1
|
Antunes DR, Forini MMLH, Biscalchim ÉR, Lima PHC, Cavalcante LAF, Teixeira Filho MCM, Tripathi DK, Caballero JP, Grillo R. Polysaccharide-based sustainable hydrogel spheres for controlled release of agricultural inputs. Int J Biol Macromol 2024; 279:135202. [PMID: 39216580 DOI: 10.1016/j.ijbiomac.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Producing food in quantity and quality to meet the growing population demand is a challenge for the coming years. In addition to the need to improve the use and efficiency of conventional agricultural inputs, we face climate change and disparity in access to food. In this context, creating innovative, efficient, and ecologically approaches is necessary to transform this global scenario. Several delivery systems are being developed to encapsulate agrochemicals, aiming to improve the controlled release of active ingredients and protect them against environmental biotic and abiotic factors. Among these systems, hydrogel spheres are particularly notable for their ability to be fabricated from biodegradable materials, allowing the encapsulation of molecules, nanomaterials, and even organisms (e.g., bacteria and fungi). This review provides an overview of the latest progress in developing polysaccharide-based hydrogel spheres for agriculture. In addition, we describe methods for preparing hydrogel spheres and discuss the encapsulation and release of agricultural inputs in the field. Finally, we put hydrogel spheres into perspective and seek to highlight some current challenges in the field to spark new inspiration and improve the development of environmentally friendly and cost-effective delivery systems for the agricultural sector.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Érica R Biscalchim
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Marcelo C M Teixeira Filho
- São Paulo State University (UNESP), Department of Plant Protection, Rural Engineering and Soils, School of Engineering, Ilha Solteira, SP 15385-000, Brazil
| | - Durgesh K Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Javier Pitti Caballero
- Instituto de Innovación Agropecuaria de Panamá (IDIAP), Estación Experimental de Cerro Punta, Centro de Innovación Agropecuaria de Chiriquí, Provincia de Chiriquí, Panamá
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| |
Collapse
|
2
|
Song Y, Ma L, Duan Q, Xie H, Dong X, Zhang H, Yu L. Development of Slow-Release Fertilizers with Function of Water Retention Using Eco-Friendly Starch Hydrogels. Molecules 2024; 29:4835. [PMID: 39459203 PMCID: PMC11510222 DOI: 10.3390/molecules29204835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past two decades, the development and commercialization of slow-release fertilizers (SRFs) have significantly advanced, with the primary aim of mitigating environmental issues associated with excessive fertilizer use. A range of methodologies, including chemical and physical reactions, incorporation into carriers with porous and layered structures, and coating techniques, have been explored and refined. On the other hand, global challenges such as drought and desertification further underscore the need for SRFs that not only control nutrient release but also improve soil moisture retention. This paper reviews the development and application of eco-friendly starch hydrogels as fertilizer carriers and water retention for SRFs, particularly starch-based superabsorbent polymers (SAPs) produced through grafting copolymerization with acrylamide. This review explores both scientific issues, such as the microstructures and releasing mechanisms of SAPs, and technical development, involving copolymerization technologies, multi-initialization processes, methods of loading fertilizer into hydrogel, etc. Starch, as both a biodegradable and renewable carbohydrate polymer, offers distinct advantages due to its excellent chemical stability and high reactivity. The fabrication techniques of SAPs have been developed from traditional batch polymerization in aqueous solutions to more efficient, solvent-free reactive extrusion. The benefits of SRFs based on SAPs encompass enhanced soil aeration, the prevention of soil deterioration, the minimization of water evaporation, environmental pollution control, reduction in plant mortality, and prolonged nutrient retention within soil. In this review, we summarize the current progress, identify limitations in existing technologies, and propose future research directions to further enhance the performance of starch-based SRFs.
Collapse
Affiliation(s)
- Yue Song
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Litao Ma
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
| | - Qingfei Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huifang Xie
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
| | - Xinyi Dong
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
| | - Huaran Zhang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
| | - Long Yu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.S.); (L.M.); (Q.D.); (H.X.); (X.D.); (H.Z.)
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Fan TF, Luan YY, Xiang S, Shi YX, Xie XW, Chai AL, Li L, Li BJ. Seed coating with biocontrol bacteria encapsulated in sporopollenin exine capsules for the control of soil-borne plant diseases. Int J Biol Macromol 2024; 281:136093. [PMID: 39341327 DOI: 10.1016/j.ijbiomac.2024.136093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Coating seeds with biocontrol agents represents an effective approach for managing soil-borne plant diseases. However, improving the viability of biocontrol microorganisms on the seed surface or in the rhizosphere remains a big challenge due to biotic and abiotic stresses. In this work, we developed a microbial seed coating strategy that uses sporopollenin exine capsules (SECs) as carriers for the encapsulation of the biofilm-like biocontrol bacteria. SECs was extracted from camellia bee pollen, and then characterized by Fourier Transform infrared spectroscopy (FTIR), elemental analysis and thermal gravity analysis (TG). The Paenibacillus polymyxa ZF129, a biocontrol bacterium, was introduced into SECs using the vacuum-incubation method and characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Notably, the ZF129 cell formed a biofilm-like structure inside the SECs, which enhanced their tolerance to acidic stress. As a proof of concept, we applied ZF129-loaded SECs to coat pak choi seeds using a straightforward plate-shaking technique. The coated seeds demonstrated a high control efficacy of up to 60.46 % against clubroot disease. Overall, this study sheds light on the application of SECs as promising carrier for the encapsulation of biofilm-like biocontrol bacteria, further augmenting the biocontrol functionality of microbial seed coating.
Collapse
Affiliation(s)
- Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National South Breeding Research Institute of the Chinese Academy of Agricultural Sciences in Sanya, Sanya 572000, China.
| | - Yu-Yang Luan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Wan Yusof WR, Sabar S, Zailani MA. Starch-chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications. Biopolymers 2024; 115:e23602. [PMID: 38816949 DOI: 10.1002/bip.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Starch and chitosan, polysaccharides derived from natural sources, have significant potential across various domains. Starch is extracted from starch-bearing plants, such as potatoes, whereas chitosan is obtained from the exoskeletons of marine animals, fungi and insects. However, the original forms of starch and chitosan have several limitations, such as low solubility and weak mechanical strength. Interestingly, the combined effects of starch and chitosan resulted in the development of starch-chitosan blends with markedly improved functional properties. These blends demonstrated high tensile strength, improved hydrophilicity and increased adsorption capacity. Furthermore, modification of starch-chitosan blends by techniques such as crosslinking and incorporation of other functional materials contributes to diverse characteristics and functionalities. This review addresses a crucial gap in the literature by providing an overview and up-to-date analysis of starch-chitosan blends. The preparation methods and functional properties of these blends in various forms, such as films, beads and hydrogels, have been extensively discussed. Emphasis is placed on the versatile applications of these blends in research, development and industries such as pharmaceuticals, wastewater treatment, agriculture and food technology. This review aims to provide an insightful overview of starch-chitosan blends and stimulate broader interdisciplinary research interests. By providing concluding insights and prospects, this review highlights the potential for further exploration of the impact of starch-chitosan blends on consumers and the environment.
Collapse
Affiliation(s)
- Wan Roslina Wan Yusof
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Sumiyyah Sabar
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Alhafiizh Zailani
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
5
|
Medha, Sethi S, Mahajan P, Thakur S, Sharma N, Singh N, Kumar A, Kaur A, Kaith BS. Design and evaluation of fluorescent chitosan-starch hydrogel for drug delivery and sensing applications. Int J Biol Macromol 2024; 274:133486. [PMID: 38944079 DOI: 10.1016/j.ijbiomac.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Composite bio-based hydrogels have been obtaining a significant attention in recent years as one of the most promising drug delivery systems. In the present study, the preparation of composite chitosan-starch hydrogel using maleic acid as a cross-linker was optimized with the help of response surface methodology. The synthesized hydrogel was fluorescent owing to clustering of large number of functional groups. Different analytical techniques, including XRD, FTIR, SEM, XPS, fluorescence and BET were utilized to characterize the prepared hydrogel. XRD analysis confirmed the formation of non-crystalline hydrogel with random arrangement of macromolecular chains. The composite hydrogel exhibited good swelling percentage with pH sensitivity, hemocompatibility and degradability. BET analysis confirmed that the variation in concentration of crosslinker significantly influences the pore volume of the hydrogel. The synthesized composite chitosan-starch hydrogel was utilized as a prospective candidate for controlling drug release. Cefixime as a model drug was loaded onto the synthesized hydrogel utilizing the swelling diffusion method. SEM micrographs showed uniform distribution of drug molecules in the drug loaded hydrogel. In vitro drug release experiments indicated the swelling dependent drug release behaviour of chitosan-starch hydrogel with higher drug release at pH 7.4 (93.08 %) compared to pH 1.2 (67.85 %). The composite chitosan-starch hydrogel was able to prolong and control the drug release up to 12 h. The drug release from the hydrogel followed Korsmeyer-Peppas and Makoid-Banakar model with Fickian diffusion mechanism. Further, the composite hydrogel displayed excitation dependent fluorescence emission with most intense blue emission band at 425 nm with an excitation wavelength of 350 nm. The inclusion of cefixime drug in the hydrogel matrix significantly reduced the fluorescence intensity; the decrease was linearly correlated to the concentration of the drug. Moreover, the fluorescence emission the chitosan-starch hydrogel was found to be dependent upon pH. The synthesized hydrogel is expected to be a potential candidate for controlled drug release as well as for fluorescent sensing applications.
Collapse
Affiliation(s)
- Medha
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Sapna Sethi
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Pariva Mahajan
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Swati Thakur
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Neeraj Sharma
- Laboratory of Bioproduct Chemistry, Centre of Innovation and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India.
| | - Narveer Singh
- Department of Physics, Lyallpur Khalsa College Jalandhar, Punjab 144008, India.
| | - Akshay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Amandeep Kaur
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Balbir Singh Kaith
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India..
| |
Collapse
|
6
|
Kalita A, Elayarajan M, Janaki P, Suganya S, Sankari A, Parameswari E. Organo-monomers coated slow-release fertilizers: Current understanding and future prospects. Int J Biol Macromol 2024; 274:133320. [PMID: 38950798 DOI: 10.1016/j.ijbiomac.2024.133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The increasing urge to make an impactful contribution towards attaining nutritional security amidst the ever-rising demand for food, changing climate and maintaining environmental health and safety has become the main focal point for today's researchers globally. Slow-release fertilizers (SRFs) are a broad, dynamic, and advance category of fertilizers but despite its environmental benefits and scientifically proven results it often faces some critical challenges, primarily due to its high cost, often stemming from synthetic coatings, deteriorating soil health and with unrevealed potential environmental impacts. Organo-monomers have gained immense popularity due to their organic origin, biodegradable nature, biocompatibility, bio-sustainability and as a targeted delivery of nutrients in the plant system leading to increase in nutrient use efficiency (NUE). They can form strong bond with other monomers, fertilizers elements and improve the soil quality, carbon sequestration and holistically the environment. This review emphasizes on organo-monomers based SRFs, its synthesis, application and deliberate mechanism of nutrient release; boosting crop productivity and global economy. In conclusion, provided the significant challenges posed by the classical or synthetically coated fertilizers; the application of organo-monomers based SRFs demonstrates immense potential for achieving sustainable yield, to help build a global nutritionally secure population.
Collapse
Affiliation(s)
- Abreeta Kalita
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - M Elayarajan
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - P Janaki
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - S Suganya
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - A Sankari
- Dept. of Horticulture, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - E Parameswari
- Dept. of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| |
Collapse
|
7
|
Hu X, Huang Y, Tang X, Zhang K, Yang F. Interactions between rice starch and flavor components and their impact on flavor. Int J Biol Macromol 2024; 275:133397. [PMID: 38960261 DOI: 10.1016/j.ijbiomac.2024.133397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Flavor is considered one of the most significant factors affecting food quality. However, it is often susceptible to environmental factors, so encapsulation is highly necessary to facilitate proper handling and processing. In this study, the structural changes in starch encapsulation and their effects on flavor retention were investigated using indica starch (RS) as a matrix to encapsulate three flavoring compounds, namely nonanoic acid, 1-octanol, and 2-pentylfuran. The rheological and textural results suggested that the inclusion of flavor compounds improved the intermolecular interactions between starch molecules, resulting in a significant increase in the physicochemical properties of starch gels in the order: nonanoic acid > 1-octanol > 2-pentylfuran. The XRD results confirmed the successful preparation of v-starch. Additionally, the inclusion complexes (ICs) were characterized using FT-IR, SEM, and DSC techniques. The results showed that v-starch formed complexes with Flavor molecules. The higher enthalpy of the complexes suggested that the addition of alcohols and acids could improve the intermolecular complexation between starch molecules. The retention rates of three flavor compounds in starch were determined using HS-GC, with the values of 51.7 %, 32.37 %, and 35.62 %. Overall, this study provides insights into novel approaches to enhance the quality and flavor retention, improve the storability and stability, reduce losses during processing and storage, and extend the shelf life of starchy products.
Collapse
Affiliation(s)
- XinYue Hu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Vocational & Technical College, Nanning, 530026, China.
| | - Xiangyi Tang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Liuzhou Liangmianzhen Co., Ltd., Liuzhou 545000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510460, China.
| | - Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China.
| | - Feng Yang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China.
| |
Collapse
|
8
|
Koshenaj K, Ferrari G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers (Basel) 2024; 16:1991. [PMID: 39065308 PMCID: PMC11281146 DOI: 10.3390/polym16141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Natural hydrogels based on renewable and inexpensive sources, such as starch, represent an interesting group of biopolymeric materials with a growing range of applications in the biomedical, cosmeceutical, and food sectors. Starch-based hydrogels have traditionally been produced using different processes based on chemical or physical methods. However, the long processing times, high energy consumption, and safety issues related to the synthesis of these materials, mostly causing severe environmental damage, have been identified as the main limitations for their further exploitation. Therefore, the main scientific challenge for research groups is the development of reliable and sustainable processing methods to reduce the environmental footprint, as well as investigating new low-cost sources of starches and individuating appropriate formulations to produce stable hydrogel-based products. In the last decade, the possibility of physically modifying natural polysaccharides, such as starches, using green or sustainable processing methods has mostly been based on nonthermal technologies including high-pressure processing (HPP). It has been demonstrated that the latter exerts an important role in improving the physicochemical and techno-functional properties of starches. However, as for surveys in the literature, research activities have been devoted to understanding the effects of physical pre-treatments via high-pressure processing (HPP) on starch structural modifications, more so than elucidating its role and capacity for the rapid formation of stable and highly structured starch-based hydrogels with promising functionality and stability, utilizing more sustainable and eco-friendly processing conditions. Therefore, the present review addresses the recent advancements in knowledge on the production of sustainable starch-based hydrogels utilizing HPP as an innovative and clean-label preparation method. Additionally, this manuscript has the ambition to give an updated overview of starch-based hydrogels considering the different types of structures available, and the recent applications are proposed as well to critically analyze the main perspectives and technological challenges for the future exploitation of these novel structures.
Collapse
Affiliation(s)
- Katerina Koshenaj
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- ProdAl Scarl, c/o University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Sarhan N, Arafa EG, Elgiddawy N, Elsayed KNM, Mohamed F. Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers. Sci Rep 2024; 14:15032. [PMID: 38951590 PMCID: PMC11217492 DOI: 10.1038/s41598-024-58875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024] Open
Abstract
In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.
Collapse
Affiliation(s)
- Nada Sarhan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Esraa G Arafa
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt.
| | - Nada Elgiddawy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
10
|
Mutharani B, Ranganathan P, Chang YH, Chiu FC. Design and synthesis of polypyrrole conductive ink based on sulfated chitosan for bactericide carbendazim detection. Carbohydr Polym 2024; 331:121800. [PMID: 38388028 DOI: 10.1016/j.carbpol.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024]
Abstract
Conductive polymers (CPs) are typically insoluble in solvents, and devising biocompatible hydrophilic CPs is challenging and imperative to expand the applications of CPs. Herein, sulfated chitosan (SCS) is used as a green dopant instead of toxic poly(styrene sulfonate) (PSS), and SCS:polypyrrole (SCS:PPy) conductive ink is prepared by in situ polymerization. Due to the complex structure between PPy and SCS polyanion, the synthesized SCS:PPy dispersion forms a well-connected electric pathway and confers superior conductivity, dispersion stability, good film-forming ability, and high electrical stability. As proof of our concept, electrochemical sensing utilizing an SCS:PPy-modified screen-printed carbon electrode (SPCE) was performed towards carbendazim (CBZ). The SCS:PPy on the SPCE surface displayed greater sensitivity to CBZ because the conductive complex structure eased the electrocatalytic action of SCS:PPy by dramatically increasing the current intensity of CBZ oxidation and notably ameliorating stability. The sensor unveils the lowest detection value of 1.02 nM with a linear range of 0.05 to 906 μM for sensing trace CBZ by utilizing the pulse voltammetry technique. Interestingly, this senor shows excellent selectivity towards CBZ due to the formation of substantial interactions between SCS:PPy and CBZ, as demonstrated by molecular simulation studies. Furthermore, this sensor can precisely monitor CBZ in actual fruit and river water samples with satisfactory results. This study sheds light on the design and synthesis of sustainable hydrophilic CPs in the fabrication of sensors.
Collapse
Affiliation(s)
- Bhuvanenthiran Mutharani
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC
| | - Palraj Ranganathan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
11
|
Kang H, Fan T, Lin Z, Shi Y, Xie X, Li L, Xiang S, Yuan X, Li X, Li B, Chai A. Development of chitosan/carrageenan macrobeads for encapsulation of Paenibacillus polymyxa and its biocontrol efficiency against clubroot disease in Brassica crops. Int J Biol Macromol 2024; 264:130323. [PMID: 38387628 DOI: 10.1016/j.ijbiomac.2024.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most important diseases of brassicas. The antagonistic bacterium Paenibacillus polymyxa ZF129 can suppress clubroot while its effectiveness is often unstable. To control clubroot more effectively, the macrobeads for controlled release of ZF129 were prepared using microencapsulation technology. Macrobeads with various ratios of chitosan (2 % w/w): carrageenan (0.3 % w/v) were prepared by an ionotropic gelation method and the bacteria ZF129 was loaded into macrobeads. The 1:1 chitosan: carrageenan showed the maximum swelling ratio (634 %), and the maximum survival rate (61.52 ± 1.12 %) after freeze-drying. Fourier transform infrared revealed the electrostatic interactions between chitosan and carrageenan. The macrobeads can efficiently release ZF129 strains into phosphate buffer solution and reach equilibrium in 48 h. The maximum number of bacteria cells to be released in the soil was observed after 25-30 days. The control efficacy of ZF129 macrobeads (chitosan: carrageenan, 1:1) and ZF129 culture against clubroot disease was 76.33 ± 3.65 % and 59.76 ± 4.43 % in greenhouse experiments, respectively and the control efficacy was calculated as 60.74 ± 5.00 % for ZF129 macrobeads and 40.94 ± 4.05 % for ZF129 culture under field experiments, respectively. The ZF129 macrobeads had significant growth-promoting effects on pak choi and Chinese cabbage. The encapsulation method described in this study is a prudent approach toward efficient biopesticides utilization with reduced environmental implications.
Collapse
Affiliation(s)
- Huajun Kang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowei Yuan
- Huasheng Seed Group Co., LTD, Qingzhou 262500, China
| | - Xingsheng Li
- Huasheng Seed Group Co., LTD, Qingzhou 262500, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Iqbal DN, Tariq Z, Philips B, Sadiqa A, Ahmad M, Al-Ahmary KM, Ali I, Ahmed M. Nanocellulose/wood ash-reinforced starch-chitosan hydrogel composites for soil conditioning and their impact on pea plant growth. RSC Adv 2024; 14:8652-8664. [PMID: 38495984 PMCID: PMC10938291 DOI: 10.1039/d3ra08725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Hydrogels are 3-dimensional polymer networks capable of absorbing a large amount of water. Natural polymeric hydrogels are biodegradable, non-toxic and biocompatible. They can effectively retain nutrients for the plant and can be used as soil conditioners. This study uses a chemical cross-linking technique to synthesize starch and chitosan-based hydrogel using citric acid as a cross-linker. Additionally, hydrogel composites were developed by incorporating wood ash, nano-cellulose, and NPK (nitrogen-phosphorus-potassium) fertilizer as fillers to enhance their properties. The formulated hydrogel/hydrogel composite samples were characterized by FTIR spectroscopy, SEM analysis, X-ray diffraction and thermo-gravimetric analysis. The experiment results showed the chemical cross-linking among the polymeric chain and the semi-crystalline nature of the hydrogel/hydrogel composite samples. The swelling capacity of the hydrogel/hydrogel composite samples was 200-420% (in distilled water) and 104-220% (in saline medium) and demonstrated biodegradability within 110 days. The NPK reinforced hydrogel composite showed an excellent effect on the growth of pea plants (leaves count = 37, stem height = 20.2 cm), and could be effectively used as soil conditioners for agricultural applications. Considering the ability of hydrogel composites to reduce irrigation needs, enhance nutrient retention, and improve crop production, these novel hydrogel composites present an economically viable solution for sustainable agricultural practices.
Collapse
Affiliation(s)
- Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Zaryab Tariq
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Boiz Philips
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education Lahore-54770 Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology Hawally Kuwait
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education Lahore-54770 Pakistan
| |
Collapse
|
13
|
Wu K, Shi R, Du C, Ma F, Gan F. A facile strategy to fabricate lignocellulose-based slow-release fertilizers via a high-performance treatment of rice straw using deep eutectic solvents. Int J Biol Macromol 2024; 257:128582. [PMID: 38056751 DOI: 10.1016/j.ijbiomac.2023.128582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/11/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lignin-based slow-release fertilizers (SRFs) have attracted widespread attention due to their ability to enhance nutrient utilization efficiency and reduce environmental pollution in agricultural production. However, the extraction and separation processes of lignin from biomass sources are intricate, involving substantial quantities of non-reusable toxic reagents. Here, a sustainable and eco-friendly approach using deep eutectic solvents (DES) was employed to treat rice straw, effectively dissolving the lignin present. Subsequently, the in-situ lignin regeneration was facilitated through the addition of a zinc chloride solution. The regenerated lignin was tightly wrapped around and connected to cellulose micro/nanofibers, forming a homogeneous slurry. A simple coating technique was employed to uniformly coat urea particles with the lignocellulosic slurry, yielding lignocellulose-based SRFs. Results revealed that the nutrient release of the lignocellulose-based coated fertilizers in water exceeded 56 days. A pot trial demonstrated that the application of lignocellulose-based SRFs significantly promoted the growth of rice and improved grain yield (by 10.7 %) and nitrogen use efficiency (by 34.4 %) compared to the urea treatment in rice production. Furthermore, the DES demonstrated consistently high efficiency in biomass processing even after four cycles of reuse. This green strategy offers a novel approach for the preparation of SRFs coating materials, promoting agricultural sustainability.
Collapse
Affiliation(s)
- Ke Wu
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Rongyuan Shi
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Changwen Du
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China
| | - Fei Ma
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China
| | - Fangqun Gan
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| |
Collapse
|
14
|
Lopes MM, Oliveira-Paiva CAD, Farinas CS. Modification of pectin/starch-based beads with additives to improve Bacillus subtilis encapsulation for agricultural applications. Int J Biol Macromol 2023; 246:125646. [PMID: 37394222 DOI: 10.1016/j.ijbiomac.2023.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The use of Bacillus as biofertilizer is a sustainable strategy to increase agricultural productivity, but it still requires the development of formulations to protect cells from stressful conditions. Ionotropic gelation using a pectin/starch matrix is a promising encapsulation strategy to achieve this goal. By incorporating additives such as montmorillonite (MMT), attapulgite (ATP), polyethylene glycol (PEG), and carboxymethyl cellulose (CMC), the properties of these encapsulated products could be further improved. In this study, we investigated the influence of these additives on the properties of pectin/starch-based beads for the encapsulation of Bacillus subtilis. FTIR analysis indicated pectin and Ca2+ ions interactions, while the XRD showed good dispersion of clays in the materials. SEM and X-ray microtomography revealed differences in the morphology of the beads due to the use of the additives. The viabilities at the encapsulation were higher than 1010 CFU g-1 for all formulations, with differences in the release profiles. In terms of cell protection, the pectin/starch, pectin/starch-MMT and pectin/starch-CMC formulations showed the highest cell viability after exposure to fungicide, while the pectin/starch-ATP beads showed the best performance after UV exposure. Moreover, all formulations maintained more than 109 CFU g-1 after six months of storage, which meets values required for microbial inoculants.
Collapse
Affiliation(s)
- Marina Momesso Lopes
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | - Cristiane Sanchez Farinas
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 Sao Carlos, SP, Brazil.
| |
Collapse
|
15
|
Tariq Z, Iqbal DN, Rizwan M, Ahmad M, Faheem M, Ahmed M. Significance of biopolymer-based hydrogels and their applications in agriculture: a review in perspective of synthesis and their degree of swelling for water holding. RSC Adv 2023; 13:24731-24754. [PMID: 37601588 PMCID: PMC10437007 DOI: 10.1039/d3ra03472k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks that are hydrophilic and capable of retaining a large amount of water. Hydrogels also can act as vehicles for the controlled delivery of active compounds. Bio-polymers are polymers that are derived from natural sources. Hydrogels prepared from biopolymers are considered non-toxic, biocompatible, biodegradable, and cost-effective. Therefore, bio-polymeric hydrogels are being extensively synthesized and used all over the world. Hydrogels based on biopolymers finds important applications in the agricultural field where they are used as soil conditioning agents as they can increase the water retention ability of soil and can act as a carrier of nutrients and other agrochemicals. Hydrogels are also used for the controlled delivery of fertilizer to plants. In this review, bio-polymeric hydrogels based on starch, chitosan, guar gum, gelatin, lignin, and alginate polymer have been discussed in terms of their synthesis method, swelling behavior, and possible agricultural application. The urgency to address water scarcity and the need for sustainable water management in agriculture necessitate the exploration and implementation of innovative solutions. By understanding the synthesis techniques and factors influencing the swelling behavior of these hydrogels, we can unlock their full potential in fostering sustainable agriculture and mitigating the challenges posed by an ever-changing environment.
Collapse
Affiliation(s)
- Zaryab Tariq
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Muhammad Faheem
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| |
Collapse
|
16
|
Motamedi E, Safari M, Salimi M. Improvement of tomato yield and quality using slow release NPK fertilizers prepared by carnauba wax emulsion, starch-based latex and hydrogel nanocomposite combination. Sci Rep 2023; 13:11118. [PMID: 37429906 PMCID: PMC10333222 DOI: 10.1038/s41598-023-38445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023] Open
Abstract
The modern agriculture is working on introducing new generation of fertilizers that apt to slow down the nutrients release to be more in synchrony with plant's need throughout growth season, enhance fertilizer performance, and decrease nutrient losses into the environment. The aim of this research was to develop an advanced NPK slow-release fertilizer (SRF) and investigate its effect on yield, nutritional and morphological responses of tomato plant (Lycopersicon esculentum Mill.) as a model crop. To this goal, three water-based bio-polymeric formulations including starch-g-poly (acrylic acid-co-acrylamide) nanocomposite hydrogel, starch-g-poly(styrene-co-butylacrylate) latex, and carnauba wax emulsion were synthesized and used for production of NPK-SRF samples. Different samples of coated fertilizers (urea, potassium sulfate, and superphosphate granules) were prepared using different ratios of latex and wax emulsion, and for phosphorus and potash (R-treatment). Moreover, some of coated fertilizers (15 and 30 wt.%) was replaced with nanocomposite hydrogel containing fertilizers, named D and H treatments, respectively. The effect of SRF samples were compared with commercial fertilizers (NPK treatment) and a commercial SRF (T treatment), on the growth of tomato in the greenhouse, at two different levels (100 and 60). The efficiency of all the synthesized formulations were higher than NPK and T treatments, and among them, H100 significantly improved the morphological and physiological characteristics of tomato. For instance, amount of residual elements (nitrogen, phosphorus and potassium) as well as micro elements of calcium, iron and zinc in tomato cultivation bed and accordingly the uptake of these elements in the roots, aerial parts and fruits were increased in the R, H, and D treatments. The highest yield (1671.54 g), highest agricultural agronomy efficiency of fertilizer, and the highest dry matter percentage (9.52%) were obtained in H100. The highest amount of lycopene, antioxidant capacity and vitamin C was also observed in H100. Nitrate accumulation in tomato fruit in the synthesized SRF samples were decreased significantly compared to NPK100, and the lowest amount was observed in H100, which was 55.24% less than NPK100. Accordingly, it is suggested that combination of natural-based nanocomposite hydrogels along with coating latexes and wax emulsions can be a successful method to synthesize efficient NPK-SRF formulations for improvement of crop growth and quality.
Collapse
Affiliation(s)
- Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Marzieh Safari
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, USA
| | - Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
17
|
Inphonlek S, Jarukumjorn K, Chumsamrong P, Ruksakulpiwat C, Ruksakulpiwat Y. Preparation of Crosslinked Poly(acrylic acid-co-acrylamide)-Grafted Deproteinized Natural Rubber/Silica Composites as Coating Materials for Controlled Release of Fertilizer. Polymers (Basel) 2023; 15:polym15071770. [PMID: 37050385 PMCID: PMC10097200 DOI: 10.3390/polym15071770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The crosslinked poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber/silica ((PAA-co-PAM)-DPNR/silica) composites were prepared and applied as coating materials for fertilizer in this work. The crosslinked (PAA-co-PAM)-DPNR was prepared via emulsion graft copolymerization in the presence of MBA as a crosslinking agent. The modified DPNR was mixed with various contents of silica (10 to 30 phr) to form the composites. The existence of crosslinked (PAA-co-PAM) after modification provided a water adsorption ability to DPNR. The swelling degree values of composites were found in the range of 2217.3 ± 182.0 to 8132.3 ± 483.8%. The addition of silica in the composites resulted in an improvement in mechanical properties. The crosslinked (PAA-co-PAM)-DPNR with 20 phr of silica increased its compressive strength and compressive modulus by 1.61 and 1.55 times compared to the unloaded silica sample, respectively. There was no breakage of samples after 80% compression strain. Potassium nitrate, a model fertilizer, was loaded into chitosan beads with a loading percentage of 40.55 ± 1.03% and then coated with the modified natural rubber/silica composites. The crosslinked (PAA-co-PAM)-DPNR/silica composites as the outer layers had the ability of holding water in their structure and retarded the release of fertilizer. These composites could be promising materials for controlled release and water retention that would have potential for agricultural application.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kasama Jarukumjorn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pranee Chumsamrong
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
18
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
19
|
Tiamwong S, Yukhajon P, Noisong P, Subsadsana M, Sansuk S. Eco-Friendly Starch Composite Supramolecular Alginate–Ca2+ Hydrogel as Controlled-Release P Fertilizer with Low Responsiveness to Multiple Environmental Stimuli. Gels 2023; 9:gels9030204. [PMID: 36975653 PMCID: PMC10048729 DOI: 10.3390/gels9030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Environmentally friendly fertilizers (EFFs) have been developed to improve fertilizer efficiency and minimize adverse environmental impacts, but their release behavior under various environmental conditions has been less explored. Using phosphorus (P) in the form of phosphate as a model nutrient, we present a simple method for preparing EFFs based on incorporating the nutrient into polysaccharide supramolecular hydrogels using Cassava starch in the Ca2+-induced cross-link gelation of alginate. The optimal conditions for creating these starch-regulated phosphate hydrogel beads (s-PHBs) were determined, and their release characteristics were initially evaluated in deionized water and then under various environmental stimuli, including pH, temperature, ionic strength, and water hardness. We found that incorporating a starch composite in s-PHBs at pH = 5 resulted in a rough but rigid surface and improved their physical and thermal stability, compared with phosphate hydrogel beads without starch (PHBs), due to the dense hydrogen bonding-supramolecular networks. Additionally, the s-PHBs showed controlled phosphate-release kinetics, following a parabolic diffusion with reduced initial burst effects. Importantly, the developed s-PHBs exhibited a promising low responsiveness to environmental stimuli for phosphate release even under extreme conditions and when tested in rice field water samples, suggesting their potential as a universally effective option for large-scale agricultural activities and potential value for commercial production.
Collapse
Affiliation(s)
- Supattra Tiamwong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pratchayaporn Yukhajon
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pittayagorn Noisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maliwan Subsadsana
- Program of Chemistry, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
20
|
Sarmah D, Rather MA, Sarkar A, Mandal M, Sankaranarayanan K, Karak N. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Int J Biol Macromol 2023; 237:124206. [PMID: 36990413 DOI: 10.1016/j.ijbiomac.2023.124206] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with the controlled releasing ability of the encapsulated drug.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kamatchi Sankaranarayanan
- Biophysics-Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
21
|
Advances in chitin-based nanoparticle use in biodegradable polymers: A review. Carbohydr Polym 2023; 312:120789. [PMID: 37059529 DOI: 10.1016/j.carbpol.2023.120789] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Chitin-based nanoparticles are polysaccharide materials that can be produced from a waste stream of the seafood industry: crustacean shells. These nanoparticles have received exponentially growing attention, especially in the field of medicine and agriculture owing to their renewable origin, biodegradability, facile modification, and functionality adjustment. Due to their exceptional mechanical strength and high surface area, chitin-based nanoparticles are ideal candidates for reinforcing biodegradable plastics to ultimately replace traditional plastics. This review discusses the preparation methods for chitin-based nanoparticles and their applications. Special focus is on biodegradable plastics for food packaging making use of the features that can be created by the chitin-based nanoparticles.
Collapse
|
22
|
Ahmed SS, Khan TK, Abd El-Aziz GH, Shoala T, El-Garhy HAS, Fahmy AH. Implementation of Biopolymeric Nanomaterials to Reduce the Negative Impacts of Salinity on Tomato Quantity and Quality. Molecules 2023; 28:molecules28041594. [PMID: 36838587 PMCID: PMC9962965 DOI: 10.3390/molecules28041594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Sustainable waste reduction strategies and innovative waste reduction concepts, as well as their application in the creation of compounds and products with added value, can benefit the economy while reducing environmental pressures. This research aimed to use biopolymeric nanomaterials to reduce the negative effects of salinity on tomato yield and quality. Three types of biopolymers (cellulose, pectin, and starch) were synthesized and characterized using natural materials such as rice straw, orange peel, and potato peel. The polymer's ability to retain sodium ions was investigated. A greenhouse experiment was conducted to assess the potential of natural polymers (cellulose, starch, and pectin individually or in combination) to reduce the salinity side effects on tomato plants (Solanum Lycopersicon L.) cultivar (Super Strain B). Tomato seeds were germinated on soil bits for 20 days before planting five seedlings in each pot (20 cm diameter) with three replicates and filling each pot with sandy loam soil, with or without natural polymers at a rate of 2 g/Kg. The results revealed that all the polymers utilized had a superlative capability to hold sodium ions for both soluble and exchanged sodium. The use of various natural polymer hydrogels increased the number and fresh weight of tomato fruits. Data showed that using biopolymers hydrogels reduced salinity stress by rising the content of phenol, flavonoid, and antioxidant enzymes such as catalase and peroxidase. The use of natural biopolymers significantly improved total soluble solids, pH, and juice substance. Implementing biopolymeric materials could reduce environmental pressures while increasing farm income. Innovative waste reduction strategies, such as the creation of value-added products, will benefit the economy, and this work is a good start in that direction.
Collapse
Affiliation(s)
- Shreen S. Ahmed
- Soil, Water and Environment Research Institute, ARC, Giza 12619, Egypt
| | - Thana K. Khan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | | | - Tahsin Shoala
- Environmental Biotechnology Department, College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
- Correspondence:
| | - Hoda A. S. El-Garhy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Qalyubia 13736, Egypt
| | - Ashraf H. Fahmy
- Agricultural Genetic Engineering Research Institute, ARC, Giza 12619, Egypt
| |
Collapse
|
23
|
Giraldo JD, Garrido-Miranda KA, Schoebitz M. Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture-A reality? Carbohydr Polym 2023; 299:120196. [PMID: 36876809 DOI: 10.1016/j.carbpol.2022.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, P.O. Box 54-D, Temuco, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile.
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
24
|
Motloung MP, Mofokeng TG, Ray SS. Effects of urea loading on soil biodegradation properties of melt‐processed polycaprolactone‐based composites for potential application in agriculture. J Appl Polym Sci 2022. [DOI: 10.1002/app.53505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
25
|
Krasnopeeva EL, Panova GG, Yakimansky AV. Agricultural Applications of Superabsorbent Polymer Hydrogels. Int J Mol Sci 2022; 23:ijms232315134. [PMID: 36499461 PMCID: PMC9738811 DOI: 10.3390/ijms232315134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
This review presents data from the past five years on the use of polymeric superabsorbent hydrogels in agriculture as water and nutrient storage and retention materials, as well as additives that improve soil properties. The use of synthetic and natural polymeric hydrogels for these purposes is considered. Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.
Collapse
Affiliation(s)
- Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Gaiane G. Panova
- Agrophysical Research Institute, Russian Academy of Sciences, St. Petersburg 195220, Russia
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Correspondence:
| |
Collapse
|
26
|
Liu Y, Wang J, Chen H, Cheng D. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157303. [PMID: 35839887 DOI: 10.1016/j.scitotenv.2022.157303] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Superabsorbent hydrogel (SH) is three-dimensional (3D) cross-linked hydrophilic polymer that can absorb and retain large quantities of water or other aqueous solutions. SH is made of water-affinity monomers and is widely used in biomedicine, wastewater treatment, hygiene and slow-release fertilizers (SRFs). This article focused on the preparation methods of SH, superabsorbent hydrogel composite and the application of SH in agriculture. By selecting various synthetic technologies and cross-linking agents, a series of chemical cross-linking or physical networks can be designed and tailored to meet specific applications. In view of the excellent characteristics of water absorption, biodegradability, water retention and slow-release capacity, SH occupies a dominant position in the SRFs market. In this work, the agricultural application of SH in double coated SRFs and nutrients carriers is also discussed. Some mechanisms related to the nutrient release were analyzed by mathematical models. In addition, some agronomic benefits of using superabsorbent hydrogels in improving water absorption, water holding capacity and increasing crop yields were also discussed. Although SH has certain shortcomings, from the perspective of long-term development, it will further show great potential in sustainable agriculture.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jinpeng Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Dongdong Cheng
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
27
|
Chitosan/starch beads as bioinoculants carrier: long-term survival of bacteria and plant growth promotion. Appl Microbiol Biotechnol 2022; 106:7963-7972. [DOI: 10.1007/s00253-022-12220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
28
|
Lu H, Dun C, Jariwala H, Wang R, Cui P, Zhang H, Dai Q, Yang S, Zhang H. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. J Control Release 2022; 350:748-760. [PMID: 36030990 DOI: 10.1016/j.jconrel.2022.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, polyurethane has emerged as a new material that has been widely developed and applied in coated controlled release fertilizers (CRFs). Particularly in recent years, the excessive consumption of petroleum resources and increasing demand for sustainable development have resulted in considerable interest in bio-based polyurethane coated controlled-release fertilizers. This review article focuses on the application and progress of environmentally friendly bio-based materials in the polyurethane-coated CRF industry. We also explore prospects for the green and sustainable development of coated CRFs. Using animal and plant oils, starch, lignin, and cellulose as raw materials, polyols can be produced by physical, chemical, and biological means to replace petroleum-based materials and polyurethane film coating for CRFs can be prepared. Various modifications can also improve the hydrophobicity and degradability of polyurethane film. A growing body of research on bio-based polyurethane has revealed its great potential in the production and application of coated CRFs. The purpose of this review is to highlight the practicality of bio-based materials in the application of polyurethane-coated CRFs and to clarify their current limitations.
Collapse
Affiliation(s)
- Hao Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Canping Dun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Rui Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyuan Cui
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haipeng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qigen Dai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongcheng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
29
|
Supare K, Mahanwar PA. Starch-derived superabsorbent polymers in agriculture applications: an overview. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Applications of Starch Biopolymers for a Sustainable Modern Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14106085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protected cultivation in modern agriculture relies extensively on plastic-originated mulch films, nets, packaging, piping, silage, and various applications. Polyolefins synthesized from petrochemical routes are vastly consumed in plasticulture, wherein PP and PE are the dominant commodity plastics. Imposing substantial impacts on our geosphere and humankind, plastics in soil threaten food security, health, and the environment. Mismanaged plastics are not biodegradable under natural conditions and generate problematic emerging pollutants such as nano-micro plastics. Post-consumed petrochemical plastics from agriculture face many challenges in recycling and reusing due to soil contamination in fulfilling the zero waste hierarchy. Hence, biodegradable polymers from renewable sources for agricultural applications are pragmatic as mitigation. Starch is one of the most abundant biodegradable biopolymers from renewable sources; it also contains tunable thermoplastic properties suitable for diverse applications in agriculture. Functional performances of starch such as physicomechanical, barrier, and surface chemistry may be altered for extended agricultural applications. Furthermore, starch can be a multidimensional additive for plasticulture that can function as a filler, a metaphase component in blends/composites, a plasticizer, an efficient carrier for active delivery of biocides, etc. A substantial fraction of food and agricultural wastes and surpluses of starch sources are underutilized, without harnessing useful resources for agriscience. Hence, this review proposes reliable solutions from starch toward timely implementation of sustainable practices, circular economy, waste remediation, and green chemistry for plasticulture in agriscience
Collapse
|
31
|
Li X, Wang Y, Feng C, Chen H, Gao Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022; 23:2197-2218. [PMID: 35522524 DOI: 10.1021/acs.biomac.2c00184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a worldwide public health issue that has not been conquered. Theranostics, the combination of a therapeutic drug and imaging agent in one formulation using nanomaterials, has been developed to better cure cancer in recent years. Although diverse biomaterials have been applied in cancer theranostics, chitosan (CS), a natural polysaccharide bearing easy modification sites with excellent biocompatibility and biodegradability, shows great potential for developing cancer nanotheranostics. In this review, we seek to describe the chemical functionalities of CS used in cancer theranostics and their synthesis methods. We also present recent discoveries and research progresses on how the CS functionalization could improve the delivery efficiency of CS-based nanotheranostics. Finally, we report several case studies about the application of CS-based nanotheranostics. This paper focuses on the strategies to construct CS-based theranostics systems via chemical routes and highlights their applications in cancer treatment, which can provide useful references for further studies.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Chenyun Feng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
32
|
Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
34
|
Harsojuwono BA, Arnata IW, Hartiati A, Setiyo Y, Hatiningsih S, Suriati L. The Improvement of the Modified Starch—Glucomannan—Polyvinyl Alcohol Biothermoplastic Composite Characteristics With Polycaprolactone and Anhydride Maleic Acid. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.844485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine the concentrations of polycaprolactone (PCL) and anhydride maleic acid (AMA) to produce a biothermoplastic composite (BtC) of modified cassava starch–glucomannan–polyvinyl alcohol (MSGPvA) that meets the Indonesian National Standard (SNI) and International Bioplastic Standards such as ISO 527/1B, PCL from the UK, and ASTM 5336 for PLA plastic from Japan. This study measured the tensile strength ratio and Young's modulus of MSGPvA BtC compared to commercial biothermoplastic (CBt), elongation at break, swelling, water vapor transmission rate (WVTR), and biodegradation time. In addition, the surface profile, functional group, crystallinity, and thermal stability were also observed, which were analyzed qualitatively and quantitatively. MSGPvA BtC with 20% PCL and 3.5% AMA was able to increase and improve tensile strength, elongation at break, Young's modulus, swelling, WVTR, and degradation time. MSGPvA BtC with 5% PCL and 0.5% AMA has a transverse surface profile that shows the presence of clear and wavy fibers and an elongated surface profile with indistinct waves, containing the OH functional group at wavenumbers 2,962.66 and 3,448.72 cm−1 and C=O at a wavenumber of 1,735.93 cm−1, and has a low crystallinity degree but relatively high thermal stability. All MSGPvA BtC characteristics with 5% PCL and 0.5% AMA have met the SNI and International Bioplastic Standards (ISO 527/1B, PCL from England, ASTM 5336 for PLA plastic from Japan), except for swelling characteristics. Thus, MSGPvA BtC with 5% PCL and 0.5% AMA has the potential to be used as food packaging material.
Collapse
|
35
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
36
|
Perez Bravo JJ, Francois NJ. Low cost and eco‐friendly polymeric matrix prepared by physical cross‐linking as potential potassium nitrate release system. J Appl Polym Sci 2022. [DOI: 10.1002/app.51705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonas J. Perez Bravo
- Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Química, Facultad de Ingeniería Universidad de Buenos Aires (UBA) Buenos Aires Argentina
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Facultad de Ingeniería Universidad de Buenos Aires (UBA)‐CONICET Buenos Aires Argentina
| | - Nora J. Francois
- Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Química, Facultad de Ingeniería Universidad de Buenos Aires (UBA) Buenos Aires Argentina
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Facultad de Ingeniería Universidad de Buenos Aires (UBA)‐CONICET Buenos Aires Argentina
| |
Collapse
|
37
|
Chiaregato CG, França D, Messa LL, Dos Santos Pereira T, Faez R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr Polym 2022; 279:119014. [PMID: 34980357 DOI: 10.1016/j.carbpol.2021.119014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Over the last 20 years, polysaccharide-based materials have garnered attention in the enhanced efficiency fertilizers (EEFs) research. Biodegradability, non-toxicity, water-solubility, swellability, and ease of chemical modification make these polymers suitable for agricultural applications. In this review, the polysaccharides-based EEFs advances are summarized over the polymer and co-materials selection, the methods, and the chemical/structure aspects necessary for an appropriate production. We also briefly discuss terminologies, nutrient release mechanisms, biodegradation, and future trends. The most used polysaccharides are chitosan, starch, and alginate, and the non-Fickian model most describes the release mechanism. It is dependent on the relaxation of polymer chains by the matrix swelling followed by the nutrient diffusion. EEFs-polymers-based should be designed as more packed and less porous structures to avoid the immediate contact of the fertilizer with the surrounding water, improving fertilizer retention. Furthermore, the preparation methods will determine the scale-up of the material.
Collapse
Affiliation(s)
- Camila Gruber Chiaregato
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Débora França
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Lucas Luiz Messa
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Tamires Dos Santos Pereira
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Roselena Faez
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil.
| |
Collapse
|
38
|
Porous geopolymer based eco-friendly multifunctional slow-release fertilizers for promoting plant growth. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Elzayat A, Tolba E, Pérez‐Pla FF, Oraby A, Muñoz‐Espí R. Increased Stability of Polysaccharide/Silica Hybrid Sub‐Millicarriers for Retarded Release of Hydrophilic Substances. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Asmaa Elzayat
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Emad Tolba
- Polymers and Pigments Department National Research Centre Dokki Giza 12622 Egypt
| | - Francisco F. Pérez‐Pla
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| | - Ahmed Oraby
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Rafael Muñoz‐Espí
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| |
Collapse
|
40
|
Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104849] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. SUSTAINABILITY 2021. [DOI: 10.3390/su13052710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems arising from the limited availability of natural resources and the impact of certain anthropogenic activities on the environment must be addressed as soon as possible. To meet this challenge, it is necessary, among other things, to reconsider and redesign agricultural systems to find more sustainable and environmentally friendly solutions, paying specific attention to waste from agriculture. Indeed, the transition to a more sustainable and circular economy should also involve the effective valorization of agricultural waste, which should be seen as an excellent opportunity to obtain valuable materials. For the reasons mentioned above, this review reports and discusses updated studies dealing with the valorization of agricultural waste, through its conversion into materials to be applied to crops and soil. In particular, this review highlights the opportunity to obtain plant biostimulants, biofertilizers, and biopolymers from agricultural waste. This approach can decrease the impact of waste on the environment, allow the replacement and reduction in the use of synthetic compounds in agriculture, and facilitate the transition to a sustainable circular economy.
Collapse
|
42
|
Alves HJ, Gasparrini LJ, Silva FEB, Caciano L, de Muniz GIB, Ballester ELC, Cremonez PA, Arantes MK. Alternative methods for the pilot-scale production and characterization of chitosan nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10977-10987. [PMID: 33106907 DOI: 10.1007/s11356-020-11343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a commercial chitosan (CC). The production of low molar mass nanochitosan employed thermal shock, alternating between 100 °C and ambient temperature, followed by grinding the dry material (SSC and CC) in a ball mill, producing around 500 g of nanochitosan per batch. A highlight of the methodology employed is that it enables nanochitosan to be obtained even from a low quality commercial raw material. All particles had diameters smaller than 223 nm, with an average diameter below 25 nm (determined by DLS), while reductions of molar mass were between 8.4-fold and 13.5-fold. The depolymerization process resulted in a reduction in crystallinity of 38.1 to 25.4% and 55.6 to 25.9% in the CC and SSC samples, respectively. The production of nanochitosans was also confirmed by TEM through the observation of crystalline domains with diameters between 5 and 10 nm. This work perfectly reproduces the results on bench scale from previous research. The simple and inexpensive processes enable easy scale-up, representing an important advance in the production chain of biopolymers. Graphical abstract.
Collapse
Affiliation(s)
- Helton José Alves
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Lázaro José Gasparrini
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Felipe Eduardo Bueno Silva
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Laressa Caciano
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Graciela Ines Bolzon de Muniz
- Department of Forest Engineering and Technology, Federal University of Paraná, Av. Pref. Lothario Meissner, 900, Jardim Botânico, Curitiba, PR, 80210-170, Brazil
| | - Eduardo Luis Cupertino Ballester
- Laboratory of Shrimp (LABCAR), Department of Zootechnics, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Paulo André Cremonez
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
| | - Mabel Karina Arantes
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| |
Collapse
|
43
|
Cirri M, Maestrelli F, Scuota S, Bazzucchi V, Mura P. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int J Pharm 2021; 598:120375. [PMID: 33581271 DOI: 10.1016/j.ijpharm.2021.120375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Metronidazole is the drug of choice in the treatment of bacterial vaginosis, but the oral therapy can induce several collateral effects. Aim of this work was the development of a vaginal multiparticulate system, loaded with metronidazole, able to improve its residence time allowing a complete drug release. Several kinds of MS were prepared using chitosan dissolved in different organic acids or alginate coated with chitosan. FTIR and DSC analyses were performed to study the interactions between the drug and the polymers, while MS morphology was investigated with optical and electron microscopy. All the formulations were characterized in terms of drug entrapment efficiency, mucoadhesion, swelling capacity and drug release behavior, demonstrating the best results for alginate MS coated with chitosan. The formulations evidenced a complete and rapid release of drug, compared with the commercial form: Zidoval®.The best formulations assayed for antibacterial activity confirmed the suitability of this new formulation for the vaginal treatment of local diseases.
Collapse
Affiliation(s)
- M Cirri
- Department of Chemistry "Ugo Schiff", University of Florence, via Schiff 6, Sesto Fiorentino, Florence, Italy
| | - F Maestrelli
- Department of Chemistry "Ugo Schiff", University of Florence, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| | - S Scuota
- Istituto Zooprofilattico dell'Umbria e delle Marche, via G. Salvemini 1, Perugia, Italy
| | - V Bazzucchi
- Istituto Zooprofilattico dell'Umbria e delle Marche, via G. Salvemini 1, Perugia, Italy
| | - P Mura
- Department of Chemistry "Ugo Schiff", University of Florence, via Schiff 6, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
44
|
Zhao C, Tian H, Zhang Q, Liu Z, Zhang M, Wang J. Preparation of urea-containing starch-castor oil superabsorbent polyurethane coated urea and investigation of controlled nitrogen release. Carbohydr Polym 2021; 253:117240. [PMID: 33278996 DOI: 10.1016/j.carbpol.2020.117240] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
With the aim of improving water absorption and controlled release performance of current controlled release fertilizers, a novel composite coating method for superabsorbent-polyurethane coated urea (SAPCU) was developed. Superabsorbent-polyurethane (SAPU) composite coating material was successfully formed through an insitu reaction, where castor oil polyurethane (COP) and superabsorbent polymer (SAP) were connected through urethane bonds with an optimal reaction ratio of SAP and PAPI as 2.5:1 (w w-1). The ideal nitrogen release and water absorption characteristics of SAPCU were achieved by adjusting the amount of COP and SAPU. The SAPCU had a high total nitrogen content (40.23-42.14 %), large swelling ratios (120-160 g water/g SAPU), and long nitrogen release period (60-150 days).
Collapse
Affiliation(s)
- Chenhao Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Hongyu Tian
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| | - Jun Wang
- Taian Soil and Water Conservation Ecological Environment Monitoring Station, Taian, 271018, China
| |
Collapse
|
45
|
Ahmed FK, Mostafa M, Abd-Elsalam KA. Micro-/nanoscale biodegradable hydrogels: Water purification, management, conservation, and agrochemical delivery. AQUANANOTECHNOLOGY 2021:201-229. [DOI: 10.1016/b978-0-12-821141-0.00002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Biodegradable Starch/Chitosan Foam via Microwave Assisted Preparation: Morphology and Performance Properties. Polymers (Basel) 2020; 12:polym12112612. [PMID: 33172008 PMCID: PMC7694691 DOI: 10.3390/polym12112612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of chitosan (CTS) as the reinforcing phase on the properties of potato starch (PS)-based foams were studied in this work. The formic acid solutions of CTS and PS were uniformly mixed in a particular ratio by blending and then placed in a mold made of polytetrafluoroethylene for microwave treatment to form starch foam. The results showed that the molecular weight and concentration of CTS could effectively improve the density and compressive properties of starch-based foams. Furthermore, orthogonal experiments were designed, and the results showed that when the molecular weight of CTS in foams is 4.4 × 105, the mass fraction is 4 wt%, and the mass ratio of CTS–PS is 3/4.2; the compressive strength of foams is the highest at approximately 1.077 mPa. Furthermore, Fourier transform infrared spectroscopy analysis demonstrated the interaction between starch and CTS, which confirmed that the compatibility between CTS and PS is excellent.
Collapse
|
47
|
Barbi S, Barbieri F, Andreola F, Lancellotti I, Barbieri L, Montorsi M. Preliminary Study on Sustainable NPK Slow-Release Fertilizers Based on Byproducts and Leftovers: A Design-of-Experiment Approach. ACS OMEGA 2020; 5:27154-27163. [PMID: 33134675 PMCID: PMC7594001 DOI: 10.1021/acsomega.0c03082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 05/28/2023]
Abstract
In this study, an organic nitrogen-based coating was developed based on black soldier fly (BSF) prepupae reared on poultry dejections and deposited on ceramic lightweight aggregates (LWAs), containing phosphorous (P) and potassium (K) from agroresidues, leading to a complete nitrogen, phosphorus, and potassium (NPK) fertilizer. To obtain a resistant coating with good adhesion to LWAs, different plasticizing agents were tested (e.g., glycerol, cellulose, and polyethylene glycol). The coating formulation was optimized through a design-of-experiment (DoE) approach to correlate the effect of each mixture component on the coating's performance. BSF biomass was characterized through chemical and thermal routes, as well as the final coated LWAs, confirming their general agreement to fertilizer's requirements. Release tests in static conditions highlighted the barrier action of the coating, preventing uncontrolled release of potassium and phosphorus contained in the LWAs as well as the release of nitrogen after 21 days (near to 20%). Germination and growth tests indicated a valuable increase of the growth index, whereas the germination process is limited by the coating barrier effect. This work proposes a new product in the field of slow-release fertilizers designed by rational methodologies and innovative materials based on waste valorization, fully in agreement with a circular economy perspective.
Collapse
Affiliation(s)
- Silvia Barbi
- Department
of Science and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesco Barbieri
- Interdepartmental
center for applied research and services in advanced mechanics and
motoring, INTERMECH-Mo.Re., University of
Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Fernanda Andreola
- Department
of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Isabella Lancellotti
- Department
of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Luisa Barbieri
- Interdepartmental
center for applied research and services in advanced mechanics and
motoring, INTERMECH-Mo.Re., University of
Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
- Department
of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Monia Montorsi
- Department
of Science and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
- Interdepartmental
center for industrial research and technology transfer in the field
of integrated technologies for sustainable research, efficient energy
conversion, energy efficiency of buildings, lighting and home automation,
EN&TECH, University of Modena and Reggio
Emilia, Piazzale Europa
1, 42122 Reggio
Emilia, Italy
| |
Collapse
|
48
|
A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers (Basel) 2020; 12:polym12102425. [PMID: 33096639 PMCID: PMC7590028 DOI: 10.3390/polym12102425] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Agriculture is an important sector of the economy, but this industry consumes significant amounts of water, which is a precious and limited natural resource. Irrigation techniques and efforts to mitigate water usage influence the growth, survival, and yield of crops. However, superabsorbent polymers in combination with fertilizers can be employed to obtain sustained release of nutrients and improved water retention capacity of the soil. Despite significant recent progress in this area involving synthetic polyacrylate hydrogels, there are no industrially applicable solutions exhibiting similar performance using natural biopolymers or synthetic polymers enriched with natural components. This review focuses on biodegradable chitosan-based hydrogels (both natural and semi-synthetic), and discusses their potential agricultural and horticultural applications. The methods for synthesizing hydrogels via physical or chemical crosslinking, and the resulting functional properties of recently reported hydrogels, such as water retention and release of active ingredients, are presented herein.
Collapse
|
49
|
Inphonlek S, Niamsiri N, Sunintaboon P, Sirisinha C. Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: Their fabrication and ability to adsorb anionic compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Dimkpa CO, Fugice J, Singh U, Lewis TD. Development of fertilizers for enhanced nitrogen use efficiency - Trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139113. [PMID: 32438083 DOI: 10.1016/j.scitotenv.2020.139113] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 05/09/2023]
Abstract
Despite nitrogen (N) being the most important crop nutrient, its use as fertilizer is associated with high losses. Such losses pollute the environment and increase greenhouse gas production and other environmental events associated with high ammonia volatilization and nitrous oxide emission. They also cause soil nitrate leaching and run-off that pollute surface and underground waters, with human health implications. The net outcomes for the plant are reduced N uptake and crop productivity that, together, increase the costs associated with fertilization of agricultural lands and dampen farmers' confidence in the efficacy and profitability of fertilizers. To address these problems, enhanced efficiency fertilizers (EEFs) are continuously being developed to regulate the release of N from fertilizers, allowing for improved uptake and utilization by plants, thereby lowering losses and increasing crop productivity per unit of fertilizer. The EEFs are classified based on whether they are inorganic- bio- or organic-coated; their mode of action on different N forms, including urease activity and nitrification inhibition; and the technologies involved in their development, such as targeted compositing of multiple nutrients and nanotechnology. This review is a critical revisit of the materials and processes utilized to coat or formulate enhanced efficiency N-fertilizers for reducing N losses, including their shortcomings, advances made to address such shortcomings, and effects on mitigating N losses and/or enhancing plant uptake. We provide perspectives that could assist in further improving promising and potentially effective and affordable coating or formulation systems for scalable improvements that allow for reducing the rate of N-fertilizer input in crop production. It is especially critical to develop multi-nutrient fertilizers that provide balanced nutrition to plants and humans, while improving N use efficiency and mitigating N-fertilizer effects on human and environmental health.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.
| | - Job Fugice
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Upendra Singh
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Timothy D Lewis
- AngloAmerican, Resolution House, Lake View, Scarborough YO11 3ZB United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|