1
|
Yu P, Zhou Y, Liu J, Yang M, Wang J, Ai X. Extraction methods, structural features and bioactivity diversity of polysaccharides from the genus Chrysanthemum: A review. Int J Biol Macromol 2025; 293:139423. [PMID: 39753177 DOI: 10.1016/j.ijbiomac.2024.139423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The genus Chrysanthemum has been widely used as both folk medicine and food in East Asia for thousands of years, serving as a significant source of nutritional and pharmacological value. According to the theory of traditional Chinese medicine, it clears heat and toxic materials and regulates liver function. Accumulating evidence has demonstrated that polysaccharides from the genus Chrysanthemum, especially Chrysanthemum morifolium, Chrysanthemum indicum, and Coreopsis tinctoria, are vital representative macromolecules with diverse biological activities, including antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, antitumor, and antiviral properties as well as the ability to regulate the gut microbiota. It is well-known that different extraction and purification methods may cause differences in the primary structures of chrysanthemum polysaccharides (CPs), which in turn lead to different polysaccharide biological activities. However, the lack of a review summarizing the recent advances in CPs may have hindered their development and utilization. The present review aims to review information on the extraction and purification, structural characterization, biological functions, toxicity, and applications of CPs. In addition, this review may deepen our understanding of CPs, and offers a theoretical basis for the further development of CPs into functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jia Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China.
| |
Collapse
|
2
|
Tian H, Ling N, Guo C, Gao M, Wang Z, Liu B, Sun Y, Chen Y, Ji C, Li W. Immunostimulatory activity of sea buckthorn polysaccharides via TLR2/4-mediated MAPK and NF-κB signaling pathways in vitro and in vivo. Int J Biol Macromol 2024; 283:137678. [PMID: 39566757 DOI: 10.1016/j.ijbiomac.2024.137678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
SP0.1-1, derived from Sea buckthorn (Hippophae rhamnoides L.), has been discovered to exhibit unique antioxidant activity. In this study, we investigated the immunomodulatory activity and mechanisms of SP0.1-1 on macrophage RAW 264.7 cells in vitro and immunosuppressive mice induced by cyclophosphamide in vivo. The results indicated SP0.1-1 strengthened the immune functions via promoting the proliferation of RAW264.7 cells and phagocytic activity, along with stimulating the release of NO, ROS and cytokines including TNF-α, IL-6, IL-1β and IFN-γ. Western blot and molecular docking analysis demonstrated that SP0.1-1 attached to the prime receptors TLR2 and TLR4 in RAW264.7 cells, and triggered the activation of MyD88-mediated MAPK and NF-κB signaling pathways, thereby exerting the immune response in RAW264.7 cells. However, the intervention of specific inhibitors against TLR2, TLR4, JNK, ERK, p38 and NF-κB blocked the TLR-mediated MAPK and NF-κB signaling pathways and downregulated the levels of NO and the aforementioned cytokines, thus suppressing the activation of macrophages. Therefore, it can be speculated that SP0.1-1 activated the macrophages principally via the TLR2/4-MyD88-mediated MAPK and NF-κB signaling pathways. Additionally, SP0.1-1 could protect against the cyclophosphamide-induced immunosuppression in mice, manifested by the improvement of body weight, immune organ indices, phagocytic index, and the relievement of spleen damage, along with the enhancement of cytokines TNF-α, IL-6, IFN-γ and immunoglobulin IgG and IgM. These findings will shed light on the molecular mechanism of SP0.1-1 on the immunoregulatory effect, and lay the foundation for exploiting a potential immunostimulatory agent of SP0.1-1.
Collapse
Affiliation(s)
- Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zihao Wang
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bing Liu
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yin Chen
- School of Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Wenlan Li
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
3
|
Chen S, Wang L, Rong S, Duan Y, Wang H. Extraction, purification, chemical characterization, and in vitro hypoglycemic activity of polysaccharides derived from Rosa laevigata Michx. Int J Biol Macromol 2024; 279:135116. [PMID: 39208908 DOI: 10.1016/j.ijbiomac.2024.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to optimize the extraction process of polysaccharides from Rosa laevigata Michx. (RLMP) using an ultrasound-microwave-assisted method and investigate its in vitro hypoglycemic activity. Key factors affecting RLMP yield were identified using a Plackett-Burman design, followed by a Box-Behnken design and response-surface methodology, to determine the optimal extraction conditions. RLMP was purified using DEAE-52 cellulose, yielding two homogeneous fractions: RLMP-1 and RLMP-2. Monosaccharide composition was analyzed by gas chromatography, and structural characterization of RLMP, RLMP-1, and RLMP-2 was performed using FT-IR, SEM, and TEM. Methylation analysis and NMR were used to elucidate the sugar-chain structure of RLMP-1. In vitro hypoglycemic activity analysis showed that RLMP improved the glucose consumption and glycogen synthesis and enhanced the activities of pyruvate kinase and hexokinase in IR-HepG2 cells. Moreover, RLMP significantly increased the activities of antioxidant enzymes, such as CAT, SOD, and GSH-Px and decreased those of ROS and MDA. Western blotting analysis confirmed that RLMP enhances glucose and lipid metabolism and reduces oxidative stress by activating the PI3K/Akt/GLUT-4 signaling pathway, thereby exerting its hypoglycemic effect. These findings suggest that RLMP is a promising candidate for developing novel antioxidant agents or hypoglycemic drugs.
Collapse
Affiliation(s)
- Shuai Chen
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Graduate school, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Shuang Rong
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Yuyuan Duan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Huizhu Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China.
| |
Collapse
|
4
|
Zhong RF, Liu CJ, Hao KX, Fan XD, Jiang JG. Polysaccharides from Flos Sophorae Immaturus ameliorates insulin resistance in IR-HepG2 cells by co-regulating signaling pathways of AMPK and IRS-1/PI3K/AKT. Int J Biol Macromol 2024; 280:136088. [PMID: 39366625 DOI: 10.1016/j.ijbiomac.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.
Collapse
Affiliation(s)
- Rui-Fang Zhong
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
6
|
Li B, Zhang T, Tan G, Pu Z, Shen Y. Neuroprotective Effects of Astragalus Polysaccharide on Retina Cells and Ganglion Cell Projection in NMDA-Induced Retinal Injury. Curr Eye Res 2024:1-13. [PMID: 39373214 DOI: 10.1080/02713683.2024.2412304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Astragalus polysaccharide (APS), a water-soluble heteropolysaccharide, possesses immunomodulatory, anti-inflammatory, and cardioprotective properties. This study investigates the neuroprotective potential of APS in a model of N-Methyl-d-aspartic acid (NMDA)-induced retinal neurodegeneration, aiming to explore its potential as a treatment for retinal degenerative diseases. METHODS Retinal function was evaluated using electroretinography (ERG), optomotor reflex (OMR), and flash visual evoked potentials (FVEP). Retinal inflammatory responses were examined through immunohistochemistry, western blotting (WB), and quantitative reverse transcription PCR (qRT-PCR). To assess the integrity of visual projections, an intravitreal injection of adeno-associated virus (AAV) was employed to trace the projections of retinal ganglion cells (RGCs) to the visual centers. RESULTS APS treatment conferred protection to retinal cells, as indicated by ERG and OMR assessments. And APS intervention mitigated NMDA-induced apoptosis, evidenced by a decrease in TUNEL-positive cells. Furthermore, APS treatment attenuated the NMDA-induced reduction in RGC projections to the visual centers, including the superior colliculus and lateral geniculate nucleus, as demonstrated by AAV tracing. CONCLUSIONS Our findings reveal that APS shields the retina from NMDA-induced damage by inhibiting the NF-κB signaling pathway and reduces the detrimental effects of NMDA on RGC projections to the visual centers. These findings propose APS as a potential novel therapeutic agent for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
- Frontier Science Center for lmmunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
7
|
Zhou W, Kan X, Dong W, Yan Y, Mi J, Lu L, Cao Y, Sun Y, Zeng X, Wang W. In vivo absorption and fecal excretion of polysaccharides from the fruits of Lycium barbarum L. in rats through fluorescence labeling. Int J Biol Macromol 2024; 278:134613. [PMID: 39127284 DOI: 10.1016/j.ijbiomac.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
In the present study, the in vivo absorption and fecal excretion of a purified fraction of polysaccharides from the fruits of Lycium barbarum L. (LBPs-4) in rats were investigated by labelling LBPs-4 with fluorescein isothiocyanate (FITC). It was found that the fluorescent labeled LBPs-4 (LBPs-4-FITC) was not detected in the plasma within 24 h following the administration of a single dose of LBPs-4-FITC (100 mg/kg of body weight) to rats, indicating that LBPs-4 was hardly absorbed in its prototype form. Instead, a smaller fragment dissociated from LBPs-4-FITC was observed in feces and was accumulated in a time-dependent manner, suggesting that LBPs-4 was excreted into the feces with a form of degradation. Meanwhile, we observed that LBPs-4-FTIC could modulate the fecal bacterial community profile via increasing the relative abundances of Bacteroides ovatus and Alistipes and promote the production of acetic acid. Furthermore, the monoculture experiment confirmed that LBPs-4 could be metabolized into smaller fragment by B. ovatus, producing acetic acid. Collectively, our study provides information on the destiny of LBPs-4 after oral administration: non-absorbed but moved to the large intestine and catabolized by gut microbiota, especially B. ovatus.
Collapse
Affiliation(s)
- Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Jia Mi
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Lu Lu
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Youlong Cao
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
8
|
Li YM, Zhan XM, Hao KX, Zhong RF, Wang DW, Ma SY, Jiang J, Zhu W. A polysaccharide PRCP from Rosa cymosa Tratt fruit: Structural characteristics and immunomodulatory effects via MAPK pathway modulation in vitro. Int J Biol Macromol 2024; 276:133025. [PMID: 38852737 DOI: 10.1016/j.ijbiomac.2024.133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Synthetic Enzymes and Natural Products Centre, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xiao-Mei Zhan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Rui-Fang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Da-Wei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528329, China
| | - Shi-Yu Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
9
|
Guo Q, Zhang M, Mujumdar AS. Progress of plant-derived non-starch polysaccharides and their challenges and applications in future foods. Compr Rev Food Sci Food Saf 2024; 23:e13361. [PMID: 39031723 DOI: 10.1111/1541-4337.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 07/22/2024]
Abstract
The development of future food is devoted not only to obtaining a sustainable food supply but also to providing high-quality foods for humans. Plant-derived non-starch polysaccharides (PNPs) are widely available, biocompatible, and nontoxic and have been largely applied to the food industry owing to their mechanical properties and biological activities. PNPs are considered excellent biomaterials and food ingredients contributing to future food development. However, a comprehensive review of the potential applications of PNPs in future food has not been reported. This review summarized the physicochemical and biological activities of PNPs and then discussed the structure-activity relationships of PNPs. Latest studies of PNPs on future foods including cell-cultured meat, food for special medical purposes (FSMPs), and three-dimensional-printed foods were reviewed. The challenges and prospects of PNPs applied to future food were critically proposed. PNPs with strong thermal stability are considered good thickeners, emulsifiers, and gelatinizers that greatly improve the processing adaptability of foods. The mechanical properties of PNPs and decellularized plant-based PNPs make them desirable scaffolds for cultured meat manufacturing. In addition, the biological activities of PNPs exhibit multiple health-promoting effects; therefore, PNPs can act as food ingredients producing FSMP to promote human health. Three-dimensional printing technology enhances food structures and biological activities of functional foods, which is in favor of expanding the application scopes of PNPs in future food. PNPs are promising in future food manufacturing, and more efforts need to be made to realize their commercial applications.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
10
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
11
|
Song M, Wang J, Bao K, Sun C, Cheng X, Li T, Wang S, Wang S, Wen T, Zhu Z. Isolation, structural characterization and immunomodulatory activity on RAW264.7 cells of a novel exopolysaccharide of Dictyophora rubrovalvata. Int J Biol Macromol 2024; 270:132222. [PMID: 38729468 DOI: 10.1016/j.ijbiomac.2024.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 μg/mL) promoted NO production up to 30.66 μmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 μg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.
Collapse
Affiliation(s)
- Mingyang Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiawen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kaisheng Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaolei Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tengda Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shanshan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Siqiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingchi Wen
- Guizhou Panzheng Agriculture Ltd., PR China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Guizhou Panzheng Agriculture Ltd., PR China.
| |
Collapse
|
12
|
Xue H, Liang B, Wang Y, Gao H, Fang S, Xie K, Tan J. The regulatory effect of polysaccharides on the gut microbiota and their effect on human health: A review. Int J Biol Macromol 2024; 270:132170. [PMID: 38734333 DOI: 10.1016/j.ijbiomac.2024.132170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Beimeng Liang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
13
|
Wang K, Zhou Y, Li M, Chen Z, Wu Z, Ji W, Wang J, Zhang Y. Structural elucidation and immunomodulatory activities in vitro of type I and II arabinogalactans from different origins of Astragalus membranaceus. Carbohydr Polym 2024; 333:121974. [PMID: 38494227 DOI: 10.1016/j.carbpol.2024.121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Astragalus membranaceus polysaccharide (APS) possesses excellent immunomodulatory activity. However, there are several studies on the structural characterization of APS. Here, we aimed to elucidate the repeating units of polysaccharides (APS1, 106.5 kDa; APS2, 114.5 kDa) obtained from different Astragalus membranaceus origins and further investigated their immunomodulatory activities. Based on structural analysis, types of the two polysaccharides were identified as arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), and co-elution of arabinogalactans (AGs) and α-glucan was observed. The backbone of AG-I was 1,4-linked β-Galp occasionally substituted by α-Araf at O-2 and/or O-3. AG-II was a highly branched polysaccharide with long branches of α-Araf, which were attached to the O-3 of 1,6-linked β-Galp of the backbone. The presence of AGs in A. membranaceus was confirmed for the first time. The two polysaccharides could promote the expression of IL-6, IL-1β and TNF-α in RAW264.7 cells via MAPKs and NF-κB signaling pathways. The constants for APS1 and APS2 binding to Toll-like receptor 4 (TLR4) were 1.83 × 10-5 and 2.08 × 10-6, respectively. Notably, APS2 showed better immunomodulatory activity than APS1, possibly because APS2 contained more AGs. Hence, the results suggested that AGs were the vital components of APS in the immunomodulatory effect.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Mengqing Li
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
14
|
Wang R, Yan B, Yin Y, Wang X, Wu M, Wen T, Qian Y, Wang Y, Huang C, Zhu Y. Polysaccharides extracted from larvae of Lucilia sericata ameliorated ulcerative colitis by regulating the intestinal barrier and gut microbiota. Int J Biol Macromol 2024; 270:132441. [PMID: 38761897 DOI: 10.1016/j.ijbiomac.2024.132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pest management technology has been a promising bioconversion method for waste resource utilization. Unlike many pests that consume waste, the larvae of Lucilia sericata, also known as maggots, have many outstanding advantages as following: with their strong adaption to environment and not easily infected and exhibiting a medicinal nutritional value. Herein, the potential efficacies of maggot polysaccharides (MP), as well as their underlying mechanisms, were explored in Dextran sulfate sodium (DSS)-induced colitis mice and TNF-α-elicited Caco-2 cells. We extracted two bioactive polysaccharides from maggots, MP-80 and MP-L, whose molecular weights were 4.25 × 103 and 2.28 × 103 g/mol, respectively. MP-80 and MP-L contained nine sugar residues: 1,4-α-Arap, 1,3-β-Galp, 1,4,6-β-Galp, 1,6-α-Glcp, 1-α-Glcp, 1,4-β-Glcp, 1-β-Xylp, 1,2-α-Manp, and 1-β-Manp. We demonstrated that MP-80 and MP-L significantly ameliorated DSS-induced symptoms and histopathological damage. Immuno-analysis revealed that compared with MP-L, MP-80 could better restore intestinal barrier and reduced inflammation by suppressing NLRP3/NF-κB pathways, which might be attributed to its enriched galactose fraction. Moreover, 16S rRNA sequencing revealed that MP-80 and MP-L both improved the dysbiosis and diversity of gut microbiota and acted on multiple microbial functions. Our study sheds new light on the possibility of using maggot polysaccharides as an alternative therapy for colitis.
Collapse
Affiliation(s)
- Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, PR China
| | - Yourui Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Xueyuan Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Mei Wu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225500, Jiangsu, PR China
| | - Tiantian Wen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Yin Qian
- Taizhou Second People's Hospital, Taizhou 225500, Jiangsu, PR China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical school, Nanjing University, Nanjing 210000, PR China.
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, PR China.
| | - Yongqiang Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
15
|
Wang M, Yu A, Hu W, Zhang Z, Wang Z, Meng Y, Yang B, Kuang H. Extraction, purification, structural characteristic, health benefit, and product application of the polysaccharides from bamboo shoot: A review. Int J Biol Macromol 2024; 271:132581. [PMID: 38797301 DOI: 10.1016/j.ijbiomac.2024.132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Bamboo shoot is a kind of widely distributed natural green vegetable, which has a long history of consumption and cultivation, and has edible, nutritional and economic value. Bamboo shoot is nutrient-rich food with carbohydrates, fats, proteins, polysaccharides, flavonoids, alkaloids and other chemical components, can meet the body's needs. Notably, bamboo shoot polysaccharides are the most attractive saccharides, most of which are water-soluble polysaccharides, and their various biological activities have been paid more attention by researchers. With the deepening of research on bamboo shoot polysaccharides, they have been found to have anti-diabetic, anti-oxidant, anti-inflammatory, anti-complement activities, immunomodulatory, etc. Further research on bamboo shoot polysaccharides, their sources, molecular weights, chemical structures, monosaccharide compositions and structural characteristics are constantly explored. In order to better research and development of bamboo shoot polysaccharides, it is necessary to carry on a comprehensive arrangement. Here, the extraction and purification methods, structural characteristics, health benefits, structure-activity relationships and product applications of bamboo shoot polysaccharides were systematically reviewed. This article will deepen the understanding of bamboo shoot polysaccharides, provide knowledge base for further research on bamboo shoot polysaccharides, and expand the vision for developing related products.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
16
|
Ling N, Tian H, Wang Q, Gao M, Xu G, Sun Y, Song D, Li W, Ji C. Advance in Hippophae rhamnoides polysaccharides: Extraction, structural characteristics, pharmacological activity, structure-activity relationship and application. Int J Biol Macromol 2024; 270:132420. [PMID: 38763246 DOI: 10.1016/j.ijbiomac.2024.132420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Hippophae rhamnoides (Sea buckthorn) is an excellent medicinal and edible plant owing to its high nutritional and health-promoting properties. As an important bioactive component, H. rhamnoides polysaccharides (HRPs) have aroused wide attention due to their various pharmacological activities, including hepatoprotective, immuno-modulatory, anti-inflammatory, anti-oxidant, anti-tumor, hypoglycemic, anti-obesity, and so on. Nevertheless, the development and utilization of HRP-derived functional food and medicines are constrained to a lack of comprehensive understanding of the structure-activity relationship, application, and safety of HRPs. This review systematically summarizes the advancements on the extraction, purification, structural characteristics, pharmacological activities and mechanisms of HRPs. The structure-activity relationship, safety evaluation, application, as well as the shortcomings of current research and promising prospects are also highlighted. This article aims to offer a comprehensive understanding of HRPs and lay a groundwork for future research and utilization of HRPs as multifunctional biomaterials and therapeutic agents.
Collapse
Affiliation(s)
- Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Qiyao Wang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Guiguo Xu
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Yuan Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Dongxue Song
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Wenlan Li
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| |
Collapse
|
17
|
Huang Y, Chu C, Mai Y, Zhao Y, Cao L, Ji S, Zhu B, Shen Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front Pharmacol 2024; 15:1347234. [PMID: 38835665 PMCID: PMC11148558 DOI: 10.3389/fphar.2024.1347234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-β. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.
Collapse
Affiliation(s)
- Ying Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chenling Chu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Clinical Medicine and Stomatology, School of Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Mai
- Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Luxi Cao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuiyu Ji
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quanquan Shen
- Department of Nephrology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Teng H, He Z, Hong C, Xie S, Zha X. Extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn (Hippophae rhamnoides L.): A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117809. [PMID: 38266946 DOI: 10.1016/j.jep.2024.117809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) is an edible fruit with a long history in China as a medicinal plant. The fruits of H. rhamnoides are rich in a variety of nutrients and pharmacological active compounds. As one of the most important active ingredients in sea buckthorn, polysaccharides have attracted the attention of researchers due to their antioxidant, anti-fatigue, and liver protective qualities. AIM OF THE REVIEW This review summarizes recent studies on extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn. In addition, the relationship between the structure and the activities of sea buckthorn polysaccharides (SBPS) were discussed. This review would provide important research bases and up-to-date information for the future in-depth development and application of sea buckthorn polysaccharides in the field of pharmaceuticals and functional foods. MATERIALS AND METHODS By inputting the search term "Sea buckthorn polysaccharides", relevant research information was obtained from databases such as Web of Science, Google Scholar, PubMed, China Knowledge Network (CNKI), China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS The main extraction methods of SBPS include hot water extraction (HWE), ultrasonic assisted extraction (UAE), microwave-assisted extraction (MAE), flash extraction (FE), and ethanol extraction. More than 20 polysaccharides have been isolated from sea buckthorn fruits. The chemical structures of sea buckthorn polysaccharides obtained by different extraction, isolation, and purification methods are diverse. Polysaccharides from sea buckthorn display a variety of pharmacological properties, including antioxidant, anti-fatigue, liver protection, anti-obesity, regulation of intestinal flora, immunoregulation, anti-tumor, anti-inflammatory, and hypoglycemic activities. CONCLUSIONS Sea buckthorn has a long medicinal history and characteristics of an ethnic medicine and food. Polysaccharides are one of the main active components of sea buckthorn, and they have received increasing attention from researchers. Sea buckthorn polysaccharides have remarkable pharmacological activities, health benefits, and broad application prospects. In addition, further exploration of the chemical structure of SBPS, in-depth study of their pharmacological activities, identification of their material basis, characterization of disease resistance mechanisms, and potential health functions are still directions of future research. With the accumulation of research on the extraction and purification processes, chemical structure, pharmacological effects, molecular mechanisms, and structure-activity relationships, sea buckthorn polysaccharides derived from natural resources will ultimately make significant contributions to human health.
Collapse
Affiliation(s)
- Hao Teng
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China.
| | - Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, China
| | - Chengzhi Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songzi Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xueqiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
19
|
Huang R, Li H, Huang X, Zhou Y, Liu Z, Liu C, Li Q. Extracellular matrix-mimetic immunomodulatory fibrous scaffold based on a peony stamens polysaccharide for accelerated wound healing. Int J Biol Macromol 2024; 264:130573. [PMID: 38447846 DOI: 10.1016/j.ijbiomac.2024.130573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Re-establishment of the extracellular matrix (ECM) in wound tissue is critical for activating endogenous tissue repair. In this study, we designed an ECM-like scaffold material using plant polysaccharides and assessed its efficacy through in vitro and in vivo experiments. The scaffold accelerates wound healing by regulating inflammatory responses and accelerating tissue regeneration. Briefly, we isolated two polysaccharides of varying molecular weights from peony stamens. One of the polysaccharides exhibits potent immunomodulatory and tissue regeneration activities. We further prepared electrospinning materials containing this polysaccharide. In vitro investigations have demonstrated the polysaccharide's ability to modulate immune responses by targeting TLR receptors. In vivo experiments utilizing a scaffold composed of this polysaccharide showed accelerated healing of full-thickness skin wounds in mice, promoting rapid tissue regeneration. In conclusion, our study shows that this scaffold can mobilize the endogenous regenerative capacity of tissues to accelerate repair by mimicking the characteristics of ECM. The overall study has implications for the design of new, effective, and safer tissue regeneration strategies.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiqin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya Zhou
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Congming Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
20
|
Yang Y, Fan R, Li H, Chen H, Gong H, Guo G. Polysaccharides as a promising platform for the treatment of spinal cord injury: A review. Carbohydr Polym 2024; 327:121672. [PMID: 38171685 DOI: 10.1016/j.carbpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord injury is incurable and often results in irreversible damage to motor function and autonomic sensory abilities. To enhance the effectiveness of therapeutic substances such as cells, growth factors, drugs, and nucleic acids for treating spinal cord injuries, as well as to reduce the toxic side effects of chemical reagents, polysaccharides have been gained attention due to their immunomodulatory properties and the biocompatibility and biodegradability of polysaccharide scaffolds. Polysaccharides hold potential as drug delivery systems in treating spinal cord injuries. This article aims to present an extensive evaluation of the potential applications of polysaccharide materials in scaffold construction, drug delivery, and immunomodulation over the past five years so that offering new directions and opportunities for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Xu J, Yu Y, Chen K, Wang Y, Zhu Y, Zou X, Xu X, Jiang Y. Astragalus polysaccharides ameliorate osteoarthritis via inhibiting apoptosis by regulating ROS-mediated ASK1/p38 MAPK signaling pathway targeting on TXN. Int J Biol Macromol 2024; 258:129004. [PMID: 38151083 DOI: 10.1016/j.ijbiomac.2023.129004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
This research aims to explore the potential of astragalus polysaccharides (APS) in treating osteoarthritis. The primary component of APS extracted in this study was glucose, and noticeably it had a relatively high content of glucuronic acids. In vitro, APS reduced ROS levels, protected chondrocytes from apoptosis, and promoted collagen II expression by regulating ASK1 (apoptosis-signal-regulating kinase1)/p38 cell apoptosis pathway. Further co-immunoprecipitation and immunofluorescence localization experiments demonstrated that the thioredoxin (TXN) antioxidant system was responsible for its bioactivity. Moreover, TXN silencing remarkably blocked the protective effects of APS, indicating that APS inhibited chondrocyte apoptosis by targeting TXN. In vivo, APS effectively mitigated cartilage loss and chondrocyte apoptosis and decreased expressions of p-ASK1 and p-p38. Collectively, this research first demonstrated that APS could ameliorate osteoarthritis by ASK1/p38 signaling pathway through regulating thioredoxin. In conclusion, APS holds promise as a nutraceutical supplement for osteoarthritis in future drug development.
Collapse
Affiliation(s)
- Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xianghong Xu
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Feng Y, Chen S, Song Y, Liu S, Duan Y, Cai M, Kong T, Zhang H. A novel Sagittaria sagittifolia L. polysaccharides mitigate DSS-induced colitis via modulation of gut microbiota and MAPK/NF-κB signaling pathways. Int J Biol Macromol 2024; 254:127835. [PMID: 37924911 DOI: 10.1016/j.ijbiomac.2023.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Sagittaria sagittifolia L. polysaccharides possess anti-inflammatory, antioxidant, and immune-modulatory properties. In this study, we identified a novel S. sagittifolia L. polysaccharide, named PSSP-1, and evaluated its potential in alleviating dextran sulfate sodium (DSS)-induced colitis in a mouse model. The results demonstrated that administration of PSSP-1 at doses of 100, 200, and 400 mg/kg·bw significantly reduced the disease activity index (DAI) and suppressed the expression of inflammatory cytokines in UC mice. Furthermore, PSSP-1 treatment upregulated the expression levels of claudin-1, occludin, and ZO-1, and promoted the diversity and abundance of beneficial gut microbiota, including Lactobacillus and Candidatus_Saccharimonas, while reducing the levels of Bacteroidetes and Verrucomicrobiota. Particularly, the Lactobacillus_johnsonii species may play a potentially significant role in modulating colitis. Subsequently, there was a significant increase in the levels of short-chain fatty acids (SCFAs). Additionally, the correlation analyses revealed positive associations between PSSP-1 supplementation and Nitrosospira and Dialister, which are implicated in gut inflammation. Mechanistically, PSSP-1 intervention inhibited the protein phosphorylation of key molecules in the MAPK and NF-κB signaling pathways. Collectively, these findings suggest that PSSP-1 mitigates colitis symptoms by repairing the intestinal barrier, promoting microbial metabolism, and regulating the gut microbiota-MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Simeng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yating Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Bai C, Chen R, Zhang Y, Bai H, Tian L, Sun H, Li D, Wu W. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int J Biol Macromol 2023; 247:125730. [PMID: 37422248 DOI: 10.1016/j.ijbiomac.2023.125730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In order to better understand the influences of extraction techniques on the yield, characteristics, and bioactivities of polysaccharide conjugates, hot reflux extraction (HRE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), complex enzymolysis extraction (CEE), ultra-high pressure extraction (UPE), ultrasonic complex enzymes extraction (UEE) were used to extract sweet potato stems leaves polysaccharide conjugates (SPSPCs), and their physicochemical characteristics, functional properties, antioxidant and hypoglycemic activities were compared. Results showed that compared with HRE conjugate (HR-SPSPC), the yield, content of uronic acid (UAC), total phenol (TPC), total flavonoid (TFC) and sulfate group (SGC), water solubility (WS), percentage of glucuronic acid (GlcA), galacuronic acid (GalA) and galactose (Gal), antioxidant and hypoglycemia activities of UEE polysaccharide conjugates (UE-SPSPC) significant increased, while its molecular weight (Mw), degree of esterification (DE), content of protein (PC) and percentage of glucose (Glc) declined, but monosaccharides and amino acid types, and glycosyl linkages were not much different. Indeed, UE-SPSPC possessed the highest antioxidant activities and hypolipidemic activities among six SPSPCs, which might be due to the high UAC, TPC, TFC, SGC, GlcA, GalA and WS, low Mw, DE and Glc of UE-SPSPC. The results reveal that UEE is an effective extraction and modification technology of polysaccharide conjugates.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Zhang
- CHINA FAW GROUP CO., LTD, General Institute of FAW Vehicle benchmarking Center, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|