cristofoli NL, Lima AR, Rosa da Costa AM, Evtyugin D, Silva C, Varela J, Vieira MC. Structural characterization of exopolysaccharides obtained from Porphyridium cruentum exhausted culture medium. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Palhares Farias T, de Melo Castro E, Marucci Pereira Tangerina M, Quintino da Rocha C, Brito Bezerra CW, de Souza Moreira FM. Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants. Braz J Microbiol 2022; 53:1843-1856. [PMID: 36104575 PMCID: PMC9679134 DOI: 10.1007/s42770-022-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
Inoculants with beneficial microorganisms comprise both selected strains and carriers that ensure a favorable microenvironment for cell survival and stability. Formulations of inoculants using synthetic polymers as carriers are common. However, only a few studies are available in the literature regarding the formulation of inoculants using natural biomolecules as carriers. Exopolysaccharides (EPS) are biomolecules produced by a vast array of microbial species, including symbiotic nitrogen-fixing bacteria, commonly known as rhizobia. EPS perform several functions, such as the protection against the deleterious effects of diverse environmental soil stresses. Two Rhizobium tropici strains and one Paraburkholderia strain were selected after semiquantitative analysis by scanning electron microscopy (SEM) of their EPS production in liquid YMA medium. Their EPS were characterized through a series of analytical techniques, aiming at their use in the formulation of plant inoculants. In addition, the effect of the carbon source on EPS yield was evaluated. Multi-stage fragmentation analysis showed the presence of xylose, glucose, galactose, galacturonic acid, and glucuronic acid in EPS chemical composition, which was confirmed by FT-IR spectra and 13C NMR spectroscopy. Thermal stability (thermogravimetric) was close to 270 °C and viscosity ranged from 120 to 1053.3 mPa.s. Surface morphology (SEM) was rough and irregular, with a cross-linked spongy matrix, which, together with the hydrophilic functional groups, confers water holding capacity. The present study showed that the three EPS have potential as microorganism carriers for formulation of microbial inoculants to be applied in plants.
Collapse
Affiliation(s)
- Thiago Palhares Farias
- Departamento de Ciência Do Solo, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, CEP 37200-900, Lavras, MG Brazil
- Laboratório de Microbiologia Do Solo E Biotecnologia/DDE, IFMA, Campus São Luís – Maracanã, CEP 65095-460, São Luís, MA Brazil
| | - Elisa de Melo Castro
- Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-900, Lavras, MG Brazil
| | | | - Cláudia Quintino da Rocha
- Departamento de Química da, Universidade Federal Do Maranhão, Campus Universitário Dom Delgado, 1966, CEP 65080-040, São Luís, MA Brazil
| | - Cicero Wellington Brito Bezerra
- Departamento de Química da, Universidade Federal Do Maranhão, Campus Universitário Dom Delgado, 1966, CEP 65080-040, São Luís, MA Brazil
| | - Fatima Maria de Souza Moreira
- Departamento de Ciência Do Solo da, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, CEP 37200-900, Lavras, MG Brazil
| |
Collapse
|
15
|
Apostolova E, Lukova P, Baldzhieva A, Delattre C, Molinié R, Petit E, Elboutachfaiti R, Nikolova M, Iliev I, Murdjeva M, Kokova V. Structural Characterization and In Vivo Anti-Inflammatory Activity of Fucoidan from Cystoseira crinita (Desf.) Borry. Mar Drugs 2022; 20:714. [PMID: 36421993 PMCID: PMC9693085 DOI: 10.3390/md20110714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
16
|
Ibrahim HAH, Abou Elhassayeb HE, El-Sayed WMM. Potential functions and applications of diverse microbial exopolysaccharides in marine environments. J Genet Eng Biotechnol 2022; 20:151. [PMID: 36318392 PMCID: PMC9626724 DOI: 10.1186/s43141-022-00432-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Exopolysaccharides (EPSs) from microorganisms are essential harmless natural biopolymers used in applications including medications, nutraceuticals and functional foods, cosmetics, and insecticides. Several microbes can synthesize and excrete EPSs with chemical properties and structures that make them suitable for several important applications. Microbes secrete EPSs outside their cell walls, as slime or as a "jelly" into the extracellular medium. These EPS-producing microbes are ubiquitous and can be isolated from aquatic and terrestrial environments, such as freshwater, marine water, wastewater, and soils. They have also been isolated from extreme niches like hot springs, cold waters, halophilic environments, and salt marshes. Recently, microbial EPSs have attracted interest for their applications such as environmental bio-flocculants because they are degradable and nontoxic. However, further efforts are required for the cost-effective and industrial-scale commercial production of microbial EPSs. This review focuses on the exopolysaccharides obtained from several extremophilic microorganisms, their synthesis, and manufacturing optimization for better cost and productivity. We also explored their role and applications in interactions between several organisms.
Collapse
Affiliation(s)
- Hassan A. H. Ibrahim
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Hala E. Abou Elhassayeb
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Waleed M. M. El-Sayed
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| |
Collapse
|
17
|
Jothibasu K, Muniraj I, Jayakumar T, Ray B, Dhar D, Karthikeyan S, Rakesh S. Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Gongi W, Touzi H, Sadly I, Ben ouada H, Tamarin O, Ben ouada H. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:4738-4748. [PMID: 36032357 PMCID: PMC9392654 DOI: 10.1007/s10924-022-02555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
Cyanobacterial extracellular polymeric substances "EPS" have attracted intensive concern in biomedicine and food. Nevertheless, the use of those polymers as a sensor coating material has not yet been investigated mainly for microplastic detection. This study focuses on the application of EPS as a sensitive membrane deposited on a gold electrode and investigated with electrochemical impedance spectroscopy to detect four types of microplastics with a size range of 0.1 µm to 1 mm. The surface properties of this impedimetric sensor were investigated by Scanning electron microscopy, Fourier transforms infrared spectroscopy, and X-ray spectroscopy and, showed a high homogenous structure with the presence of several functional groups. The measurements showed a high homogenous structure with the presence of several functional groups. The EPS-based sensor could detect the four tested microplastics with a low limit of detection of 10-11 M. It is the first report focusing on EPS extracted from cyanobacteria that could be a new quantification method for low concentrations of microplastics. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-022-02555-6.
Collapse
Affiliation(s)
- Wejdene Gongi
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hassen Touzi
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Idris Sadly
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hafedh Ben ouada
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Ollivier Tamarin
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, 33400 Talence, France
| | - Hatem Ben ouada
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
| |
Collapse
|
19
|
Xiang Y, Liu G, Yin Y, Cai Y. Binding characteristics of Hg(II) with extracellular polymeric substances: implications for Hg(II) reactivity within periphyton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60459-60471. [PMID: 35426017 DOI: 10.1007/s11356-022-19875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Periphyton contains extracellular polymeric substances (EPS), yet little is known about how periphyton EPS affect the speciation and mobility of mercury (Hg(II)) in aquatic systems. This study extracted and characterized EPS from periphyton in Florida Everglades, and explored its role in Hg(II) binding and speciation using multiple approaches. Results from Fourier transform infrared spectroscopy (FTIR) revealed that colloidal and capsular EPS were primarily comprised of proteins, polysaccharides, phospholipids, and nucleic acids. Ultrafiltration experiments demonstrated that 77 ± 7.7% and 65 ± 5.5% of Hg(II) in EPS solution could be transformed into colloidal and capsular EPS-bound forms. Three-dimensional excitation emission fluorescence spectra (3D-EEMs) showed that the binding constants (Kb) between colloidal/capsular EPS and Hg(II) were 3.47×103 and 2.62×103 L·mol-1. Together with 3D-EEMs and FTIR, it was found that the protein-like and polysaccharide-like substances in EPS contributed to Hg(II) binding. For colloidal EPS, COO- was the most preferred Hg(II) binding group, while C-N, C-O-C, and C-OH were the most preferred ones in capsular EPS. Using the stannous-reducible Hg approach, it was found that EPS significantly decreased the reactive Hg(II). Overall, this study demonstrated that EPS from periphyton are important organic ligands for Hg(II) complexation, which may further affect the migration and reactivity of Hg(II) in aquatic environment. These observations could improve our understanding of Hg(II) methylation and accumulation within periphyton in aquatic systems.
Collapse
Affiliation(s)
- Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
20
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
21
|
Nanoplastic-Induced Nanostructural, Nanomechanical, and Antioxidant Response of Marine Diatom Cylindrotheca closterium. WATER 2022. [DOI: 10.3390/w14142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to examine the effect of positively charged (amine-modified) and negatively charged (carboxyl-modified) polystyrene nanoplastics (PS NPs) on the nanostructural, nanomechanical, and antioxidant responses of the marine diatom Cylindrotheca closterium. The results showed that both types of PS NPs, regardless of surface charge, significantly inhibited the growth of C. closterium during short-term exposure (3 and 4 days). However, longer exposure (14 days) to both PS NPs types did not significantly inhibit growth, which might be related to the detoxifying effect of the microalgal extracellular polymers (EPS) and the higher cell abundance per PS NPs concentration. The exposure of C. closterium to both types of PS NPs at concentrations above the corresponding concentrations that resulted in a 50% reduction of growth (EC50) demonstrated phytotoxic effects, mainly due to the excessive production of reactive oxygen species, resulting in increased oxidative damage to lipids and changes to antioxidant enzyme activities. Diatoms exposed to nanoplastics also showed a significant decrease in cell wall rigidity, which could make the cells more vulnerable. Atomic force microscopy images showed that positively charged PS NPs were mainly adsorbed on the cell surface, while both types of PS NPs were incorporated into the EPS that serves to protect the cells. Since microalgal EPS are an important food source for phytoplankton grazers and higher trophic levels, the incorporation of NPs into the EPS and interactions with the cell walls themselves may pose a major threat to marine microalgae and higher trophic levels and, consequently, to the health and stability of the marine ecosystem.
Collapse
|
22
|
Mondal K, Bhattacharjee SK, Mudenur C, Ghosh T, Goud VV, Katiyar V. Development of antioxidant-rich edible active films and coatings incorporated with de-oiled ethanolic green algae extract: a candidate for prolonging the shelf life of fresh produce. RSC Adv 2022; 12:13295-13313. [PMID: 35520137 PMCID: PMC9062619 DOI: 10.1039/d2ra00949h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The concept of sustainability and the substitution of non-biodegradable packaging using biodegradable packaging has attracted gigantic interest. The objective of the present study was to revalorize the biowaste "de-oiled green algae biomass (DAB)" of Dunaliella tertiolecta using a green approach and the development of biodegradable chitosan (CS)-based edible active biocomposite films and coatings for prolonging the shelf life of fresh produce. Ultrasound-assisted green extraction was conducted using food-grade solvent ethanol for obtaining the bio-actives, namely "crude algae ethanolic extract (CAEE)" from DAB. The edible films (CS/CAEE) and coating solutions were developed by incorporating CAEE with varying concentrations (0 to 28%). The CAEE was subjected to MALDI-TOF-MS, NMR, and other biochemical analyses, and was found to be rich in DPPH antioxidant activity (∼40%). The CS/CAEE films were fabricated using a solvent casting method and characterized by several biochemical and physicochemical (FESEM, TGA, FTIR, XRD, WVP, UTM, and rheological) characterization techniques. The addition of CAEE into the CS matrix reduced the maximum film transparency (∼20%), water vapor permeability (∼60%); improved the crystallinity (∼24%), tensile strength (∼25%), and antioxidant activity (∼27%); and exhibited UV-Vis blocking properties as compared to the control film. Besides, the developed coating solutions and CAEE showed biocompatibility with BHK-21 fibroblast cells and antimicrobial activity against common food pathogens. The developed coating solution was applied on green chilli using a dipping method and stored at ambient temperature (25 ± 2 °C, 50-70 % RH) for 10 days. The shelf life of chillies was extended without altering the quality as compared to uncoated green chillies. Therefore, the formulated coating could be applicable for prolonging the shelf life of fresh produce.
Collapse
Affiliation(s)
- Kona Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| | - Sayan Kumar Bhattacharjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| | - Chethana Mudenur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| | - Tabli Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| | - Vaibhav V Goud
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG) Assam-781039 India
| |
Collapse
|
23
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Cole N, Naidu R, Megharaj M. Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterial‒Microalgal Consortia. MICROBIAL ECOLOGY 2022; 83:596-607. [PMID: 34132846 DOI: 10.1007/s00248-021-01772-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
24
|
Extracellular Polymeric Substances Produced by the Thermophilic Cyanobacterium Gloeocapsa gelatinosa: Characterization and Assessment of Their Antioxidant and Metal-Chelating Activities. Mar Drugs 2022; 20:md20040227. [PMID: 35447900 PMCID: PMC9029086 DOI: 10.3390/md20040227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Cyanobacteria, particularly thermophilic strains, represent an important potential source of EPSs, harboring structural complexity that predicts diverse and specific bioactive potential. The thermophilic cyanobacteria Gloeocapsa gelatinosa, isolated from a natural hot source in Ain Echfa (Tunisia), was cultivated in a cylindrical reactor, and the production of biomass and EPSs was investigated. Results revealed that the strain is amongst the most efficient EPSs producers (0.89 g L−1) and that EPSs production was not correlated with the growth phase. EPSs were sulfated heteropolysaccharides containing carbohydrates (70%) based on nine different monosaccharides, mainly mannose (22%), and with the presence of two uronic acids. EPSs were formed by two polymers moieties with a molecular weight of 598.3 ± 7.2 and 67.2 ± 4.4 kDa. They are thermostable in temperatures exceeding 100 °C and have an anionic nature (zeta potential of −40 ± 2 mV). Atomic force microscopy showed that EPSs formed multimodal lumps with 88 nm maximum height. EPSs presented high water holding capacity (70.29 ± 2.36%) and solubility index (97.43 ± 1.24%), and a strong bivalent metal sorption capacity especially for Cu2+ (91.20 ± 1.25%) and Fe2+ (75.51 ± 0.71%). The antioxidant activity of G. gelatinosa EPSs was investigated using four methods: the β-carotene-bleaching activity, DPPH assays, iron-reducing activity, and metal-chelating activity. EPS has shown high potential as free radicals’ scavenger, with an IC50 on DPPH (0.2 g L−1) three-fold lower than ascorbic acid (0.6 g L −1) and as a metal chelating activity (IC50 = 0.4 g L−1) significantly lower than EDTA. The obtained results allow further exploration of the thermophilic G. gelatinosa for several biotechnological and industrial applications.
Collapse
|
25
|
|
26
|
Joulak I, Concórdio-Reis P, Torres CAV, Sevrin C, Grandfils C, Attia H, Freitas F, Reis MAM, Azabou S. Sustainable use of agro-industrial wastes as potential feedstocks for exopolysaccharide production by selected Halomonas strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22043-22055. [PMID: 34773587 DOI: 10.1007/s11356-021-17207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Large quantities of waste biomass are generated annually worldwide by many industries and are vastly underutilized. However, these wastes contain sugars and other dissolved organic matter and therefore can be exploited to produce microbial biopolymers. In this study, four selected Halomonas strains, namely, Halomonas caseinilytica K1, Halomonas elongata K4, Halomonas smyrnensis S3, and Halomonas halophila S4, were investigated for the production of exopolysaccharides (EPS) using low-cost agro-industrial wastes as the sole carbon source: cheese whey, grape pomace, and glycerol. Interestingly, both yield and monosaccharide composition of EPS were affected by the carbon source. Glucose, mannose, galactose, and rhamnose were the predominant monomers, but their relative molar ratio was different. Similarly, the average molecular weight of the synthesized EPS was affected, ranging from 54.5 to 4480 kDa. The highest EPS concentration (446 mg/L) was obtained for H. caseinilytica K1 grown on cheese whey that produced an EPS composed mostly of galactose, rhamnose, glucose, and mannose, with lower contents of galacturonic acid, ribose, and arabinose and with a molecular weight of 54.5 kDa. Henceforth, the ability of Halomonas strains to use cost-effective substrates, especially cheese whey, is a promising approach for the production of EPS with distinct physicochemical properties suitable for various applications.
Collapse
Affiliation(s)
- Ichrak Joulak
- Laboratoire Analyse, Valorisation Et Sécurité Des Aliments, Université de Sfax, ENIS, 3038, Sfax, Tunisia
| | - Patrícia Concórdio-Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
| | - Cristiana A V Torres
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, Liège, Belgium
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, Liège, Belgium
| | - Hamadi Attia
- Laboratoire Analyse, Valorisation Et Sécurité Des Aliments, Université de Sfax, ENIS, 3038, Sfax, Tunisia
| | - Filomena Freitas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Lisbon, Portugal
| | - Samia Azabou
- Laboratoire Analyse, Valorisation Et Sécurité Des Aliments, Université de Sfax, ENIS, 3038, Sfax, Tunisia.
| |
Collapse
|
27
|
Chen G, Hu Z, Ebrahimi A, Johnson DR, Wu F, Sun Y, Shen R, Liu L, Wang G. Electrotaxis-mediated cell motility and nutrient availability determine Chlamydomonas microsphaera-surface interactions in bioelectrochemical systems. Bioelectrochemistry 2022; 143:107989. [PMID: 34735914 DOI: 10.1016/j.bioelechem.2021.107989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Cell attachment onto electrode-forming biocathodes is a promising alternative to expensive catalysts used for electricity production in bioelectrochemical systems (BESs). Though BESs have been extensively studied for decades, the processes, underlying mechanisms, and determinant driving forces of microalgal biocathode formation remain largely unknown. In this study, we employed a model unicellular motile microalga, Chlamydomonas microsphaera, to investigate the microalgal attachment processes onto the electrode surface of a BES and to identify the determinant factors. Results showed that the initial attachment of C. micrrosphaera cells is determined by the applied external voltage rather than nutrient availability and occurs via electrotaxis-mediated cell motility. The subsequent development of the C. microsphaera biofilm is then increasingly determined by nutrient availability. Our results revealed that, in the absence of an external voltage, nutrient availability remains a dominant factor controlling the fate of the microalgal surface attachment and subsequent biofilm formation processes. Thus, our results show that electrotactic and chemotactic movements are crucial to facilitate the initial attachment and subsequent biofilm formation of C. microsphaera onto the electrode surfaces of BES. This study provides new insights into the mechanisms of microalgal surface attachment and biofilm formation processes on microalgal biocathodes, which hold great promise for improving the electrochemical properties of cathodes.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhen Hu
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Fazhu Wu
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yifeng Sun
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Renhao Shen
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Wang H, Deng L, Qi Z, Wang W. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150082. [PMID: 34525774 DOI: 10.1016/j.scitotenv.2021.150082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The microalgal-bacterial symbiotic (MBS) system shows great advantages in the synchronous implementation of wastewater treatment and nutrient recovery. To enhance the understanding of different MBS systems, this review summarizes reported MBS systems and proposes three patterns according to the living state of microalgae and bacteria. They are free microalgal-bacterial (FMB) system, attached microalgal-bacterial (AMB) system and bioflocculated microalgal-bacterial (BMB) system. Compared with the other two patterns, BMB system shows the advantages of microalgal biomass harvesting and application. To further understand the microalgal-bacterial partnerships in the bioflocculation of BMB system, this review discusses bioflocs characteristics, extracellular polymeric substances (EPS) properties and production, and the effect of microalgae/bacteria ratio and microalgal strains on the formation of bioflocculation. Microalgal biomass production and application are important for BMB system development in the future. Food processing wastewater characterized by high biodegradability and low toxicity should be conducive for microalgal cultivation. In addition, exogenous addition of functional bacteria for nutrient removal and bioflocculation formation would be a crucial research direction to facilitate the large-scale application of BMB system.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China.
| |
Collapse
|
29
|
Selvaraj K, Vishvanathan N, Dhandapani R. Screening, optimization and characterization of poly hydroxy butyrate from fresh water microalgal isolates. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1926621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kanaga Selvaraj
- Fermentation Research Laboratory, Department of Microbiology, Periyar University, Salem, India
| | - Nandhini Vishvanathan
- Fermentation Research Laboratory, Department of Microbiology, Periyar University, Salem, India
| | - Ramamurthy Dhandapani
- Fermentation Research Laboratory, Department of Microbiology, Periyar University, Salem, India
| |
Collapse
|
30
|
El-Naggar NEA, Hamouda RA, Abuelmagd MA, Abdelgalil SA. Bioprocess development for biosorption of cobalt ions and Congo red from aquatic mixture using Enteromorpha intestinalis biomass as sustainable biosorbent. Sci Rep 2021; 11:14953. [PMID: 34294748 PMCID: PMC8298401 DOI: 10.1038/s41598-021-94026-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Because of the increased amount of cobalt and Congo red dye effluents attributable to the industrial operations, the capacity of Enteromorpha intestinalis biomass as a sustainable source to achieve significant biosorption percent for both pollutants from dual solution was assessed. A fifty batch FCCCD experiments for biosorption of cobalt ions and Congo red dye were performed. The complete removal of Congo red dye was obtained at 36th run using an initial pH value of 10, 1.0 g/L of Enteromorpha intestinalis biomass, 100 and 200 mg/L of Congo red and cobalt for a 20-min incubation time. Meanwhile, a cobalt removal percent of 85.22 was obtained at 35th run using a neutral pH of 7.0, 3.0 g/L of algal biomass, 150 and 120 mg/L of Congo red, and cobalt for a 60-min incubation time. For further illustration and to interpret how the biosorption mechanism was performed, FTIR analysis was conducted to inspect the role of each active group in the biosorption process, it can be inferred that -OH, C-H, C=O, O-SO3- and C-O-C groups were mainly responsible for Co2+ adsorption of from aqueous dual solution. Also, scan electron microscope revealed the appearance of new shiny particles biosorbed on E. intestinalis surface after the biosorption process. EDS analysis proved the presence of Co2+ on the algal surface after the biosorption process.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt.
| | - Ragaa A Hamouda
- Department of Biology, College of Sciences and Arts Khulais,, University of Jeddah, Jeddah, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology, Research Institute, University of Sadat City, El Sadat City, Egypt
| | | | - Soad A Abdelgalil
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
31
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
32
|
Huang R, He Q, Ma J, Ma C, Xu Y, Song J, Sun L, Wu Z, Huangfu X. Quantitative assessment of extraction methods for bound extracellular polymeric substances (B-EPSs) produced by Microcystis sp. and Scenedesmus sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Ray A, Banerjee S, Das D. Microalgal bio-flocculation: present scenario and prospects for commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26294-26312. [PMID: 33797715 DOI: 10.1007/s11356-021-13437-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The need for sustainable production of renewable biofuel has been a global concern in the recent times. Overcoming the tailbacks of the first- and second-generation biofuels, third-generation biofuel using microalgae as feedstock has emerged as a plausible alternative. It has an added advantage of preventing any greenhouse gas (GHG) emissions with simultaneous carbon dioxide sequestration. Dewatering of microalgal culture is one of the many concerns regarding industrial-scale biofuel production. The small size of microalgae and dilute nature of its growth cultures creates huge operational cost during biomass separation, limiting economic feasibility of algae-based fuels. Considering the recovery efficiency, operation economics, technological feasibility and cost-effectiveness, bio-flocculation is a promising method of harvesting. Moreover, advantage of bio-flocculation over other conventional methods is that it does not incur the addition of any external chemical flocculants. This article reviews the current status of bio-flocculation technique for harvesting microalgae at industrial scale. The various microbial strains that can be prospective bioflocculants have been reviewed along with its application and advantages over chemical flocculants. Also, this article proposes that the primary focus of an appropriate harvesting technique should depend on the final utilization of the harvested biomass. This review article attempts to bring forth the beneficial aspects of microbial aided microalgal harvesting with a special attention on genetically modified self-flocculation microalgae.
Collapse
Affiliation(s)
- Ayusmita Ray
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Banerjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debabrata Das
- P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
34
|
Xiang Y, Liu G, Yin Y, Cai Y. Periphyton as an important source of methylmercury in Everglades water and food web. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124551. [PMID: 33223320 DOI: 10.1016/j.jhazmat.2020.124551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Periphyton is ubiquitous in Florida Everglades and has a profound effect on mercury (Hg) cycling. Enhanced methylmercury (MeHg) production in periphyton has been well documented, but the re-distribution of MeHg from periphyton remains unknown. In this study, periphyton, sediments, surface water, periphyton overlying water, and periphyton porewater were collected from Everglades for analyzing the distribution of MeHg and total Hg (THg). Results showed that there were no significant differences in THg and MeHg in different types of periphyton, but they all displayed higher MeHg levels than sediments. MeHg distribution coefficients (logkd) in periphyton were lower than in sediments, suggesting that periphyton MeHg could be more labile entering aquatic cycling and bioaccumulation. In water, the more the distance of water samples taken from periphyton, the lower the MeHg and dissolved organic carbon concentrations were detected. In extracellular polymeric substances of periphyton, MeHg in colloidal fractions was significantly higher than that in capsular fractions. It was estimated that approximately 10% (or 1.35 kg) of periphyton MeHg were passed on to mosquitofish entering the food web during wet season, contributing 73% of total Hg stocked in mosquitofish. These results revealed the importance of periphyton on water MeHg distribution and MeHg bioaccumulation in Everglades.
Collapse
Affiliation(s)
- Yuping Xiang
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
35
|
Das S. Structural and mechanical characterization of biofilm-associated bacterial polymer in the emulsification of petroleum hydrocarbon. 3 Biotech 2021; 11:239. [PMID: 33968582 DOI: 10.1007/s13205-021-02795-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
The marine bacterium Pseudomonas furukawaii PPS-19 isolated from the oil-polluted site of Paradip port, Odisha, India, was found to form a strong biofilm in 2% (v/v) crude oil. Confocal Laser Scanning Microscopy (CLSM) revealed biofilm components along with multi-layered dense biofilm of rod-shaped cells with 64.7 µm thickness. Scanning electron micrographs showed similar biofilm architecture covered with a gluey matrix of extracellular polymeric substances (EPS) in the presence of 2% (v/v) crude oil. The architecture of purified EPS was also studied through FESEM that exposed its porous and three-dimensional flakes-like structure. The structural characterization by FTIR revealed that EPS was composed of primary alkane, amines, halide, hydroxyl groups, uronic acid, and saccharides. The XRD profile exhibited an amorphous phase of the EPS with a crystallinity index of 0.336. The EPS showed three-step thermal decomposition and thermal stability up to 600 °C, as confirmed by TGA and DSC thermogram. EPS produced by marine bacterium P. furukawaii PPS-19 could act as bioemulsifier and showed the highest emulsifying activity of 66.23% on petrol. The emulsifying ability of the EPS was superior to the commercial polymer xanthan. The emulsion also showed high stability with time and temperature exposure. The marine bacterium P. furukawaii PPS-19 and the EPS complex showed 89.52% degradation of crude oil within 5 days. These properties demonstrated the potential of biofilm-forming marine bacterium as bioemulsifier for its application in the bioremediation of oil-polluted sites. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02795-8.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769 008 India
| |
Collapse
|
36
|
Patwal T, Baranwal M. Scenedesmus acutus extracellular polysaccharides produced under increased concentration of sulphur and phosphorus exhibited enhanced proliferation of peripheral blood mononuclear cells. 3 Biotech 2021; 11:171. [PMID: 33754120 PMCID: PMC7969348 DOI: 10.1007/s13205-021-02720-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Exopolysaccharides (EPS) isolated from microalgae are promising immune cell proliferation agents, that could be potentially used as immunostimulants. In the current study, Scenedesmus acutus (S. acutus) was grown under varying nutrient (sulphur and phosphorus) concentrations to enhance the EPS production, and the isolated EPS were assessed for their effect on cell proliferation using peripheral blood mononuclear cells (PBMC). Five different concentrations of MgSO4 (0, 0.25, 0.5, 1.0 and 1.25 g/L) and K2HPO4 (0, 0.2, 0.6, 0.8 and 1.0 g/L) were taken as compared to the normal culture conditions (0.75 g/L MgSO4 and 0.4 g/L K2HPO4) with the intention to enrich EPS secretion. LC–MS, FTIR and NMR analysis revealed that isolated EPS have the characteristic spectrum of hetero-polysaccharides (octa-saccharides). Immunostimulatory property of EPS was demonstrated by their ability to augment PBMC proliferation as measured by MTT assay. Further, increase in the glucose content and proliferative index was observed for EPS obtained under higher concentrations of MgSO4 (1 and 1.25 g/L) and K2HPO4 (0.6 and 0.8 g/L) relative to normal culture conditions. Effects of the generated EPS under varying concentration of MgSO4 (r = 0.84–0.99) and K2HPO4 (r = 0.76–0.97) remained strongly correlated with cell count, chlorophyll content, total biomass, glucose, proliferative index and its scavenging activity. Collectively, our data not only showed that EPS generated by S. acutus under higher concentration of K2HPO4 and MgSO4 possess improved immunostimulatory properties, but also provides convincing evidence towards nutritional optimization of alga for enhanced EPS production with better bioactivities.
Collapse
|
37
|
Wang J, Salem DR, Sani RK. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: Characterization and bioactivities. N Biotechnol 2020; 61:29-39. [PMID: 33188978 DOI: 10.1016/j.nbt.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
The production, characterization and bioactivities of exopolysaccharides (EPSs) from a thermophilic bacterium Geobacillus sp. strain WSUCF1 were investigated. Using glucose as a carbon source 525.7 mg/L of exoproduct were produced in a 40-L bioreactor at 60 °C. Two purified EPSs were obtained: EPS-1 was a glucomannan containing mannose and glucose in a molar ratio of 1:0.21, while EPS-2 was composed of mannan only. The molecular weights of both EPSs were estimated to be approximately 1000 kDa, their FTIR and NMR spectra indicated the presence of α-type glycosidic bonds in a linear structure, and XRD analysis indicated a low degree of crystallinity of 0.11 (EPS-1) and 0.27 (EPS-2). EPS-1 and EPS-2 demonstrated high degradation temperatures of 319 °C and 314 °C, respectively, and non-cytotoxicity to HEK-293 cells at 2 and 3 mg/mL, respectively. In addition, both showed antioxidant activities. EPSs from strain WSUCF1 may expand the applications of microorganisms isolated from extreme environments and provide a valuable resource for exploitation in biomedical fields such as drug delivery carriers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
38
|
Jadhav S, Jaspal D. Elimination of cationic azodye from aqueous media using doped polyaniline (PANI): adsorption optimization and modeling. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An adsorbent doped polyaniline (PANI) has been explored for the elimination of a cationic azodye, basic red 46 (BR-46), from textile effluent. Essential factors from batch mode have been studied to investigate their effect on the removal of BR-46. The investigated data have been applied to two prevalent adsorption isothermal models (i.e., Langmuir and Freundlich). In addition to the coefficients of determination, six different statistical error functions have been used to identify the most appropriate model for the existing process. The Langmuir model has been shown to be the best adsorption isotherm with minimum error values and a high coefficient of determination value (R2 > 0.999). The maximum monolayer adsorption capacity observed was 1.83 × 10−4 mol g−1 at 50 °C. Thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy were found to be –30.06 KJ mol−1, 374 J mol−1, and 97.25 J mol−1 K−1, respectively. The positive values of enthalpy and entropy indicate the process to be endothermic. The amount of the dye adsorbed increased from 1.02 to 5.42 × 10−5 g in moving from 30 to 50 °C. The measured energy of activation was 17.467 kJ mol−1. The maximum percent removal of BR-46 from wastewater has been 93% at pH 8.
Collapse
Affiliation(s)
- Smita Jadhav
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Gram: Lavale, Tal-Mulshi, Maharashtra, Pune 412115, India; Bharati Vidyapeeth’s College of Engineering for Women, Pune 411043, India
| | - Dipika Jaspal
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Gram: Lavale, Tal-Mulshi, Maharashtra, Pune 412115, India
| |
Collapse
|
39
|
Biswas J, Saha P, Ganguly J, Paul AK. Production and characterization of a bioactive extracellular homopolysaccharide produced by Haloferax sp. BKW301. J Basic Microbiol 2020; 60:938-949. [PMID: 33022819 DOI: 10.1002/jobm.202000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022]
Abstract
The production of extracellular polysaccharides (EPS) by haloarchaeal members, with novel and unusual physicochemical properties, is of special importance and has the potential for extensive biotechnological exploitation. An extremely halophilic archaeon, Haloferax sp. BKW301 (GenBank Accession No. KT240044) isolated from a solar saltern of Baksal, West Bengal, India has been optimized for the production of EPS under batch culture. It produced a considerable amount (5.95 g/L) of EPS in the medium for halophiles with 15% NaCl, 3% glucose, 0.5% yeast extract, and 6% inoculum under shake flask culture at 120 rpm. The purified EPS, a homopolymer of galactose as revealed by chromatographic methods and Fourier-transform infrared spectroscopy, is noncrystalline (CIxrd , 0.82), amorphous, and could emulsify hydrocarbons like kerosene, petrol, xylene, and so forth. Moreover, the polymer is highly thermostable (up to 420°C) and displayed pseudoplastic rheology. Biologically, the EPS was able to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) radical efficiently and inhibit the proliferation of the Huh-7 cell line at an IC50 value of 6.25 µg/ml with a Hill coefficient of 0.844. Large-scale production of this thermostable, pseudoplastic homopolysaccharide, therefore, could find suitable applications in industry and biotechnology.
Collapse
Affiliation(s)
- Jhuma Biswas
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Pradipta Saha
- Department of Microbiology, Burdwan University, Burdwan, West Bengal, India
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Amal K Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
40
|
Silva MBF, Azero EG, Teixeira CMLL, Andrade CT. Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00337-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractArthrospira platensis is a cyanobacterium that is of great biotechnological interest, particularly for the food industry, as it possesses a high content of proteins, pigments, lipids and carbohydrates. Cyanobacteria produce extracellular polymeric substances (EPS), which are co-products of secondary metabolism that present thickening or gelling properties. A 3-level factorial design was used to study the combined effect of different nitrate concentrations and photon flux density (PFD) values to evaluate the biomass and EPS production of A. platensis. The best result in terms of biomass production was obtained under condition 6 (2 g L−1 NaNO3 and 600 μE m−2 s−1) yielding a concentration of 1.292 g L−1. However, condition 1 (0.25 g L−1 NaNO3 and 200 μE m−2 s−1) produced the greatest EPS yield (111 mg g−1), followed by condition 9 (2 g L−1 NaNO3 and 1000 μE m−2 s−1). FTIR analyses of EPS samples indicated the presence of carboxylate and sulfate functional groups, and rheological studies of the EPS at 5 and 10 g L−1 revealed a dilute solution behavior.
Collapse
|
41
|
Chen Q, Jia R, Li L, Qu D. Effects of high concentrations of sulfate on dissolved organic matter in paddy soils revealed by excitation-emission matrix analyzing. CHEMOSPHERE 2020; 249:126207. [PMID: 32088458 DOI: 10.1016/j.chemosphere.2020.126207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The problem of sulfate pollution is becoming increasingly serious in freshwater and wetlands. Since paddy fields are the largest constructed wetland in Earth's surface, the increased sulfate input may have great effect on dissolved organic matter (DOM) in paddy soils. To understand these effects, a 24-day anaerobic incubation experiment was conducted with four Chinese paddy soils amended with high concentrations (0, 10, 25, 50, and 100 mmol L-1) of Na2SO4. Dissolved organic carbon (DOC) and chlorophyll a (Chl a) concentrations were determined after incubation. Parallel factor analysis (PARAFAC) of the excitation-emission matrix (EEM) spectra was used to analyze the DOM composition. In all four soils, DOC concentrations generally increased with increasing sulfate concentration, while the Chl a concentrations decreased. The EEM spectra of DOM were resolved into four components by PARAFAC. With increasing sulfate concentration, the proportion of the ultraviolet C humic acid-like compound decreased and the tyrosine-like compound increased in two algae-rich soils (Sichuan and Tianjin). No obvious variation was observed in the humification index (HIX) or the ratio of peak β to peak α (β:α) in any soils with added sulfate. Specific ultra-violet absorbance at 254 nm (SUVA254) decreased with increasing sulfate concentration in Jilin, Tianjin, and Ningxia soils, and the fluorescence index (FI) decreased in two algae-rich soils. In conclusion, although sulfate addition increased the DOC concentration, the DOM composition depended more strongly on soil type and physicochemical properties than sulfate. Sulfate addition only affected soil DOM origin and composition by inhibiting algal growth in algae-rich paddy soils.
Collapse
Affiliation(s)
- Qin Chen
- Northwest Land and Resources Research Center, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Rong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, People's Republic of China
| | - Lina Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China; College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Dong Qu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
42
|
Tiwari ON, Sasmal S, Kataria AK, Devi I. Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech 2020; 10:221. [PMID: 32355595 PMCID: PMC7188750 DOI: 10.1007/s13205-020-02200-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Extracellular polymeric substances (EPS) are biopolymers, composed of polysaccharides, nucleic acids, proteins and lipids, which possess unique functional properties. Despite significant strides made in chemical production processes for polymers, the niche occupied by exopolysaccharides produced by bacteria, yeast or algae is steadily growing in its importance. With the availability of modern tools, a lot of information has been generated on the physico-chemical and biological properties using spectrometric tools, while advanced microscopic techniques have provided valuable insights into the structural-functional aspects. The size of EPS generally ranges between 10 and 10,000 kDa. The wide spectra of applications of EPS as adhesives, stabilizer, gelling, suspending, thickening agent, and surfactants in food and pharmaceutical industries are observed. The health benefits of these EPS enable the improvement of dual function, added value, and green products. This review summarizes previous work on the structural composition, rheological and thermal behaviour, and biosynthetic pathways of EPS and bioprocesses developed for their production. This review also considers each of the above factors and presents the current knowledge on the importance and refinement of available downstream protocols and genetic engineering towards specific food applications, which can help to diversify their prospects in different food and allied industries.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Soumya Sasmal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Ajay Kumar Kataria
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Indrama Devi
- DBT-Institute of Bioresources and Sustainable Development, Imphal, Manipur 795001 India
| |
Collapse
|
43
|
El-Naggar NEA, Hussein MH, Shaaban-Dessuuki SA, Dalal SR. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 2020; 10:3011. [PMID: 32080302 PMCID: PMC7033187 DOI: 10.1038/s41598-020-59945-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella vulgaris, like a wide range of other microalgae, are able to grow mixotrophically. This maximizes its growth and production of polysaccharides (PS). The extracted polysaccharides have a complex monosaccharide composition (fructose, maltose, lactose and glucose), sulphate (210.65 ± 10.5 mg g-1 PS), uronic acids (171.97 ± 5.7 mg g-1 PS), total protein content (32.99 ± 2.1 mg g-1 PS), and total carbohydrate (495.44 ± 8.4 mg g-1 PS). Fourier Transform infrared spectroscopy (FT-IR) analysis of the extracted polysaccharides showed the presence of N-H, O-H, C-H, -CH3, >CH2, COO-1, S=O and the C=O functional groups. UV-Visible spectral analysis shows the presence of proteins, nucleic acids and chemical groups (ester, carbonyl, carboxyl and amine). Purified polysaccharides were light green in color and in a form of odorless powder. It was soluble in water but insoluble in other organic solvents. Thermogravimetric analysis demonstrates that Chlorella vulgaris soluble polysaccharide is thermostable until 240°C and degradation occurs in three distinct phases. Differential scanning calorimetry (DSC) analysis showed the characteristic exothermic transition of Chlorella vulgaris soluble polysaccharides with crystallization temperature peaks at 144.1°C, 162.3°C and 227.7°C. The X-ray diffractogram illustrated the semicrystalline nature of these polysaccharides. Silver nanoparticles (AgNPs) had been biosynthesized using a solution of Chlorella vulgaris soluble polysaccharides. The pale green color solution of soluble polysaccharides was turned brown when it was incubated for 24 hours with 100 mM silver nitrate in the dark, it showed peak maximum located at 430 nm. FT-IR analysis for the biosynthesized AgNPs reported the presence of carbonyl, -CH3, >CH2, C-H,-OH and -NH functional groups. Scanning and transmission electron microscopy show that AgNPs have spherical shape with an average particle size of 5.76. Energy-dispersive X-ray (EDX) analysis showed the dominance of silver. The biosynthesized silver nanoparticles were tested for its antimicrobial activity and have positive effects against Bacillus sp., Erwinia sp., Candida sp. Priming seeds of Triticum vulgare and Phaseolus vulgaris with polysaccharides solutions (3 and 5 mg mL-1) resulted in significant enhancement of seedling growth. Increased root length, leaf area, shoot length, photosynthetic pigments, protein content, carbohydrate content, fresh and dry biomass were observed, in addition these growth increments may be attributed to the increase of antioxidant activities.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Mervat H Hussein
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
44
|
Rachidi F, Benhima R, Sbabou L, El Arroussi H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. ACTA ACUST UNITED AC 2020; 25:e00426. [PMID: 32071893 PMCID: PMC7011035 DOI: 10.1016/j.btre.2020.e00426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
Microalgae as new sources of bioactives production. Microalgae as promising source of plant biostimulant development. Microalgae extracts promote plant growth, nutrients uptake and metabolomics profile.
Microalgae polysaccharides represent a potentially bioressource for the enhancement and the protection of agricultural crops. We investigate the possibility to use microalgae polysaccharides as a plant biostimulant. The crude polysaccharides extract (PS) from three microalgae strains were applied to Solanum lycopersicum plants by irrigation and compared basing on their effects on shoot and root length, nodes number and shoot and root dry weight. The application of 1 mg mL−1 PS from A. platensis, D. salina and Porphorydium sp. on tomato plants improved significantly the nodes number (NN), shoot dry weight (SDW), and shoot length (SS) by75 %, 46,6 %, 25,26 % compared to control respectively. Furthermore, crude PS treatment showed an improvement of carotenoid, chlorophyll and proteins content, and Nitrate Reductase (NR), NAD-Glutamate Dehydrogenase (NAD-GDH) activities in plants leaves compared to control. 1 mg mL−1 of Porphorydium sp. enhanced significantly the carotenoid content and NAD-GDH activity by 400 %, 200 % compared to control respectively. In the same way, A. platensis PS improved chl a, chl b and NR activity by 90.1 %, 102.7 % and 88.34 compared to control respectively. In addition, it is found that a PS treatment has affected the protein content, which reaches 88.3 % under 0.5 mg mL−1 of D. salina PS treatment. GC–MS metabolomics analysis also showed a change in lipids, sterol and alkanes profiles. Some sterols precursors were increased such as Cholesta-6,22,24-triene, which may indicate an enhancement of the biosynthesis of sterols and/or steroidal glycoalkaloids in treated plants. Therefore, this is an evidence to use microalgae polysaccharides as a plant biostimulant.
Collapse
Affiliation(s)
- Farid Rachidi
- Green Biotechnology Laboratory MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research), Madinat Al Irfane, Rabat, Morocco.,Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Redouane Benhima
- Green Biotechnology Laboratory MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research), Madinat Al Irfane, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Laboratory MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research), Madinat Al Irfane, Rabat, Morocco
| |
Collapse
|
45
|
Bernaerts TM, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol Adv 2019; 37:107419. [DOI: 10.1016/j.biotechadv.2019.107419] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
|
46
|
Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol 2019; 35:177. [PMID: 31696403 DOI: 10.1007/s11274-019-2745-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Plant biostimulants are defined as materials containing microorganisms or substances whose function when applied to plants or the rhizosphere is to stimulate natural mechanisms to enhance plant growth, nutrient use efficiency, tolerance to abiotic stressors and crop quality, independent of their nutrient content. In agriculture, seaweeds (Macroalgae) have been used in the production of plant biostimulants while microalgae still remain unexploited. Microalgae are single cell microscopic organisms (prokaryotic or eukaryotic) that grow in a range of aquatic habitats, including, wastewaters, pounds, lakes, rivers, oceans, and even humid soils. These photosynthetic microorganisms are widely described as renewable sources of biofuels, bioingredients and biologically active compounds, such as polyunsaturated fatty acids (PUFAs), carotenoids, phycobiliproteins, sterols, vitamins and polysaccharides, which attract considerable interest in both scientific and industrial communities. Microalgae polysaccharides have so far proved to have several important biological activities, making them biomaterials and bioactive products of increasing importance for a wide range of applications. The present review describes microalgae polysaccharides, their biological activities and their possible application in agriculture as a potential sustainable alternative for enhanced crop performance, nutrient uptake and resilience to environmental stress. This review does not only present a comprehensive and systematic study of Microalgae polysaccharides as plant biostimulants but considers the fundamental and innovative principles underlying this technology.
Collapse
|
47
|
Hussein MH, Hamouda RA, Elhadary AMA, Abuelmagd MA, Ali S, Rizwan M. Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31998-32012. [PMID: 31493072 DOI: 10.1007/s11356-019-06202-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
This study characterized the extruded polymeric substances (EPS) secreted from Synechococcus mundulus cultures under the effect of 2-KGy gamma irradiation dose. The EPS demonstrated seven monosaccharides, two uronic acids and several chemical functional groups: O-H, N-H, =C-H, C=C, C=O, COO-, O-SO3, C-O-C and a newly formed peak at 1593 cm-1 (secondary imide). The roughness of EPS was 96.71 nm and only 28.4% total loss in weight was observed at 800 °C with a high degree of crystallinity quantified as CIDSC (0.722) and CIXRD (0.718). Preliminary comparative analyses of EPS exhibited high protein content in the radiologically modified (R-EPS) than control (C-EPS). Modified EPS were characterized with a high biosorption efficiency, which could be attributed to its high content of uronic acids, protein and sulphates as well as various saccharide monomers. Data revealed that 0.0213 mg L-1 h-1 is the maximum biosorption rate (SBRmax) of Cr(VI) for R-EPS, whereas 0.0204 mg L-1 h-1 SBRmax for the C-EPS respectively.
Collapse
Affiliation(s)
- Mervat H Hussein
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Abdel Monsef A Elhadary
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | | | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
48
|
Adimoolam SR, Nanjan Easwaran S, Subramanian Mohanakrishnan A, Mahadevan S. Metabolic heat coherent growth of Halomonas variabilis (HV) for enhanced production of Extracellular Polymeric Substances (EPS) in a Bio Reaction Calorimeter (BioRC). Prep Biochem Biotechnol 2019; 50:56-65. [PMID: 31648576 DOI: 10.1080/10826068.2019.1663532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The optimum condition at which the halophilic salt-tolerant bacterium Halomonas variabilis (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.5% glucose as a carbon source was used to produce about 4.74 g/L of EPS in 16 h compared to various other EPS production of this kind. The metabolic heat profile confirms net EPS production by HV was a growth-associated aerobic process. There is a good agreement between metabolic heat and Oxygen Uptake Rate (OUR). The maximum observed heat release was 2.1 W. The total protein content of the sample is 53% of the total EPS (Soluble EPS, Loosely bound EPS, and tightly bound EPS). The emulsifying and flocculating activities of the EPS were measured to explore the possibility of using the biopolymer for effluent treatment.
Collapse
Affiliation(s)
- Saravana Raj Adimoolam
- Department of Chemical Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, India
| | | | | | | |
Collapse
|
49
|
Schulze PS, Hulatt CJ, Morales-Sánchez D, Wijffels RH, Kiron V. Fatty acids and proteins from marine cold adapted microalgae for biotechnology. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Fadl SE, El-Habashi N, Gad DM, Elkassas WM, Elbialy ZI, Abdelhady DH, Hegazi SM. Effect of addingDunaliellaalgae to fish diet on lead acetate toxicity and gene expression in the liver of Nile tilapia. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1652652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Nagwan El-Habashi
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa Mohammed Gad
- Fish Diseases Department, Animal Health Research Institute, Kafrelsheikh, Egypt
| | | | - Zizy Ibrahim Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa Hosny Abdelhady
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sayed Mohammed Hegazi
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|