1
|
Huo DY, Li YF, Song LJ, Zhang WX, Li XD, Zhang J, Ren S, Wang Z, Li W. Colon-Targeted Ginseng Polysaccharides-Based Microspheres for Improving Ulcerative Colitis via Anti-Inflammation and Gut Microbiota Modulation. Adv Healthc Mater 2025:e2404122. [PMID: 39797462 DOI: 10.1002/adhm.202404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC. These pWGPAC MSs are fabricated by incorporating pWGP into calcium-crosslinked alginate microspheres with subsequent chitosan surface modification to enhance mucosal adhesion. These pWGPAC MSs demonstrated exceptional stability under acidic conditions while enabling targeted release in the colon. In a mouse model of UC, the pWGPAC MSs effectively mitigated mucosal injury, attenuated inflammation, and restored intestinal barrier function. Further mechanistic investigations revealed that these pWGPAC MSs modulated the TLR4/MYD88 signaling pathway and promoted M2 macrophage polarization. Integrated microbiome and metabolome analyses demonstrated that these pWGPAC MSs regulated the gut microbiota composition and decreased pro-inflammatory metabolite levels. In addition, these microspheres demonstrated promising safety profiles. Collectively, these findings establish pWGPAC MSs as a promising therapeutic strategy for the treatment of UC and provide a solid foundation for future clinical applications.
Collapse
Affiliation(s)
- De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Fei Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ling-Jie Song
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Wen-Xin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| |
Collapse
|
2
|
Wei W, Cui L, Meng Z. Enhanced 3D printing performance of soybean protein isolate nanoparticle-based O/W Pickering emulsion gels by incorporating different polysaccharides. Int J Biol Macromol 2025; 287:138637. [PMID: 39667466 DOI: 10.1016/j.ijbiomac.2024.138637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
This work investigated the feasibility of employing soybean protein isolate nanoparticles (SPINPs) as emulsifiers and polysaccharides with different charge properties as thickeners to develop oil-in-water (O/W) Pickering emulsion gels 3D printing inks. The impact of non-covalent interactions between SPINPs and various polysaccharides on the microstructure, rheological properties, and 3D printability of emulsion gels was investigated at pH 3 and pH 7, respectively. Results showed that Locust bean gum (LBG) and Konjac gum (KG) stabilized emulsion gels mainly by increasing the viscosity of the aqueous phase. Chitosan (CS) and xanthan gum (XG) improved the system's viscosity while combining with SPINPs via electrostatic interactions. Small amplitude oscillatory shear and large amplitude oscillatory shear test results showed the highest recovery rate (97.45 %) and gel strength of 7-XG, exhibiting good potential for 3D printing. The Lissajous curves revealed the weakest gel structure and larger dimensional printing deviation (27.57 %) of 3-XG. The 3D-printed products of LBG and KG emulsion gels demonstrated smooth and slightly flawed surface texture. The print deformation rate of CS emulsion gels was <5.5 %, which was most suitable for developing 3D printing inks. This study offers valuable insights for creating and designing protein-polysaccharide-based 3D printing inks.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lujie Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Wang K, Li W, Wu J, Yan Z, Li H. Effect of oxidized Bletilla striata polysaccharide on fibrin hydrogel formation and its application in wound healing dressing. Int J Biol Macromol 2024; 279:135303. [PMID: 39236945 DOI: 10.1016/j.ijbiomac.2024.135303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Wound healing is influenced by various factors, including oxidative damage, bacterial infection, and inadequate angiogenesis, which collectively contribute to a protracted healing process. In this work, we designed innovative multifunctional hydrogels based on fibrin integrated with Bletilla striata polysaccharides (BSP) or oxidated Bletilla striata polysaccharides (OBSP) for use as wound dressings. The preliminary structure and bioactivity of BSP and OBSP were investigated. The effect of polysaccharides on the self-assembly process of fibrin hydrogels were also evaluated. BSP and OBSP significantly altered the initial fibrin fibrillogenesis and the ultimate structure of the fibrin network. Relative to pure fibrin hydrogel, the incorporation of BSP and OBSP enhanced water swelling and retention, and decelerated the degradation of hydrogels in PBS. Furthermore, BSP and OBSP augmented the antioxidant, antibacterial, and anti-inflammatory properties of fibrin hydrogels, with OBSP demonstrating superior performance in these aspects. Through the development of a murine wound model, it was observed that the wound healing efficacy of hydrogels incorporating BSP and OBSP surpassed that of the pure fibrin group. Notably, the hydrogel formulated with 25 mg/mL OBSP exhibited the most pronounced therapeutic effect, achieving a healing rate approaching 100 %. Consequently, fibrin-OBSP composite hydrogels demonstrate significant potential as wound dressings.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jintao Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhaolan Yan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Lian S, Su J, Fatima I, Zhang Y, Kuang T, Hu H, Qu D, Si H, Sun W. Revealing the exceptional antioxidant activity of phosphorylated polysaccharides from medicinal Abrus cantoniensis Hance. Int J Biol Macromol 2024; 278:134532. [PMID: 39142474 DOI: 10.1016/j.ijbiomac.2024.134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.
Collapse
Affiliation(s)
- Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Su
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China.
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin 537000, Guangxi, China.
| |
Collapse
|
5
|
Yu S, Huang Q, Hu W, Hui F, Ren Y, Chen X, Cen Q, Zeng X, Tie H. Potential prebiotic effects of soy by-products as novel dietary fibre: Structure, function, in vitro simulation of digestion and fermentation properties. Int J Biol Macromol 2024; 278:134617. [PMID: 39127293 DOI: 10.1016/j.ijbiomac.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to prepare soybean dregs dietary fibre (DF) using physically assisted chemical (KHMSO) modification and study its structure, function and vitro simulation experiments. The soluble dietary fibre (SDF) content in KHMSO increased and insoluble dietary fibre (IDF) content decreased. The modified DF surface becomes irregular and rough, and the results of XPS fitting indicated that the DF structure had different peak-splitting groups. The KHMSO-treated group had the lowest digestion rate in gastric fluid and the highest digestibility in intestine fluid. The OD600 of fecal cultures was increased to 0.915, and the increased abundance of microbiota was associated with the metabolism of SCFAs, such as Lachnospiraceae, as well as the higher n-butyric acid in the KHMSO-treated group compared to the other groups and lower than the inulin, suggesting KHMSO might enhance the production of functional foods aimed at promoting intestinal health.
Collapse
Affiliation(s)
- Shan Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Qiuhong Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Wenkang Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Yanjie Ren
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China.
| | - Huaimao Tie
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| |
Collapse
|
6
|
Zhang W, Huang G. Preparation, characteristics and antioxidant activity of mung bean peel polysaccharides. Sci Rep 2024; 14:22161. [PMID: 39333295 PMCID: PMC11436941 DOI: 10.1038/s41598-024-73068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
The mung bean peel polysaccharide (MBP) extracted by hot water was chemically modified. By changing the dosage of phosphorylation reagent and acetylation reagent, three kinds of phosphorylated MBP ( P-MBP-1, P-MBP-2, P-MBP-3 ) and acetylated MBP ( AC 0.6-MBP, AC 1-MBP, AC 1.4-MBP ) with different degrees of substitution were prepared. By measuring the sugar content and substitution degree of the modified products, it was found that the amount of reagent had a certain effect on both of them. The modified products were determined by infrared spectrum and nuclear magnetic resonance. The results showed that the chemical modification was successful. The in vitro antioxidant capacity (·OH scavenging ability, O2-·clearing ability, reducing capacity, resistance to lipid peroxidation) of seven polysaccharide were measured, which manifested that chemical modification could enhance the antioxidant ability of MBP to varying degrees, and the DS also had a certain impact on their antioxidant activity. This promoted the development of mung bean peel polysaccharide functional products and the utilization of mung bean peel resources.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Zu-Man D, Yu-Long Z, Chun-Yang T, Chuang L, Jia-Qin F, Qiang H, Chun C, Li-Jun Y, Chin-Ping T, Hui N, Xiong F. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells. Food Res Int 2024; 187:114428. [PMID: 38763678 DOI: 10.1016/j.foodres.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 μg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Dou Zu-Man
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhang Yu-Long
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tang Chun-Yang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Liu Chuang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Fang Jia-Qin
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huang Qiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - You Li-Jun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Niu Hui
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
8
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
9
|
Tang Y, Zhu Y, Wang X, Peng H, Wang Z, Yue C, Wang L, Bai Z, Li P, Luo D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int J Biol Macromol 2024; 263:130139. [PMID: 38354927 DOI: 10.1016/j.ijbiomac.2024.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.
Collapse
Affiliation(s)
- Yu Tang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Zhu
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaojing Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Huainan Peng
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyu Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chonghui Yue
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China.
| | - Libo Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Zhouya Bai
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Peiyan Li
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Denglin Luo
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
10
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
11
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Fan W, Jiang X, Li Q, Wang J, Lv M, Liu J. Preparation of Phosphorylated Auricularia cornea var. Li. Polysaccharide Liposome Gel and Analysis of Its In Vitro Antioxidant Activity. Foods 2024; 13:335. [PMID: 38275702 PMCID: PMC10815469 DOI: 10.3390/foods13020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, Auricularia cornea var. Li. polysaccharides (ACP) were used as the research object to prepare liposome gel and determine its antioxidant activity in vitro. Phosphorylated Auricularia cornea var. Li. polysaccharides (P-ACP) were prepared via the phosphorylation of ACP by the phosphate method. Additionally, phosphorylated Auricularia cornea var. Li. polysaccharide liposomes (P-ACPL) were prepared using a reverse evaporation method. Finally, phosphorylated Auricularia cornea var. Li. polysaccharide liposome gel (P-ACPLG) was prepared by dispersing the P-ACPL in the gel matrix. The results show that the phosphorylation of the P-ACP was 15.51%, the containment rate of the P-ACPL was 84.50%, the average particle size was (192.2 ± 3.3) nm, and the particle size distribution map had a homogeneous peak, resulting in the particle dispersion being uniform and the polydispersion index (PDI) being 0.134 ± 0.021. The average Zeta potential was (-33.4 ± 0.57) mV. In addition, the in vitro antioxidant activity of the P-ACPL was slightly higher than that of the ACP and P-ACP. After the P-ACPL was emulsified into P-ACPLG, the DPPH, hydroxyl radical clearance, and reducing the ability of P-ACPL remained unchanged. In general, the P-ACPLG prepared in this study has good antioxidant activity in vitro and can retain the antioxidant activity of P-ACPL in vitro well.
Collapse
Affiliation(s)
- Wenguang Fan
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.F.); (X.J.)
| | - Xintong Jiang
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.F.); (X.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
- Jilin Province Plant Care Biotechnology Co., Ltd., Changchun 130012, China
| | - Qinyang Li
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Jiansheng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| | - Minghui Lv
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (J.W.); (M.L.)
| |
Collapse
|
13
|
El Fihry N, El Mabrouk K, Eeckhout M, Schols HA, Hajjaj H. Physicochemical, structural, and functional characterization of pectin extracted from quince and pomegranate peel: A comparative study. Int J Biol Macromol 2024; 256:127957. [PMID: 37951436 DOI: 10.1016/j.ijbiomac.2023.127957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Pectin's physicochemical, structural, and functional characteristics vary widely depending on the source of extraction. In this study, pectins were extracted from seedless quince and pomegranate peel, and their physicochemical, structural, and functional properties were investigated. A Box-Behnken Design with three factors and three levels was applied to optimize the pectin extraction yield from each matrix. As a result, the best extraction yields for quince pectin (QP) and pomegranate peel pectin (PPP) were 11.44 and 12.08 % (w/w), respectively. Both extracted pectins exhibit a linear structure, with the homogalacturonan domain dominating the rhamnogalacturonan I. Both pectins are highly methyl-esterified (DM > 69 %) with a higher degree of acetylation for PPP than QP, with 12 and 8 %, respectively. Unlike QP, PPP has a narrow, homogenous distribution and greater molecular weight (120 kDa). Regarding functionality, 1 g of QP could retain 4.92 g of water, and both pectin emulsions were more stable at room temperature than at 4 °C. When the concentration of QP is increased, rheological measurements demonstrate that it exhibits pseudoplastic behavior. Finally, QP can be used as a thickener, whereas PPP can be utilized as starting material for chemical changes to create multifunctional pectins.
Collapse
Affiliation(s)
- Noussaire El Fihry
- Laboratory of Biotechnology and Valorization of Bioresources, Faculty of Sciences of Meknes, Moulay Ismail University, BP 11201 Meknes, Morocco; Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298 Meknes, Morocco.
| | - Khalil El Mabrouk
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Meknes Road, Campus UEMF, BP51, 30 030 Fes, Morocco.
| | - Mia Eeckhout
- Department of Food Technology, Food Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands.
| | - Hassan Hajjaj
- Laboratory of Biotechnology and Valorization of Bioresources, Faculty of Sciences of Meknes, Moulay Ismail University, BP 11201 Meknes, Morocco; Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298 Meknes, Morocco.
| |
Collapse
|
14
|
Yu YH, Zhao XH. Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells. Nutrients 2023; 15:4679. [PMID: 37960333 PMCID: PMC10650868 DOI: 10.3390/nu15214679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the soluble, but non-digestible, longan (Dimocarpus longan Lour.) polysaccharides (LP) were extracted from dried longan fruits and then chemically selenylated to produce two selenylated products, namely SeLP1 and SeLP2, with different selenylation extents. The aim was to investigate their protective effects on rat intestinal epithelial (IEC-6) cells exposed to the food toxin fumonisin B1 (FB1). LP only contained total Se content of less than 0.01 g/kg, while SeLP1 and SeLP2 were measured with respective total Se content of up to 1.46 and 4.79 g/kg. The cell viability results showed that these two selenylated products were more efficient than LP in the IEC-6 cells in alleviating FB1-induced cell toxicity, suppressing lactate dehydrogenase (LDH) release, and decreasing the generation of intracellular reactive oxygen species (ROS). These two selenylated products were also more effective than LP in combating FB1-induced barrier disruption via increasing the transepithelial electric resistance (TEER), reducing the paracellular permeability, decreasing the mitochondrial membrane potential (MMP) loss, and maintaining cell barrier integrity by upregulating the tight-junction-related genes and proteins. FB1 caused cell oxidative stress and barrier dysfunction by activating the MAPK and mitochondrial apoptosis signaling pathways, while SeLP1 and SeLP2 could regulate the tMAPK- and apoptosis-related proteins to suppress the FB1-mediated activation of the two pathways. Overall, SeLP2 was observed to be more active than SeLP1 in the IEC-6 cells. In conclusion, the chemical selenylation of LP caused an activity enhancement to ameliorate the FB1-induced cell cytotoxicity and intestinal barrier disruption. Meanwhile, the increased selenylation of LP would endow the selenylated product SeLP2 with more activity.
Collapse
Affiliation(s)
- Ya-Hui Yu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Yin K, Sheng J, Chen J, Gao F, Miao C, Liu D. Protective effect of phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide on vascular endothelial cells in vitro and in vivo. Chem Biol Drug Des 2023; 102:1213-1230. [PMID: 37550016 DOI: 10.1111/cbdd.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.
Collapse
Affiliation(s)
- Kaiyue Yin
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiyu Chen
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Changqing Miao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Du J, Fan D, Yang X, Dong Z, Zhao L. Facile fabrication of Artemisia sphaerocephala krasch gum hydrogels by radiation induced cross-linking polymerization and enhanced ultrahigh adsorption for methylene blue. Int J Biol Macromol 2023; 249:126074. [PMID: 37524276 DOI: 10.1016/j.ijbiomac.2023.126074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Although Artemisia sphaerocephala krasch gum (ASKG) has attracted growing attention in the field of medical engineering and food industries, however, there are few studies on the gelation of ASKG. In this paper, acrylic acid modified ASKG hydrogels were prepared by radiation induced grafting, cross-linking and polymerization technique for the first time. The semi-IPN structure was prepared by the cross-linked ASKG network and poly-AAc dispersed within the network. The effects of the adsorbed dose on the swelling ratio and gel fraction were investigated. The different acrylic acid content modified ASKG hydrogels (ASKGAAc1 and ASKGAAc2) for methyl blue (MB) adsorption were investigated, and the ASKG hydrogels was also studied for comparison. The influence of pH, contact time, initial concentration, temperature, ion strength on MB adsorption were tested. The results showed that acrylic acid can promote the formation of hydrogel and greatly enhanced the adsorption of ASKG. The adsorption isotherms were well obeyed the Langmuir model, and the maximum adsorption capacity for MB of ASKG, ASKGAAc1 and ASKGAAc2 were 571.43, 1517.8 and 1654.9 mg/g, respectively. Moreover, the MB adsorption by ASKG based hydrogels was exothermic, spontaneous, and more favorable at lower temperature. Furthermore, the adsorption-desorption experiments demonstrated a good reusability of these hydrogels.
Collapse
Affiliation(s)
- Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongcheng Fan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhen Dong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
17
|
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure-Activity Relationship. Molecules 2023; 28:6073. [PMID: 37630326 PMCID: PMC10457902 DOI: 10.3390/molecules28166073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.
Collapse
Affiliation(s)
- Tianbo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Qianqian Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Jianing Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
18
|
Zhang W, Duan W, Huang G, Huang H. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106487. [PMID: 37327689 PMCID: PMC10422121 DOI: 10.1016/j.ultsonch.2023.106487] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In order to improve the yield of mung bean peel polysaccharide, on the basis of single-factor experiments, the ultrasonic assisted extraction conditions were optimized by response surface methodology (RSM). The results showed that under the conditions of material-liquid ratio of 1: 40, temperature 77 °C, ultrasonic power 216 W and extraction time 47 min, the extraction rate of mung bean peel polysaccharide was the best, which was 2.55 %. The extracted polysaccharide was phosphorylated and its antioxidant activity in vitro was studied. The results suggested that the modified polysaccharide had a significant scavenging effect on hydroxyl radicals and enhanced the ability of anti-lipid peroxidation, which offered ideas and methods for the development and application of mung bean peel polysaccharide.
Collapse
Affiliation(s)
- Wenting Zhang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Wei Duan
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
19
|
Arken A, Zhao X, Gao Y, Omar A, Tang D, Waili A, Yang Z, Wang Y, Aisa HA, Yili A. Biochemical characterization, and anti-inflammatory and antitumor activities of glycoprotein from lamb abomasum. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116359. [PMID: 36965544 DOI: 10.1016/j.jep.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamb abomasum is used as an edible medicinal source in traditional Chinese medicine for the treatment of gastrointestinal disorders. Lamb abomasum sourced biochemical drug Lamb's trip extract and Vitamin B12 capsule used for the clinical treatment of chronic gastritis, gastric ulcer, and reversal of intestinal metaplasia. Therefore, claimed to have prevention of gastric cancer activity. AIM OF THE STUDY In this study, we aim to assess whether the glycoprotein has biological activity in the cure of gastric disorder and conduct a structure-activity relationship. MATERIALS AND METHODS Glycoproteins' extraction conditions were optimized by the response surface method and purified with DEAE-cellulose and Sephadex G-50 chromatography. Two homogenous glycoproteins' physiochemical structures were studied with electrophoresis, HPLC analysis, peroxide oxidation, and β-elimination, FT-IR, CD, LC-MS/MS, and EDS analysis. The antiinflammation activity of the glycoprotein was determined against COX-2 and LOX-15 enzyme inhibitory ability in vitro, and antitumor activity against HT-29 and HGC-25, and cytotoxicity on L-02 cells was determined in vivo with the MTT method. RESULTS The abomasum was abundant in glycoprotein and the extraction yield of glycoprotein was up to 24.6 ± 2.1% under optimized conditions. Two homogeneous glycoproteins SAGP-I and SAGP-II determined to be ribose-conjugated and sulfated glycoproteins with a molecular weight of 15.6 kDa and 6.4 kDa. And according to the structural analysis, SAGP-I was a mucin-type ribose-conjugated glycoprotein with 14 O-glycosylation and one N- glycosylation site. SAGP-I and SAGP-II have remarkable anti-inflammatory activity against COX-2 enzyme with the IC50 of 17.64 ± 1.25 μg/mL and 16.14 ± 1.11 μg/mL, respectively. Meanwhile, the two glycoproteins showed strong antitumor activity against HT-29 with the EC50 of 19.19 ± 1.46 μg/mL and 184.9 ± 5.6 μg/mL, respectively. CONCLUSION The Highly purified glycoprotein SAGP-1 and SAGP-II showed anti-inflammatory activity against the COX-2 enzyme, and antitumor activity against HT-29 human colon cancer cells and noun-inhibitory activity against LOX-15 enzyme and HGC-25. Both glycoproteins are ribose conjugated and sulfated whose characters are related to their anti-inflammatory and anti-tumor activity. Such results suggest the possibility of anti-inflammatory and pre-cancer activity. And in some degree explains the pharmacy of abomasum's traditional use in gastric disorder and clinical use of lamb abomasum APIs drugs' in gastric disorders and gastric cancer development. This study provides a preliminary basis for the further study of the per-cancer mechanism of lamb abomasum glycoprotein. And, would be the material basis of the clinical use of Lamb's trip extract and Vitamin B12 capsule.
Collapse
Affiliation(s)
- Amina Arken
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Xinmin Zhao
- Xinjiang Biochemical Pharmaceutical Co., Ltd., Urumqi, 830032, PR China
| | - Yanhua Gao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Adil Omar
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Dan Tang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Ahmidin Waili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Zi Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Yahui Wang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Haji Akbar Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
20
|
Zhao T, Yang M, Ma L, Liu X, Ding Q, Chai G, Lu Y, Wei H, Zhang S, Ding C. Structural Modification and Biological Activity of Polysaccharides. Molecules 2023; 28:5416. [PMID: 37513287 PMCID: PMC10384959 DOI: 10.3390/molecules28145416] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with a wide range of biological activities. The structural modification of polysaccharides by chemical means can enhance their biological activity. This paper reviews the latest research reports on the chemical modification of natural polysaccharides. At present, the modification methods of polysaccharides mainly include sulfation, phosphorylation, carboxymethylation, socialization, methylation and acetylation. The chemical and physical structures of the modified polysaccharides were detected via ultraviolet spectroscopy, FT-IR, high-performance liquid chromatography, ultraviolet spectroscopy, gas chromatography-mass spectrometry, nuclear magnetic resonance and scanning electron microscopy. Modern pharmacological studies have shown that the modified polysaccharide has various biological activities, such as antioxidant, antitumor, immune regulation, antiviral, antibacterial and anticoagulant functions in vitro. This review provides fresh ideas for the research and application of polysaccharide structure modification.
Collapse
Affiliation(s)
- Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yang Lu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
21
|
Yu S, Duan M, Zeng R, Chen F, Zhong W, Sun J, Xu J, Li D, Zheng Y, Liu X, Pang J, Wu C. Preparation, characterization and biological activity of phosphorylated surface deacetylated chitin nanofibers. Int J Biol Macromol 2023; 233:123492. [PMID: 36736984 DOI: 10.1016/j.ijbiomac.2023.123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Phosphorylation is a key route to achieve varieties of biological activities for polysaccharides. Here, we report the phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) using the sodium tripolyphosphate/sodium trimetaphosphate (STPP/STMP) method. Response surface methodology (RSM) was employed to optimize in this study. Under optimal conditions, a maximum degree of substitution (DS) of 0.13 was obtained. In addition, the structures of PS-ChNFs were investigated by Fourier transform infrared spectroscopy (FT-IR), Nuclear Magnetic Resonance spectra (NMR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and (Energy Dispersive Spectroscopy-mapping) EDS-mapping. The findings revealed that the FT-IR spectroscopy and XPS analysis confirmed the appearance of phosphate groups in PS-ChNFs. The 31P NMR results indicate that the PS-ChNFs structure has characteristic peaks of P elements. SEM images showed that PS-ChNFs had a rough surface with many cavities, but the P elements on the surface of the EDS-mapping are uniformly distributed throughout the sample without any enrichment. Antioxidant and antibacterial test showed that PS-ChNFs had significant scavenging effect on free radicals and antibacterial effect. The above results indicate that the chemical modification of PS-ChNFs was successful.
Collapse
Affiliation(s)
- Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Ronghuai Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fujie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jishuai Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Xiaoyan Liu
- School of Food and Health, Beijing Technology and Business University; Beijing 100048, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
22
|
Xiu W, Wang X, Yu S, Na Z, Li C, Yang M, Ma Y. Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules 2023; 28:molecules28072961. [PMID: 37049724 PMCID: PMC10096156 DOI: 10.3390/molecules28072961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to enhance the utilization value of sweet corn cob, an agricultural cereal byproduct. Sweet corn cob polysaccharide-ron (III) complexes were prepared at four different temperatures (40 °C, 50 °C, 60 °C, and 70 °C). It was demonstrated that the complexes prepared at different temperatures were successfully bound to iron (III), and there was no significant difference in chemical composition; and SCCP-Fe-C demonstrated the highest iron content. The structural characterization suggested that sweet corn cob polysaccharide (SCCP) formed stable β-FeOOH iron nuclei with −OH and −OOH. All the four complexes’ thermal stability was enhanced, especially in SCCP-Fe-C. In vitro iron (III) release experiments revealed that all four complexes were rapidly released and acted as iron (III) supplements. Moreover, in vitro antioxidant, α-glucosidase, and α-amylase inhibition studies revealed that the biological activities of all four complexes were enhanced compared with those of SCCP. SCCP-Fe-B and SCCP-Fe-C exhibited the highest in vitro antioxidant, α-glucosidase, and α-amylase inhibition abilities. This study will suggest using sweet corn cobs, a natural agricultural cereal byproduct, in functional foods. Furthermore, we proposed that the complexes prepared from agricultural byproducts can be used as a potential iron supplement.
Collapse
|
23
|
Jin M, Zhang W, Zhang X, Huang Q, Chen H, Ye M. Characterization, chemical modification and bioactivities of a polysaccharide from Stropharia rugosoannulata. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
24
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
25
|
Zhang X, Liu T, Wang X, Zhou L, Qi J, An S. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko. Front Nutr 2022; 9:976552. [PMID: 36118783 PMCID: PMC9471013 DOI: 10.3389/fnut.2022.976552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel polysaccharide (SPN) was extracted by high-temperature pressure method and purified by a DEAE-52 column and a Sephadx G-100 gel column. PPN was obtained after phosphorylation of SPN. The differences of structural features, antioxidant activity, and anti-inflammatory effect of the two polysaccharides were investigated by chemical methods and RAW 264.7 cell model. SPN (Mw = 15.8 kDa) and PPN (Mw = 27.7 kDa) are an acidic polysaccharide with β-pyranose configuration, mainly containing rhamnose, mannose, glucose, arabinose, and galacose. FI-IR, NMR, and SEM spectra showed phosphorylation of SPN changed its structure. In methylation analysis, the major chains of SPN and PPN were 1,4-linked Glcp, 1,6-linked Galp, 1,2-linked Rhap, and 1.6-linked Manp with terminals of t-linked Glcp, t-linked Araf. The side chain of SPN was 1,4,6-linked Galp, 1,2,5-linked Araf, while the side chain of PPN was 1,4,6-linked Galp, 1,2,4-linked Glcp. In antioxidant activity experiments, the free radical scavenging rate of PPN was stronger than that of SPN. Also, PPN always has better anti-inflammatory on RAW 264.7 cells induced by LPS than that of SPN in same concentration, and it plays an anti-inflammatory role by inhibiting PI3K/AKT/mTOR pathway. The results indicated polysaccharide could significantly improve its antioxidant and anti-inflammatory function after phosphorylation. This study provides a potentially antioxidant and anti-inflammatory health food and drug.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Tingting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lanying Zhou
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Ji Qi
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Siyu An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| |
Collapse
|
26
|
Wang N, Kong Y, Li J, Hu Y, Li X, Jiang S, Dong C. Synthesis and application of phosphorylated saccharides in researching carbohydrate-based drugs. Bioorg Med Chem 2022; 68:116806. [PMID: 35696797 DOI: 10.1016/j.bmc.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Collapse
Affiliation(s)
- Ning Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Jieming Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yulong Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Xiaofei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China.
| |
Collapse
|
27
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
28
|
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021; 12:100168. [PMID: 34877528 PMCID: PMC8633561 DOI: 10.1016/j.fochx.2021.100168] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional properties of polysaccharides depend on their structural features. IR spectroscopy is widely used in polysaccharide structural analysis. Classical applications of IR spectroscopy in polysaccharide are reviewed. IR integrating techniques can considerably expand its application scope.
Polysaccharides are important biomacromolecules with numerous beneficial functions and a wide range of industrial applications. Functions and properties of polysaccharides are closely related to their structural features. Infrared (IR) spectroscopy is a well-established technique which has been widely applied in polysaccharide structural analysis. In this paper, the principle of IR and interpretation of polysaccharide IR spectrum are briefly introduced. Classical applications of IR spectroscopy in polysaccharide structural elucidation are reviewed from qualitative and quantitative aspects. Some advanced IR techniques including integrating with mass spectrometry (MS), microscopy and computational chemistry are introduced and their applications are emphasized. These emerging techniques can considerably expand application scope of IR, thus exert a more important effect on carbohydrate characterization. Overall, this review seeks to provide a comprehensive insight to applications of IR spectroscopy in polysaccharide structural analysis and highlights the importance of advanced IR-integrating techniques.
Collapse
Affiliation(s)
- Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
29
|
Zhang J, Zhou W, Xu M, Fang C, Du Q, Xu X, Lyu F, Ding Y, Liu J. Characterization of silver carp myosin glycated with phosphorylated konjac oligo-glucomannan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6117-6124. [PMID: 33908046 DOI: 10.1002/jsfa.11268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Myosin (Ms) is abundant in fish meat, but it has limited application in the food industry because of its low solubility and thermal stability. Our previous reports found that these functional properties of Ms can be significantly improved after glycation with konjac oligo-glucomannan (KOG). However, the effects of phosphorylated KOG (PKOG) on physicochemical, structural and functional properties of silver carp Ms are still unknown. RESULTS This study characterized the silver carp Ms protein glycated with PKOG at 50 °C and 75% relative humidity for 48 h. As degree of phosphorylation increased, free amino content increased, whereas degree of grafting decreased. Meanwhile, isoelectric point (pI) reduced, however, PKOGs showed no differences in pI. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis suggested the formation of glycoconjugates, and scanning electron microscopy revealed thinner flakes and uneven appearance of glycoconjugates. Fourier transform infrared spectroscopy indicated that the amide I, II and III bands of Ms were changed by the glycation. Ms became highly soluble in 0.5 mol L-1 NaCl with increased phosphate addition in PKOGs. Thermal stability of Ms was effectively improved when heated at 80 °C for 60 min. CONCLUSION Glycation with appropriate PKOG might be a promising method for Ms modification because of the resulting improvement in solubility and thermal stability. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, PR China
| | - Mingjiang Xu
- Qiandao Lake Development Group Co. Ltd, Hangzhou, PR China
| | - Chunhua Fang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
| | - Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| | - Xia Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, PR China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, PR China
| |
Collapse
|
30
|
Zhou S, Huang G. Preparation, structure and activity of polysaccharide phosphate esters. Biomed Pharmacother 2021; 144:112332. [PMID: 34673422 DOI: 10.1016/j.biopha.2021.112332] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
31
|
Li X, Gao X, Zhang H, Liu Y, Sarker MMR, Wu Y, Chen X, Zhao C. The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters in vivo. Food Chem Toxicol 2021; 158:112630. [PMID: 34687833 DOI: 10.1016/j.fct.2021.112630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022]
Abstract
A novel polysaccharide obtained from Enteromorpha prolifera (EPP) was purified through diethylaminoethyl cellulose-52 and Sephadex G-75 chromatography. Fourier transform infrared spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance (NMR) spectroscopy were employed to analyse the structure of EPP. It mainly comprised rhamnose, glucuronic acid, galactose, arabinose, and xylose at a molar ratio of 20.45:12.74:10.99:5.84:1.95, and its average molecular weight was 46.56 kDa. The seven major glycosidic residues identified by NMR were as follows: →2)-α-L-Araf-(1→, →2)-α-L-Rhap-(1→, →4)-α-L-Rhap-(1→, →2,6)-β-D-Galp-(1→, →4)-β-D-GlcpA-(1→, →3,4)-β-D-GlcpA-(1→, and →4)-β-Xylp-(1→. The effect of EPP on hyperuricemic mice was determined by analysing correlative general physical parameters, renal histopathology, renal gene expressions, and gut microbiome. EPP significantly reduced serum uric acid (UA), serum blood urea nitrogen, serum xanthine oxidase (XOD), and hepatic XOD as well as improved histological parameters in hyperuricemic mice. Furthermore, mRNA and protein expression analyses showed the upregulation of UA excretion genes such as ABCG2, OAT1, and NPT1 and downregulation of UA resorption gene URAT1. Moreover, EPP maintained the stability of the intestinal flora and confirmed that Parasutterella is closely related to the regulation of hyperuricemia. This study is the first to demonstrate the anti-hyperuricemic activity of EPP and highlight its therapeutic potential for hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh; Pharmacology and Toxicology Research Division, Health Med Science Research Limited, 3/1 Lalmatia, 1207, Dhaka, Bangladesh
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
32
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
33
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
34
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
35
|
Zhai W, Wei E, Li R, Ji T, Jiang Y, Wang X, Liu Y, Ding Z, Zhou H. Characterization and Evaluation of the Pro-Coagulant and Immunomodulatory Activities of Polysaccharides from Bletilla striata. ACS OMEGA 2021; 6:656-665. [PMID: 33458518 PMCID: PMC7807737 DOI: 10.1021/acsomega.0c05171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Bletilla striata is widely used for stanching bleeding. In this study, polysaccharides from B. striata (BSP) were extracted by hot water. Four polysaccharides named BSP-1-BSP-4 were fractionated using DEAE-52 cellulose. BSP fractions contained sulfate, and the degrees of substitution of BSP-3 and BSP-4 were 1.59 and 1.70, respectively. Analysis of monosaccharide composition showed that four polysaccharides were mainly composed of mannan and glucose. The in vitro results showed that BSP-1-BSP-4 elicited pro-coagulant capacities by shortening the activating partial thromboplastin time, prothrombin time, and thrombin time and elevating the fibrinogen content. Immunomodulatory activity was evaluated by MTT assay, the pinocytic capacity and NO production. Although BSP fractions did not affect RAW 264.7 cell viability, they, especially BSP-2, enhanced the immunomodulatory activity by increasing the pinocytic capacity and NO production. Overall, BSP may be developed as a potential coagulant with immunomodulatory effects.
Collapse
Affiliation(s)
- Wanchen Zhai
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130012, PR China
| | - Enwei Wei
- Bethune
Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun 130012, PR China
| | - Rui Li
- Department
of Pharmacy, China-Japan Union Hospital
of Jilin University, Changchun 130012, PR China
| | - Tianyi Ji
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130012, PR China
| | - Yueyao Jiang
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130012, PR China
| | - Xiaoxiao Wang
- Jilin
Engineering Research Center for Agricultural Resources and Comprehensive
Utilization, Jilin Institute of Chemical
Technology, Jilin 132022, PR China
| | - Yiying Liu
- Jilin
Engineering Research Center for Agricultural Resources and Comprehensive
Utilization, Jilin Institute of Chemical
Technology, Jilin 132022, PR China
| | - Zhiying Ding
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130012, PR China
| | - Hongli Zhou
- Jilin
Engineering Research Center for Agricultural Resources and Comprehensive
Utilization, Jilin Institute of Chemical
Technology, Jilin 132022, PR China
| |
Collapse
|
36
|
Zhu S, Hu J, Liu S, Guo S, Jia Y, Li M, Kong W, Liang J, Zhang J, Wang J. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydr Polym 2020; 246:116545. [DOI: 10.1016/j.carbpol.2020.116545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
|
37
|
Li M, Ma F, Li R, Ren G, Yan D, Zhang H, Zhu X, Wu R, Wu J. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities. Int J Biol Macromol 2020; 160:979-990. [DOI: 10.1016/j.ijbiomac.2020.05.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
|
38
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
39
|
Duan Z, Zhang Y, Zhu C, Wu Y, Du B, Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. Int J Biol Macromol 2020; 162:533-547. [PMID: 32565302 DOI: 10.1016/j.ijbiomac.2020.06.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the basic structural features of phosphorylated Pleurotus ostreatus polysaccharide (PPOP) and study the protective effect of PPOP on liver injury induced by carbon tetrachloride in male Kunming mice. The phosphorylated polysaccharide was prepared from the natural polysaccharide extracted from Pleurotus ostreatus (POP). The structures of PPOP and POP were characterized by FT-IR, ESEM spectroscopy, and Congo red test. Chemical composition analysis revealed that PPOP was mainly composed of rhamnose, galacturonic acid, and xylose in a molar ratio of 0.10: 1.98: 1.00. Structural analysis indicated that PPOP had multi-strand structure and the absorption peaks of PO and P-O-C. Furthermore, animal experiments showed that the hepatoprotective effect of PPOP against liver injury was reflected by decreasing the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, trilaurin, and low-density lipoprotein cholesterol in the serum, increasing the content of high-density lipoprotein cholesterol and albumin in blood, reducing the content of malondialdehyde and promoting the activity of antioxidant enzymes in liver. PPOP exhibited stronger hepatoprotective effect and antioxidant activity in vivo than POP. The final results indicated that PPOP could be used in the treatment of chemical-induced hepatotoxicity based on the above biological research.
Collapse
Affiliation(s)
- Zhen Duan
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Biqi Du
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huijie Ji
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
40
|
The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. Int J Biol Macromol 2020; 145:1059-1065. [DOI: 10.1016/j.ijbiomac.2019.09.198] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 11/18/2022]
|
41
|
Teng G, Zhang X, Zhang C, Chen L, Sun W, Qiu T, Zhang J. Lappaconitine trifluoroacetate contained polyvinyl alcohol nanofibrous membranes: Characterization, biological activities and transdermal application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110515. [PMID: 31924037 DOI: 10.1016/j.msec.2019.110515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022]
Abstract
Lappaconitine (LA), a potent analgesic drug extracted from the root of natural aconitum species, has been clinically used for years because of its effectiveness and non-addictive properties. However, it is mainly limited in oral and intravenous administration in the form of Lappaconitine Hydrobromide (LAH). In this work, Lappaconitine trifluoroacetate (LAF), a new derivative of LA, was successfully obtained by introducing organofluorine group to LA. This new compound had a lower toxicity (LD50 of 21.14 mg·kg-1), improved analgesic effect and longer half-life (T1/2 of 2.24 h) when compared with LAH. Moreover, in vitro transdermal permeation (Jss of 206.82 μg·cm-2·h-1) of LAF was 30.54% higher than that of LAH, means that LAF can be conveniently used for transdermal drug delivery (TDD). Therefore, drug membranes with PVA solution (10 wt%) containing LAF in various amounts were fabricated by electrospinning. The in vitro release tests confirmed that up to 81.43% of LAF in the PVA/LAF nanofibrous membranes could be released in 72 h, accompanied by significant analgesic effect when compared with the blank control group. In conclusion, the prepared LAF-loaded membrane is a novel formulation for the treatment of chronic and long-term pain.
Collapse
Affiliation(s)
- Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China.
| | - Xifeng Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China; The College of Agriculture and Biotechnology, Hexi University, Zhangye, Gansu 734000, PR China
| | - Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China
| | - Wenxiu Sun
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ting Qiu
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
42
|
Lin L, Yang J, Yang Y, Zhi H, Hu X, Chai D, Liu Y, Shen X, Wang J, Song Y, Zeng A, Li X, Feng H. Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lang Lin
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yan Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Hui Zhi
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xin Hu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Dongkun Chai
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunjie Liu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xiaojun Shen
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunqi Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Aimei Zeng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xinyu Li
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Haibo Feng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| |
Collapse
|
43
|
Suprunchuk VE. Low-molecular-weight fucoidan: Chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr Res 2019; 485:107806. [DOI: 10.1016/j.carres.2019.107806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/05/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023]
|
44
|
Hu M, Liu Y, Wang L, Wang J, Li L, Wu C. Purification, Characterization of Two Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and Their Anti-Inflammatory Effects on Mucus Secretion of Airway Epithelium. Int J Mol Sci 2019; 20:ijms20143553. [PMID: 31330806 PMCID: PMC6678706 DOI: 10.3390/ijms20143553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pinelliae Rhizoma Praeparatum cum Alumine (PRPCA) is an important traditional processed herbal medicine mainly used for treating phlegm in China for more than 2000 years. In our previous studies, extraction optimization, characterization, and bioactivities of total polysaccharides from PRPCA were investigated. In this study, further purification of these polysaccharides was performed. Two polysaccharides named neutral fraction of total polysaccharides-II (TPN-II) and acidic fraction of total polysaccharides-II (TPA-II) were obtained by gradient ion-exchange chromatography followed by gel-permeation chromatography. Results of scanning electron microscopy (SEM) analysis in the present study showed that TPN-II had a tight structure with a rough and uneven surface, while TPA-II had a relative homogeneous surface and a loose structure. Further studies indicated that TPN-II was a homosaccharide mainly composed by glucose with a molecular weight of 8.0 kDa. TPA-II was mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 2.1, 2.3, 1.7, 10.6, 2.6, 14.2, and 2.5, with a molecular weight of 1250 kDa. The nuclear magnetic resonance (NMR) results indicated that α and β form glycoside bonds existed in TPN-II and TPA-II, and TPN-II was composed of α-glucopyranose. In addition, both purified polysaccharides have significant anti-inflammatory effects on mucus secretion of human airway epithelial NCI-H292 cells without cytotoxicity. Compared with TPN-II, TPA-II exhibited more significant anti-inflammatory effects on lipopolysaccharide (LPS)-induced airway inflammation by regulating levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) and inhibiting mucus secretion. The results suggest that polysaccharides from PRPCA could be explored as therapeutic agents in treating inflammation and over secretion of mucus in asthma.
Collapse
Affiliation(s)
- Meibian Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujie Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaolong Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
45
|
Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol 2019; 132:970-977. [DOI: 10.1016/j.ijbiomac.2019.03.213] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
|
46
|
|
47
|
Liang J, Zeng Y, Wang H, Lou W. Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Nat Prod Res 2018; 33:3248-3253. [DOI: 10.1080/14786419.2018.1471480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jing Liang
- Laboratory of Applied Biocatalysis, South China University of Technology, Guangzhou, China
| | - Yingjie Zeng
- Laboratory of Applied Biocatalysis, South China University of Technology, Guangzhou, China
| | - Hongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utlization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Wenyong Lou
- Laboratory of Applied Biocatalysis, South China University of Technology, Guangzhou, China
| |
Collapse
|