1
|
Mubango E, Fu Z, Dou P, Tan Y, Luo Y, Chen L, Wu K, Hong H. Dual function antioxidant and anti-inflammatory fish maw peptides: Isolation and structure-activity analysis via tandem molecular docking and quantum chemical calculation. Food Chem 2025; 465:141970. [PMID: 39546995 DOI: 10.1016/j.foodchem.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The structure-function relationship of gastrointestinal tract digestion-derived fish maw peptides remains largely unknown. This study aims to elucidate the active sites and cellular bioactivities of these peptides through molecular docking (MD), density functional theory (DFT) computations, in silico bioinformatic analysis, and in cellulo Caco-2 cell studies. In silico screening identified 29 non-toxic, non-allergenic, and water-soluble peptides. Seven peptides exhibited favorable binding to the Keap1-Kelch (2FLU) and TNF-α (2AZ5) proteins. Specifically, peptides WIDPNQG, GFPGER, and FLLFRQ demonstrated the highest electron affinities and smallest HOMO-LUMO energy gaps, suggesting strong free-radical scavenging potential. Both DFT and ex situ MD confirmed the active sites of the seven peptides. The guanidinium group was the dominant active site on six peptides. The isolated peptides improved cellular redox balance, reduced malonaldehyde, and suppressed inflammatory cytokines. This study confirmed DFT computations as a novel tool for elucidating the structure-function relationship of food-derived peptides.
Collapse
Affiliation(s)
- Elliot Mubango
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Chen
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Burgart YV, Makhaeva GF, Khudina OG, Krasnykh OP, Kovaleva NV, Elkina NA, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Triandafilova GA, Malysheva KO, Serebryakova OG, Borisevich SS, Ilyina MG, Zhilina EF, Saloutin VI, Charushin VN, Richardson RJ. 2-Arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropanoic acids as selective and effective carboxylesterase inhibitors with powerful antioxidant potential. Bioorg Med Chem 2024; 115:117938. [PMID: 39504592 DOI: 10.1016/j.bmc.2024.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
A series of 2-arylhydrazinylidene-3-oxo acids (AHOAs) was prepared by dealkylation of alkyl-2-arylhydrazinylidene-3-oxo-3-alkanoates with AlBr3. Using X-Ray, NMR spectroscopy, and quantum mechanical calculations (QM), the existence of AHOAs in a thermodynamically favorable Z-form stabilized by two intramolecular H-bonds was established. All AHOAs had acceptable ADME parameters. The esterase profile study showed that polyfluoroalkyl-AHOAs were effective and selective carboxylesterase (CES) inhibitors, while they were inactive against acetyl- and butyrylcholinesterase. In agreement with molecular docking, the most effective CES inhibitors (IC50 as low as 42 nM) were compounds bearing long polyfluoroalkyl substituents. The acids were also active against hCES1 and hCES2, and CF3-containing acids possessed selectivity against hCES2. Non-fluorinated acids did not inhibit CES, but they exhibited potent antioxidant capability. AHOAs having unsubstituted phenyl or electron-donating groups in the arylhydrazinylidene moiety displayed high primary antioxidant activity in the ABTS, FRAP, and ORAC tests, which did not depend on the substituent in the acyl fragment in the ABTS and ORAC assays. The radical-scavenging mechanism of AHOAs was investigated using QM calculations, showing a preference for cleavage of NH rather than OH bonds. For the lead antioxidants, 4-methoxysubstituted AHOAs, protective effects on erythrocyte membranes in AAPH-induced oxidative stress conditions were shown, including membrane stabilizing activity, inhibition of AAPH-induced lipid peroxidation of erythrocyte membranes, and Fe(II)-chelating ability. Thus, a new class of potent and selective CES inhibitors with powerful antioxidant potential has been developed as promising co-drugs capable of regulating the metabolism of esterified drugs and scavenging reactive radicals that form during Phase I biotransformation.
Collapse
Affiliation(s)
- Yanina V Burgart
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Olga G Khudina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Olga P Krasnykh
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Natalia A Elkina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | | | - Ksenia O Malysheva
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Margarita G Ilyina
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Chen W, Zhu X, Xin X, Zhang M. Effect of the immunoregulation activity of a pectin polysaccharide from Saussurea laniceps petals on macrophage polarization. Int J Biol Macromol 2024; 278:134757. [PMID: 39151871 DOI: 10.1016/j.ijbiomac.2024.134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Saussurea laniceps is a traditional medicinal herb. In our previous study, a pectin polysaccharide, SLP-4, was isolated from the petals of S. laniceps. In this study, the immunomodulatory activity of SLP-4 was studied by analyzing its effects on macrophage (RAW 264.7 cells) polarization. The immunomodulatory activity assays indicated that SLP-4 could significantly enhance the pinocytic and phagocytic capacity and promote the expression and secretion of cytotoxic molecules (nitric oxide, increased by 6.4 times when the SLP-4 concentration was 800 μg/mL) and cytokines (tumor necrosis factor-α and interleukin-6 increased by 7.7 and 11.9 times, respectively) in original macrophage. The possible mechanism could be attributed to the activation of the mitogen-activated protein kinase and nuclear factor-κB signaling pathways through Toll-like receptors 2 and 4. Moreover, SLP-4 significantly induced M1 polarization of original macrophages and transferred macrophages from M2 to M1, but had little effect on the conversion of M1 macrophages into M2 phenotype. Overall, these results demonstrate the potential of SLP-4 as an attractive immunomodulating functional supplement.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Food Science & Chemical Engineering, Zhengzhou University of Technology, Zhengzhou, He'nan 450044, China
| | - Xiaolu Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, He'nan 450001, China
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Mengmeng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
4
|
Ma JJ, Wu WY, Liao J, Liu L, Wang Q, Xiao GS, Liu HF. Preparation of Dendrobium officinale Polysaccharide by Lactic Acid Bacterium Fermentation and Its Protective Mechanism against Alcoholic Liver Damage in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17633-17648. [PMID: 39051975 DOI: 10.1021/acs.jafc.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-β-D-Manp(1→, →4)-β-Glcp(1→, β-D-Manp(1→, and β-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1β to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Wei-Yao Wu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Geng-Sheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui-Fan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
5
|
Zheng Q, Feng K, Zhong W, Tan W, Rengaowa S, Hu W. Investigating the Hepatoprotective Properties of Mulberry Leaf Flavonoids against Oxidative Stress in HepG2 Cells. Molecules 2024; 29:2597. [PMID: 38893475 PMCID: PMC11173602 DOI: 10.3390/molecules29112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 μg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 μM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.
Collapse
Affiliation(s)
- Qinhua Zheng
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Ke Feng
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Wenting Zhong
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Weijian Tan
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Jilin University, Changchun 130012, China
| | - Sa Rengaowa
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
| | - Wenzhong Hu
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (Q.Z.); (W.Z.); (W.T.); (S.R.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
6
|
Liang Y, Dai D, Chang WQ, Wang Y, Zhang ZH, Li D, Zhang B, Li Y. Biological Characteristics, Domesticated Cultivation Protocol, Antioxidant Activity, and Protective Effects against Cellular Oxidative Stress of an Underutilized Medicinal Mushroom: Fomitopsis palustris. J Fungi (Basel) 2024; 10:380. [PMID: 38921365 PMCID: PMC11205097 DOI: 10.3390/jof10060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Brown-rot fungus is one of the important medicinal mushrooms, which include some species within the genus Fomitopsis. This study identified wild macrofungi collected from a broad-leaved tree in Liaoning Province as Fomitopsis palustris using both morphological and molecular methods. To elucidate the potential medicinal and economic value of F. palustris, we conducted single-factor and orthogonal tests to optimize its mycelium culture conditions. Subsequently, we completed liquid culture and domestic cultivation based on these findings. Furthermore, crude polysaccharides were extracted from the cultivated fruiting bodies of F. palustris and their antioxidant activity was evaluated using chemical methods and cell-based models. The results showed that the optimal culture conditions for F. palustris mycelium were glucose as the carbon source, yeast extract powder as the nitrogen source, pH 6.0, and a temperature of 35 °C. Moreover, temperature was found to have the most significant impact on mycelial growth. The liquid strains were fermented for 6 days and then inoculated into a cultivation substrate composed of broadleaf sawdust, resulting in mature fruiting bodies in approximately 60 days. The crude polysaccharides extracted from the cultivated fruiting bodies of F. palustris (FPPs) possess in vitro scavenging abilities against DPPH radicals and OH radicals, as well as a certain ferric-reducing antioxidant power. Additionally, FPPs effectively mitigated H2O2-induced oxidative stress in RAW264.7cells by enhancing the intracellular activity of antioxidant enzymes such as SOD and CAT, scavenging excess ROS, and reducing MDA levels. This study provides preliminarily evidence of the potential medicinal and economic value of F. palustris and offers initial data for the future development and utilization of this species.
Collapse
Affiliation(s)
- Yi Liang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Dan Dai
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wan-Qiu Chang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yang Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhen-Hao Zhang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Dan Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Liu J, Bai J, Shao C, Yao S, Xu R, Duan S, Wang L, Xu Y, Yang Y. Optimization of ultrasound-assisted aqueous two-phase extraction of polysaccharides from seabuckthorn fruits using response methodology, physicochemical characterization and bioactivities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3168-3183. [PMID: 36268589 DOI: 10.1002/jsfa.12283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Seabuckthorn fruits contains many active subtances, among them, the seabuckthorn polysaccharide is one of the main active ingredients, and exhibits diverse bioactivities. The extraction of polysaccharides from seabuckthorn fruits is the most important step for their wide applications. Ultrasound-assisted aqueous two-phase extraction (UA-ATPE) is a promising green method for extracting polysaccharides. Additionally, physicochemical characterization and antioxidant activities can evaluate the potential functions and applications in the food and medicine industries. RESULTS Based on the single-factor experiments, 20.70% (w/w) ammonium sulfate ((NH4 )2 SO4 ) and 27.56% (w/w) ethanol were determined as the suitable composition for aqueous two-phase. The optimum conditions of UA-ATPE obtained by response surface methodology were as follows: ultrasonic power (390 W), extraction time (41 min), liquid-to-material ratio (72: 1 mL/g), and the total yield of the polysaccharides reached 34.14 ± 0.10%, The molecular weights of the purified upper-phase seabuckthorn polysaccharide (PUSP) and the purified lower-phase seabuckthorn polysaccharide (PLSP) were 65 525 and 26 776 Da, respectively. PUSP and PLSP contained the same six monosaccharides (galacturonic acid, rhamnose, xylose, mannose, glucose and galactose), but with different molar ratios. Furthermore, PUSP and PLSP displayed certain viscoelastic property, had no triple helical structure, possessed different thermal stability, surface morphology and conformation in aqueous solution. PUSP and PLSP displayed strong antioxidant properties by the assays of scavenging ability of ABTS+ ·, the protection of DNA damage and erythrocyte hemolysis. CONCLUSION UA-ATPE significantly increased the yield of seabuckthorn polysaccharides. PUSP and PLSP were different in many aspects, such as molar ratio, surface shape and antioxidant activities. Seabuckthornpolysaccharides possess great potential in medicine and functional foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junwen Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Jingwen Bai
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Chuntian Shao
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Shengnan Yao
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Ran Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Suyang Duan
- College of Biological Engineering, Dalian University of Technology, Dalian, P. R. China
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Yaqin Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| | - Yu Yang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
8
|
Wang L, Yang K, Jing R, Zhao W, Guo K, Hu Z, Liu G, Xu N, Zhao J, Lin L, Gao S. Protective effect of Saussurea involucrata polysaccharide against skin dryness induced by ultraviolet radiation. Front Pharmacol 2023; 14:1089537. [PMID: 36733502 PMCID: PMC9887146 DOI: 10.3389/fphar.2023.1089537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Exposure to ultraviolet B (UVB) radiation can damage the epidermis barrier function and eventually result in skin dryness. At present, little work is being devoted to skin dryness. Searching for active ingredients that can protect the skin against UVB-induced dryness will have scientific significance. Methods: Saussurea involucrata polysaccharide (SIP) has been shown to have significant antioxidant and anti-photodamage effects on the skin following UVB irradiation. To evaluate the effect of SIP on UVB-induced skin dryness ex vivo, SIP-containing hydrogel was applied in a mouse model following exposure to UVB and the levels of histopathological changes, DNA damage, inflammation, keratinocyte differentiation, lipid content were then evaluated. The underlying mechanisms of SIP to protect the cells against UVB induced-dryness were determined in HaCaT cells. Results: SIP was found to lower UVB-induced oxidative stress and DNA damage while increasing keratinocyte differentiation and lipid production. Western blot analysis of UVB-irradiated skin tissue revealed a significant increase in peroxisome proliferator-activated receptor-α (PPAR-α) levels, indicating that the underlying mechanism may be related to PPAR-α signaling pathway activation. Conclusions: By activating the PPAR-α pathway, SIP could alleviate UVB-induced oxidative stress and inhibit the inflammatory response, regulate proliferation and differentiation of keratinocytes, and mitigate lipid synthesis disorder. These findings could provide candidate active ingredients with relatively clear mechanistic actions for the development of skin sunscreen moisturizers.
Collapse
Affiliation(s)
- Lusheng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiye Yang
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | | | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- Chevidence Lab of Child and Adolescent Health, Children’s Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Jungang Zhao, ; Li Lin, ; Shuang Gao,
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Jungang Zhao, ; Li Lin, ; Shuang Gao,
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Jungang Zhao, ; Li Lin, ; Shuang Gao,
| |
Collapse
|
9
|
Wu Q, Er-Bu A, Liang X, He C, Yin L, Xu F, Zou Y, Yin Z, Yue G, Li L, Song X, Tang H, Zhang W, Lv C, Jing B, Sang G, Rangnanjia C. Isolation, structure identification, and immunostimulatory effects in vitro and in vivo of polysaccharides from Onosma hookeri Clarke var. longiforum Duthie. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:328-338. [PMID: 35871477 DOI: 10.1002/jsfa.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Aga Er-Bu
- Medical College, Tibet University, Lasa, P. R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Funeng Xu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Geng Sang
- Graduate school, Tibet Medical University, Lasa, P. R. China
| | - Car Rangnanjia
- Graduate school, Tibet Medical University, Lasa, P. R. China
| |
Collapse
|
10
|
Ding Z, Chen W, Jiang F, Mo M, Bi Y, Kong F. Synthesis, characterization and in vitro digestion of folate conjugated chitosan-loaded proanthocyanidins nanoparticles. Food Res Int 2023; 163:112141. [PMID: 36596096 DOI: 10.1016/j.foodres.2022.112141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Proanthocyanidins have significant biological activity and pharmacological effects and are widely used in food, medicine, and cosmetics. Chitosan nanoparticles loaded with proanthocyanidins have been proven to improve their biological activity. Given some deficiencies of chitosan (CS), the modification of chitosan by folic acid (FA) can obtain new variants with different functions. For this objective, the folic acid conjugated chitosan was designed, and in vitro properties of proanthocyanidins loaded nanoparticles were studied systemically. Firstly, folic acid-chitosan conjugate (FA-CS) was synthesized and characterized. Folate-coupled chitosan-loaded proanthocyanidin nanoparticles (PC-CS/FA-NPs) were prepared by ionic gelation technique using FA-CS as a carrier. The successful nanoparticle synthesis was characterized by dynamic light scattering (DLS) techniques and Fourier transform infrared (FT-IR) spectroscopy. The synthesized nanoparticles exhibited a spherical shape and smooth and uniform distribution features with a size range of less than 300 nm, as observed by a scanning electron microscope (SEM). Meanwhile, PC-CS/FA-NPs had good thermal and gastrointestinal digestive stability and had a protective effect on AAPH-induced erythrocyte oxidative hemolysis. In conclusion, folic acid decorated chitosan nanoparticles improved the stability and bioavailability of proanthocyanidins in gastrointestinal digestion.
Collapse
Affiliation(s)
- Zhendong Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Weiming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fengyu Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengmiao Mo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Zhang H, Li X, Meng X, Ling X, Li S, Song G, Li L. Comparison of Differences in Chemical Composition and Related Antioxidant Activity of Snow Lotus from Different Origins. Chem Biodivers 2023; 20:e202200885. [PMID: 36524455 DOI: 10.1002/cbdv.202200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The snow lotus is an endangered traditional Chinese medicinal herb. Saussurea involucrata, Saussurea laniceps, and Saussurea medusa, the three main snow lotus species (five herbs and two S. involucrata cell cultures), were selected for this study. Snow lotus (XLs) was extracted using 75 % (v/v) ethanol. Two reversed phase-high performance liquid chromatography-diode array detector methods were developed and validated for the determination of 10 representative components in XLs. The antioxidant efficacy of XLs and their components was investigated using DPPH, ABTS free radical scavenging, and ROS inhibition experiments. The results showed that the IC50 for DPPH scavenging ranged from 0.06-0.29 mg/mL for XLs and from 0.13-0.63 mg/mL for ABTS, and could downregulate ROS to varying degrees. The results of the antioxidant activity showed that rutin, quercetin, and isochlorogenic acid A contributed to the antioxidant capacity of XLs. The high content and activity of the cell cultures indicate that they can serve as an effective alternative to snow lotus, thus providing a theoretical basis for the selection of herbs and cell cultures to fulfil various needs.
Collapse
Affiliation(s)
- Huirong Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuan Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianyao Meng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiao Ling
- Beijing Lan Divine Technology Co., Ltd., Beijing, 100048, China
| | - Shuowen Li
- Acelbio (Chongqing) Biotechnology Co., Ltd., Chongqing, 404100, China
| | - Guanjie Song
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
12
|
Cheng J, Wang Y, Song J, Liu Y, Ji W, He L, Wei H, Hu C, Jiang Y, Xing Y, Huang X, Ding H, He Q. Characterization, immunostimulatory and antitumor activities of a β-galactoglucofurannan from cultivated Sanghuangporus vaninii under forest. Front Nutr 2022; 9:1058131. [PMID: 36618684 PMCID: PMC9812957 DOI: 10.3389/fnut.2022.1058131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
A biomacromolecule, named as β-galactoglucofurannan (SVPS2), was isolated from the cultivated parts of Sanghuangporus vaninii under the forest. Its primary and advanced structure was analyzed by a series of techniques including GC-MS, methylation, NMR, MALS as well as AFM. The results indicated that SVPS2 was a kind of 1, 5-linked β-Glucofurannan consisting of β-glucose, β-galactose and α-fucose with 23.4 KDa. It exhibited a single-stranded chain with an average height of 0.72 nm in saline solution. The immunostimulation test indicated SVPS2 could facilitate the initiation of the immune reaction and promote the secretion of cytokines in vitro. Moreover, SVPS2 could mediate the apoptosis of HT-29 cells by blocking them in S phase. Western blot assay revealed an upregulation of Bax, Cytochrome c and cleaved caspase-3 by SVPS2, accompanied by a downregulation of Bcl-2. These results collectively demonstrate that antitumor mechanism of SVPS2 may be associated with enhancing immune response and inducing apoptosis of tumor cells in vitro. Therefore, SVPS2 might be utilized as a promising therapeutic agent against colon cancer and functional food with immunomodulatory activity.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jiling Song
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Institute of Biochemistry, Zhejiang University, Hangzhou, China
| | - Weiwei Ji
- Huzhou Liangxi Forest Park Management Office, Huzhou, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,*Correspondence: Liang He ✉
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,Hailong Wei ✉
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yiqi Xing
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Hongmei Ding
- Center of Forecasting and Analysis, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghai He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| |
Collapse
|
13
|
Fang X, Wang H, Zhou X, Zhang J, Xiao H. Transcriptome reveals insights into biosynthesis of ginseng polysaccharides. BMC PLANT BIOLOGY 2022; 22:594. [PMID: 36529733 PMCID: PMC9761977 DOI: 10.1186/s12870-022-03995-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng polysaccharides, have been used to treat various diseases as an important active ingredient. Nevertheless, the biosynthesis of ginseng polysaccharides is poorly understood. To elucidate the biosynthesis mechanism of ginseng polysaccharides, combined the transcriptome analysis and polysaccharides content determination were performed on the roots, stems, and leaves collected from four cultivars of ginseng. RESULTS The results indicated that the total contents of nine monosaccharides were highest in the roots. Moreover, the total content of nine monosaccharides in the roots of the four cultivars were different but similar in stems and leaves. Glucose (Glc) was the most component of all monosaccharides. In total, 19 potential enzymes synthesizing of ginseng polysaccharides were identified, and 17 enzymes were significantly associated with polysaccharides content. Among these genes, the expression of phosphoglucomutase (PGM), glucose-6-phosphate isomerase (GPI), UTP-glucose-1-phosphate uridylyltransferase (UGP2), fructokinase (scrK), mannose-1-phosphate guanylyltransferase (GMPP), phosphomannomutase (PMM), UDP-glucose 4-epimerase (GALE), beta-fructofuranosidase (sacA), and sucrose synthase (SUS) were correlated with that of MYB, AP2/ERF, bZIP, and NAC transcription factors (TFs). These TFs may regulate the expression of genes involved in ginseng polysaccharides synthesis. CONCLUSION Our findings could provide insight into a better understanding of the regulatory mechanism of polysaccharides biosynthesis, and would drive progress in genetic improvement and plantation development of ginseng.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Jing Zhang
- Forestry Survey and Design Institute of Jilin Province, 130022, Changchun, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
14
|
Liao C, Wu L, Zhong W, Zheng Q, Tan W, Feng K, Feng X, Meng F. Cellular Antioxidant Properties of Ischnoderma Resinosum Polysaccharide. Molecules 2022; 27:7717. [PMID: 36431811 PMCID: PMC9695030 DOI: 10.3390/molecules27227717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
A predominant polysaccharide isolated from Ischnoderma resinosum underwent evaluation for its capacity to scavenge free radicals and its potential antioxidant properties at a cellular-oriented level. This proved that Ischnoderma resinosum polysaccharide (IRP) remarkably curtailed AAPH-induced erythrocyte hemolysis through the inhibition of the generation of ROS (p < 0.05). Rather, it caused the restoration of intracellular antioxidant enzyme (SOD, GSH-Px, and CAT) activities at an acceptable pace and the silencing of intracellular MDA formation, as well as the rescaling of LDH leakage. Furthermore, a model of oxidative stress in HepG2 cells was established by adopting 400 μM of hydrogen peroxide, which suggested that IRP manifests promising antioxidant activity. Notably, after the intervention of IRP in the H2O2-induced HepG2 cells, there was a statistical elevation in cell survivability (p < 0.05). IRP diminished the morphological alterations in the nucleus and decreased the secretion of ROS (p < 0.05), with a dose-dependent abrogation of apoptosis (p < 0.05). Consequently, IRP, which was isolated and purified, was able to scavenge free radicals and possessed favorable antioxidant activity that could dampen the occurrence of oxidative stimulation and effectively alleviate the AAPH-induced erythrocyte hemolysis and H2O2-induced oxidative damage in HepG2 cells. This provides a basis and theoretical reference for the development and utilization of IRP as a natural antioxidant, with emphasis on the exploitation of environmentally friendly and cost-effective antioxidants.
Collapse
Affiliation(s)
- Caiyu Liao
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Liyan Wu
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Qinhua Zheng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Weijian Tan
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Kexin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Xiaolin Feng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Fanxin Meng
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| |
Collapse
|
15
|
Lian Y, Zhu M, Yang B, Wang X, Zeng J, Yang Y, Guo S, Jia X, Feng L. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med 2022; 17:111. [PMID: 36153627 PMCID: PMC9509600 DOI: 10.1186/s13020-022-00669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Red ginseng (RG) was widely used as traditional Chinese medicine (TCM) or dietary supplement. However, few researches had been reported on the red ginseng polysaccharide (RGP). METHODS In this study, a novel heteropolysaccharide named RGP1-1 was fractionated sequentially by DEAE-52 column and Sephadex G-100 gel column. The primary structure of RGP1-1, including glycosyl linkages, molecular weight, monosaccharide composition, morphology and physicochemical property were conducted by nuclear magnetic resonance (NMR), gas chromatography-mass spectrometer (GC-MS), atomic force microscope (AFM), scanning electron microscope (SEM), differential scanning calorimetry-thermogravimetric analysis (DSC-TG) and so on. The effect of RGP1-1 in preventing and treating myocardial ischemia was evaluated by an animal model isoprenaline (ISO) induced mice. RESULTS RGP1-1, with a homogeneous molecular weight of 5655 Da, was composed of Glc and Gal in the ratio of 94.26:4.92. The methylation and NMR analysis indicated the backbone was composed of → 1)-Glcp-(4 → and → 1)-Galp-(4 →, branched partially at O-4 with α-D-Glcp-(1 → residue. Morphology and physicochemical property analysis revealed a triple-helical conformation, flaky and irregular spherical structure with molecule aggregations and stable thermal properties of RGP1-1. And it contained 6.82 mV zeta potential, 117.4 nm partical size and polymerization phenomenon. Furthermore, RGP1-1 possessed strong antioxidant activity in vitro and in vivo, RGP1-1 could decrease cardiomyocyte apoptosis and myocardium fibrosis of mice in histopathology and it could decrease significantly the serum levels of cardiac troponin (cTnI), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA). Western blot analysis showed that RGP1-1 can increase the expression of main protein Nuclear factor E2-related factor 2(Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1(HO-1) and kelch-like ECH-associated protein1(keap1) in oxidative stress injure progress, and therefore regulate the pathway of Nrf2/HO-1. CONCLUSION The above findings indicated that RGP1-1 had an improving effect on ISO-induced myocardial ischemia injury in mice, as novel natural antioxidant and heart-protecting drugs.
Collapse
Affiliation(s)
- Yuanpei Lian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou, People's Republic of China, 213003
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xianfeng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuchen Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
16
|
Liu G, Kamilijiang M, Abuduwaili A, Zang D, Abudukelimu N, Liu G, Yili A, AIsa HA. Isolation, structure elucidation, and biological activity of polysaccharides from Saussurea involucrata. Int J Biol Macromol 2022; 222:154-166. [PMID: 36122780 DOI: 10.1016/j.ijbiomac.2022.09.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The optimum extraction condition for the Saussurea involucrata polysaccharide (SIP) was determined to be a temperature of 80 °C, time 2 h, and a liquid-solid ratio of 30 mL/g with a yield of 11.37 %. An acidic homogenous polysaccharide, namely SIP-II was isolated from Saussurea involucrate through anion exchange and gel permeation column chromatography. The structure of the SIP-II was elucidated through the combination of HPLC, GC-MS, IC, peroxide oxidation, smith degradation, methylation, NMR analysis, it was mainly composed of arabinose, rhamnose, galactose, galacturonic acid, and glucose with the molar ratio of 19.85:20.30: 27.12:11.95:8.69 with a molecular weight of 237,570 Da. The glycosidic linkages of SIP-II mainly composed of →1)-α-L-Rhap-(2→, T-Araf, →1)-β-D-GalpA-(4→, →1)-β-D-Galp-(3,6→, →1)-β-D-Galp-(6→, →1)-α-L-Rhap-(2,4→, T-Galp, and →1)-α-L-Araf-(5→. Meanwhile, the structures were characterized through extensive analysis of UV, FT-IR, SEM-EDX, CD, XRD, and TG. SIP-II possessed a remarkable anti-inflammatory activity by effectively inhibiting the expression of pro-inflammatory cytokines and inflammation-related mediators in LPS-stimulated RAW264.7 macrophages, and the anti-inflammatory response of SIP-II might be attributed to the regulation of the NF-κB, MAPK and JAK/STAT pathways. The results showed that polysaccharides from Saussurea involucrate could be a potential ingredient in the functional food and pharmaceutical industry.
Collapse
Affiliation(s)
- Guangrong Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Infinitus (China) Company Ltd, Guangzhou 510665, China
| | - Mayila Kamilijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Aytursun Abuduwaili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber AIsa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
17
|
A glycoprotein from mountain cultivated ginseng: Insights into their chemical characteristics and intracellular antioxidant activity. Int J Biol Macromol 2022; 217:761-774. [PMID: 35817242 DOI: 10.1016/j.ijbiomac.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
A glycoprotein (MGP2) from mountain-cultivated ginseng (MCG) was purified by Tris-HCl extraction followed by DEAE-52 ion exchange chromatography and Sephadex G-100 gel filtration chromatography. The approximate molecular weight (27.0 kDa) and monomeric nature were determined by reduced and non-reduced SDS-PAGE. The structure of MGP2 was characterized by a practical and reliable "protein-polysaccharide analyzed by spectroscopy combined with chemical analysis" strategy. The results showed that MGP2 belonged to Arabinogalactan proteins (AGPs) which contained high amount of Glc (35.1 %). The hemagglutination test concluded that MGP2 was not a lectin. In addition, the MGP2 exhibited antioxidant activity by scavenging radical capacity tests and the ability to protect human erythrocytes and RAW264.7 cells from oxidative damage induced by AAPH. Therefore, these results suggested that glycoprotein MGP2 could be used as a natural antioxidant in drug and food industry.
Collapse
|
18
|
Zongo AWS, Zogona D, Zhang Z, Youssef M, Zhou P, Chen Y, Geng F, Chen Y, Li J, Li B. Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages. Food Funct 2022; 13:4664-4677. [PMID: 35377370 DOI: 10.1039/d1fo04432j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed (SMS) is a wild legume used as food and medicine in many African countries. In the current study, a novel polysaccharide (SMSP2) was extracted from SMS using hot water and purified with DEAE-52 cellulose. Its structure was characterized, and the immunomodulatory activity and possible molecular mechanism in murine macrophage RAW264.7 were explored. The results revealed that SMSP2 was a uronic acid-rich polysaccharide (51.6%, w/w) with a molecular weight of 52.07 kDa. The neutral sugars were mainly arabinose, xylose, mannose, and galactose at a molar ratio of 1.00 : 0.84 : 0.90 : 0.07. Interestingly, SMSP2 treatment markedly promoted macrophage proliferation and phagocytosis and induced the expression of inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10. SMSP2-induced macrophage stimulation occurs through the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, macrophage surface complement receptor 3 (CR3) might play an important role in SMSP2-induced macrophage activation. This study revealed that SMSP2 is a potent immunomodulator, which could be used as a functional food and a pharmaceutical adjuvant in treating immune-compromising diseases.
Collapse
Affiliation(s)
- Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Daniel Zogona
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Ziyang Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Peiyuan Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuanyuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Habotta OA, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam-induced oxidative stress, lipid peroxidation, and disturbance of steroidogenic genes in male rats: Palliative role of Saussurea lappa and Silybum marianum. ENVIRONMENTAL TOXICOLOGY 2021; 36:2051-2061. [PMID: 34181816 DOI: 10.1002/tox.23322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Thiamethoxam (TMX) belongs to the neonicotinoid insecticide family and may evoke marked endocrine disruption. In this study, the reproductive toxicity of TMX on male rats was assessed along with the ability of Saussurea lappa (costus roots) and/or Silybum marianum extract (SM) to alleviate TMX toxicity. Male rats were allocated to seven groups and orally treated daily for 4 weeks: Control (saline), Costus (200 mg/kg), SM (150 mg/kg), TMX (78.15 mg/kg), TMX-costus, TMX-SM, and TMX-costus-SM (at the aforementioned doses). Compared with control group, TMX administration induced reductions in testicular levels of glutathione and antioxidant activities of SOD and CAT. In addition, TMX-exposed rats showed lower serum testosterone hormonal levels as well as higher malondialdehyde and nitric acid levels were detected in TMX-administered rats. On a molecular basis, mRNA expressions of StAR, CYP17a, 3β-HSD, SR-B1, and P450scc genes were significantly down-regulated in TMX group, whereas the expression of LHR and aromatase genes was up-regulated. Moreover, TMX-induced testicular damage was confirmed by histopathological screening. Importantly, however, the administration of either costus roots or SM significantly alleviated all aforementioned TMX-induced changes, indicating the effective antioxidant activities of these plant products. Interestingly, simultaneous treatment with costus root and SM provided better protection against TMX reproduction toxicity than treatment with either agent alone.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Tang F, Huang G, Lin L, Yin H, Shao L, Xu R, Cui X. Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study. Mar Drugs 2021; 19:md19040195. [PMID: 33808126 PMCID: PMC8066037 DOI: 10.3390/md19040195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem. It is therefore imperative to develop drugs for anti-hepatitis B with high-efficiency and low toxicity. Attracted by the observations and evidence that the symptoms of some patients from the Southern Fujian, China, suffering from hepatitis B were alleviated after daily eating an edible marine mollusk, Thais clavigera (Küster 1860) (TCK). Water-soluble polysaccharide from TCK (TCKP1) was isolated and characterized. The anti-HBV activity of TCKP1 and its regulatory pathway were investigated on both HepG2.2.15 cell line and HBV transgenic mice. The data obtained from in vitro studies showed that TCKP1 significantly enhanced the production of IFN-α, and reduced the level of HBV antigens and HBV DNA in the supernatants of HepG2.2.15 cells in a dose-dependent manner with low cytotoxicity. The result of the study on the HBV transgenic mice further revealed that TCKP1 significantly decreased the level of transaminases, HBsAg, HBeAg, and HBV DNA in the serum, as well as HBsAg, HBeAg, HBV DNA, and HBV RNA in the liver of HBV transgenic (HBV-Tg) mice. Furthermore, TCKP1 exhibited equivalent inhibitory effect with the positive control tenofovir alafenamide (TAF) on the markers above except for HBV DNA even in low dosage in a mouse model. However, the TCKP1 high-dose group displayed stronger inhibition of transaminases and liver HBsAg, HBeAg, and HBV RNA when compared with those of TAF. Meanwhile, inflammation of the liver was, by pathological observation, relieved in a dose-dependent manner after being treated with TCKP1. In addition, elevated levels of interleukin-12 (IL-12) and interferon γ (IFN-γ), and reduced level of interleukin-4 (IL-4) in the serum were observed, indicating that the anti-HBV effect of TCKP1 was achieved by potentiating immunocyte function and regulating the balance of Th1/Th2 cytokines.
Collapse
Affiliation(s)
- Fei Tang
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Guanghua Huang
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Liping Lin
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Hong Yin
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
| | - Lili Shao
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
| | - Ruian Xu
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
- Correspondence: (R.X.); (X.C.)
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
- Correspondence: (R.X.); (X.C.)
| |
Collapse
|
21
|
Tan X, Chen H, Zhou X. Study on the activity of Mori Fructus polysaccharides and its derivatives against acute alcoholic liver injury in mice. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1895194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xi Tan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control and Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
- Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control and Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
- Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Quality Control and Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, China
- Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, China
| |
Collapse
|
22
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
23
|
Mameri A, Bournine L, Mouni L, Bensalem S, Iguer-Ouada M. Oxidative stress as an underlying mechanism of anticancer drugs cytotoxicity on human red blood cells' membrane. Toxicol In Vitro 2021; 72:105106. [PMID: 33539984 DOI: 10.1016/j.tiv.2021.105106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study is to investigate the direct in vitro effects of anticancer drugs on red blood cells (RBCs) and to explore the underlying mechanism, mainly by measuring RBCs oxidative stress (OS) status. After RBCs direct contact with fourteen (14) anticancer drugs, several parameters were assessed including: cellular turbidity, methemoglobin (metHb) generation, released Hb and Hb stability. Moreover, intracellular Hb, considered as new molecular target of anticancer drugs, was quantified inside RBCs. MDA level, the main biomarker of OS, was simultaneously measured. The cellular turbidity reveled severe (docetaxel "TXT", 0.03 ± 0.002), moderate (methotrexate "MTX", 0.49 ± 0.009), or none (5-fluorouracil "5-FU", 0.76 ± 0.029) membrane cytotoxicity (MC). An inverse relationship between cell concentration, released Hb and metHb content was obtained. High metHb generation, revealing intense OS, was also mostly expressed in paclitaxel "TXL" and etoposide "VP16". Further, epirubicin "EPI" and "TXT" induced important oxidation of membrane lipids with 0.32 ± 0.014 and 0.26 ± 0.004, respectively. Also, MTX (0.17 ± 0.006) and doxorubicin "DOX" (0.32 ± 0.034) affected significantly Hb stability by a direct contact with molecule. These findings demonstrated that anticancer drugs have the ability to induce membrane damages by the exacerbation of OS through membrane lipid peroxidation and Hb oxidation even inside RBCs.
Collapse
Affiliation(s)
- Amal Mameri
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Lamine Bournine
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
24
|
Yang H, Bai J, Ma C, Wang L, Li X, Zhang Y, Xu Y, Yang Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. Int J Biol Macromol 2020; 165:738-746. [PMID: 32971173 DOI: 10.1016/j.ijbiomac.2020.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The polysaccharides from blackcurrant (Ribes nigrum L.) fruits were degraded by ultrasonic irradiation. Results showed that viscosity-average molecular weight decreased with increasing ultrasonic time or power. The degradation was fitted to the second-order kinetics model and midpoint chain scission model. Gas chromatographic analysis demonstrated that the native polysaccharide and three degraded polysaccharides were composed of the same monosaccharides but in different ratios. Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the presence of α-, β-pyranose rings and the same six sugar residues in the four blackcurrant polysaccharides. Compared to the native polysaccharide, three degraded polysaccharides displayed better rheological properties and stronger protective effects against erythrocyte hemolysis. Collectively, the results support the potential utility of blackcurrant polysaccharides as natural antioxidants.
Collapse
Affiliation(s)
- Haihong Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Conglei Ma
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqing Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Inhibitory effects of Lentinus edodes mycelia polysaccharide on α-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydr Polym 2020; 246:116659. [DOI: 10.1016/j.carbpol.2020.116659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
|
26
|
Zeng QH, Wang JJ, Zhang YH, Song YQ, Liang JL, Zhang XW. Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3776-3782. [PMID: 32248525 DOI: 10.1002/jsfa.10408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spirulina platensis is recognized as one of the most nutritious foods, containing a high protein content of up to 70%. Meanwhile, he interest in using natural protein resources to develop bioactive peptides is steadily increasing. Therefore, this study released the bioactive peptides from S. platensis by enzymatic hydrolysis using pepsin (1:3000 U g-1 ), and their amino acid sequences were determined by de novo sequencing. On this basis, the antioxidant activities of synthesized bioactive peptides were comprehensively evaluated by 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid assay, 1,1-diphenyl-2-picryhydrazyl assay, and cell hemolysis assay induced by 2,2'-azobis-(2-amidino-propane) dihydrochloride (AAPH). RESULTS The degree of hydrolysis and recovery percentage of pepsin hydrolysis were 172 and 825 g kg-1 respectively, and FFEFF (P1: m/z 736.4, 8%), EYFDALA (P2: m/z 828.4, relative intensity 18.5%), and VTAPAASVAL (P3: m/z 899.5, relative intensity 17.3%) were purified and identified. P2 possessed an excellent radical scavenging activity compared with P1, P3, and vitamin C, which was contributed to by its high β-sheet conformation and specific amino acid compositions. Moreover, P2 significantly attenuated AAPH-induced oxidative hemolysis of erythrocytes and protected the erythrocytes, because it reduced the formation of malondialdehyde and increased the enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase in erythrocytes. CONCLUSION This study provided insights into the potential antioxidant function of the synthesized peptides originated from the bioactive peptides of S. platensis proteins, which would contribute to the development of natural antioxidant from new protein resources. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Jing Jing Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Ying-Hui Zhang
- Department of Food Science, Foshan University, Foshan, China
| | - Yu-Qiong Song
- Department of Food Science, Foshan University, Foshan, China
| | - Jing-Lin Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Xue-Wu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Zeng F, Chen W, He P, Zhan Q, Wang Q, Wu H, Zhang M. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydr Polym 2020; 246:116551. [PMID: 32747236 DOI: 10.1016/j.carbpol.2020.116551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
Chinese water chestnut peels are a kind of vegetable processing waste containing many active components such as polysaccharides, the structure of which remains unknown. To elucidate the structure of polysaccharides from Chinese water chestnut peels, two polysaccharides named WVP-1 and WVP-2 were isolated. WVP-1 (3.16 kDa) consisted of mannose (1.75 %), glucose (84.69 %), galactose (6.32 %), and arabinose (7.24 %), while WVP-2 (56.97 kDa) was composed of mannose (3.18 %), rhamnose (1.52 %), glucuronic acid (1.42 %), galacturonic acid (4.83 %), glucose (11.51 %), galactose (36.02 %), and arabinose (41.53 %). Linkage and NMR data indicated that WVP-1 was composed mainly of →4)-α-d-Glcp(1→ and a certain proportion of →3)-β-d-Glcp-(1→, including linear and branched polysaccharides simultaneously. WVP-2 was a pectin-like polysaccharide with →4)-α-d-GalpA6Me-(1→ units and the branch points of →3,4)-α-l-Arap-(1→, →3,6)-β-d-Galp-(1→. WVP-2 exhibited stronger potential antioxidant and immunomodulatory activities than WVP-1 in vitro. These results provide a foundation for the further study of polysaccharides from Chinese water chestnut peels.
Collapse
Affiliation(s)
- Fanke Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Wenbo Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Ping He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qiping Zhan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
28
|
Jing L, Sheng J, Jiang J, Wang Y, Shen X, Liu D, Zhang W, Mao S. Chemical characteristics and cytoprotective activities of polysaccharide fractions from Athyrium Multidentatum (Doll.) Ching. Int J Biol Macromol 2020; 158:S0141-8130(20)33199-8. [PMID: 32437802 DOI: 10.1016/j.ijbiomac.2020.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Five polysaccharide fractions (PS-1, PS-2, PS-3, PS-4 and PS-5) were successfully isolated from Athyrium Multidentatum (Doll.) Ching by anion-exchange column chromatography. Their in vitro cytoprotective activities and the underlying mechanisms were explored in this paper. Chemical analysis suggested that the five polysaccharide fractions were heteropolysaccharides with different molecular weights and monosaccharide compositions. Treatment with these polysaccharide fractions could increase cell viabilities, superoxide dismutase/catalase activities, nitric oxide contents, mitochondrial membrane potential levels and Bcl-2/Bax ratios, and reduce cell apoptosis, intracellular reactive oxygen species production and malondialdehyde contents in H2O2-damaged cells. Moreover, these polysaccharide fractions enhanced the mRNA expression levels of PI3K, Akt, FOXO3a, Nrf2 and HO-1 and PS-4 exhibited the most powerful effects on the mRNA expression of these genes. Current findings suggested that the polysaccharide fractions decreased H2O2-induced apoptosis of HUVECs. The activation of PI3K/Akt/FOXO3a and Nrf2/HO-1 signaling pathways might be involved in the protective mechanisms of the active fractions. The polysaccharides might be one of the key bioactive ingredients of Athyrium Multidentatum (Doll.) Ching for the treatment of oxidative damage.
Collapse
Affiliation(s)
- Liang Jing
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Jingru Jiang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yang Wang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiaoyan Shen
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Weifen Zhang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Shumei Mao
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| |
Collapse
|
29
|
Abdel-Rahman M, Rezk MM, Ahmed-Farid OA, Essam S, Abdel Moneim AE. Saussurea lappa root extract ameliorates the hazards effect of thorium induced oxidative stress and neuroendocrine alterations in adult male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13237-13246. [PMID: 32016872 DOI: 10.1007/s11356-020-07917-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The present study was aimed to estimating the effect of Saussurea lappa (costus) root extract on thorium accumulation in different brain regions (cerebral cortex, cerebellum, and hypothalamus) of adult male albino rats and also to evaluate the antioxidant effect and thyroid gland modulation activity of costus following thorium toxicity. Adult male rats were randomly allocated into four groups; control group receiving saline (0.9% NaCl), thorium group receiving an intraperitoneal (i.p.) injection of thorium nitrate (Th; 6.3 mg/kg bwt), costus group receiving an oral administration of costus extract at 200 mg/kg bwt and costus + thorium group receiving costus 1 h before thorium injection. Thorium injection in rats for 28 days resulted in the accumulation of Th maximally in the cerebellum followed by the cerebral cortex and then in the hypothalamus. The accumulation of Th was associated with significant disturbance in sodium and potassium ions. A significant decrease in monoamines was also observed in different brain regions. Furthermore, the results indicated that Th-induced oxidative stress evidenced by increased lipid peroxidation and nitric oxide and decrease the glutathione content. Additionally, Th caused a significant increase in thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) levels in the serum of rats. However, the pre-administration of costus alleviated all of those disturbances. Our results revealed that costus extract exerted its protective effect mainly through potentiating the antioxidant defense system.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed M Rezk
- Isotopes Department, Nuclear Materials Authority, Cairo, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Giza Governorate, Egypt
| | - Safia Essam
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
30
|
Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int J Biol Macromol 2020; 145:1080-1090. [DOI: 10.1016/j.ijbiomac.2019.09.201] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 11/23/2022]
|
31
|
Wu T, Shen M, Liu S, Yu Q, Chen Y, Xie J. Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food Chem Toxicol 2020; 135:111014. [DOI: 10.1016/j.fct.2019.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
|
32
|
Duan S, Zhao M, Wu B, Wang S, Yang Y, Xu Y, Wang L. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int J Biol Macromol 2019; 155:1114-1122. [PMID: 31715234 DOI: 10.1016/j.ijbiomac.2019.11.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
In the present study, the native polysaccharide (RNP) extracted from blackcurrant fruits was carboxymethylated. Physicochemical characteristics and antioxidant activities in vitro of RNP and three carboxymethylated polysaccharides (CRNPs) were determined. GC analysis proved that RNP and CRNPs were composed of the same six monosaccharides (galacturonic acid, rhamnose, arabinose, mannose, glucose and galactose), but the molar ratios of monosaccharides were different. HPLC demonstrated that the molecular weights of CRNPs were improved. The assays of the antioxidant properties indicated that CRNPs possessed stronger scavenging activities on radicals (hydroxyl and superoxide radicals) and better anti-lipid peroxidation activities, as well as better protection effects on erythrocyte hemolyses in vitro compared with RNP. The activities of CRNPs were significantly enhanced with the increase of the degree of substitution (DS). These results proved that the carboxymethylation could effectively increase the antioxidant activities of the polysaccharide.
Collapse
Affiliation(s)
- Suyang Duan
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Meimei Zhao
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Baoyu Wu
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shijie Wang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Yang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yaqin Xu
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Libo Wang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
33
|
Chen W, Zhu X, Ma J, Zhang M, Wu H. Structural Elucidation of a Novel Pectin-Polysaccharide from the Petal of Saussurea laniceps and the Mechanism of its Anti-HBV Activity. Carbohydr Polym 2019; 223:115077. [DOI: 10.1016/j.carbpol.2019.115077] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
|