1
|
Ding K, Xie Y, Xu H, Xu S, Ge S, Li H, Chang X, Chen J, Wang R, Shan Y, Ding S. Visible light-responsive TiO 2-based hybrid nanofiller reinforced multifunctional chitosan film for effective fruit preservation. Food Chem 2024; 460:140539. [PMID: 39059328 DOI: 10.1016/j.foodchem.2024.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
In this study, we developed a multifunctional chitosan film with visible light-responsive photocatalytic properties by incorporating a novel nanofiller-a nanohybrid particle of poly(tannic acid) (PTA) and TiO2 (TP-NPs). Firstly, the hybridization of TiO2 with PTA not only improved its dispersion but also obtained TP-NPs with smaller band gaps (from 3.11 eV to 1.55 eV) and higher separation efficiency of photogenerated e--h+ (about 1.5-fold enhancement), thereby producing more reactive oxygen species and enhancing the antibacterial efficacy (compared with TiO2, the antibacterial effect of TP-NPs on Staphylococcus aureus and Escherichia coli was heightened by about 2 times under visible light for 1 h). Secondly, TP-NPs were hydrogen bonded with chitosan, strengthening its mechanical and barrier properties, while imparting exceptional antibacterial efficacy. Moreover, the multifunctional properties enabled the active film to effectively delay the quality deterioration of grapes and kiwifruit. Hence, this study presented a multifunctional active packaging film tailored for fruit preservation.
Collapse
Affiliation(s)
- Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiani Chen
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
2
|
Limsakul S, Thanachayanont C, Siyasukh A, Jaideekard M, Yimklan S, Kijjanapanich P, Chimupala Y. High efficiency azo dye removal via a combination of adsorption and photocatalytic processes using heterojunction Titanium dioxide nanoparticles on hierarchical porous carbon. ENVIRONMENTAL RESEARCH 2024; 260:119627. [PMID: 39019139 DOI: 10.1016/j.envres.2024.119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Amidst the rapid development of the textile industry, wastewater problems also arise. High-performance materials for reactive black 5 (RB5) dye treatment by adsorption and photocatalysis were evolved using Titanium dioxide (TiO2) nanoparticles on carbon media. Herein, the synthesis of spherical carbon via the water-in-oil emulsion method alongside a sol-gel process and the production of TiO2 nanoparticles using the precipitation procedure of Titanium isopropoxide and carbonization at 700-900 °C for 2 h are a novel approach in this work. The characterization of these materials indicates that different temperatures result in distinct properties, for instance, raised pores on the surface of the media and changes in the crystal structure of TiO2. The results show that the as-synthesized material carbonized at 900 °C had distinguished dye adsorption, up to 430 ppm in 1 h, due to their high surface area and pore volume. On the contrary, the calcined 700 °C condition had the prominent photocatalytic efficiency on account of the heterojunction band gap between anatase and rutile crystal structure. A mixed phase minimizes the charge recombination, subsequently increasing the photocatalytic capability.
Collapse
Affiliation(s)
- Saitharn Limsakul
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Adisak Siyasukh
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Manunchaya Jaideekard
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimluck Kijjanapanich
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yothin Chimupala
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Wu Y, Ding Y, Chen M, Zhang H, Yu J, Jiang T, Wu M. A Photo-Assisted Zinc-Air Battery with MoS 2/Oxygen Vacancies Rich TiO 2 Heterojunction Photocathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408627. [PMID: 39434472 DOI: 10.1002/smll.202408627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Converting solar energy into electrochemical energy is a sustainable strategy, but the design of photo-assisted zinc-air battery (ZAB) with efficient utilization of sunlight faces huge challenges. Herein, a photo-assisted ZAB of a three-electrode system using MoS2/oxygen vacancies-rich TiO2 heterojunction as charge cathode and Fe, N-doped carbon matrix (FeNC) as discharge cathode is constructed, where MoS2 is chosen as solar light-responsive catalytic material and TiO2 acts as electron transport layer and hole blocking layer, arising from a train of thought for efficient charging under sunlight irradiation and light-independent discharging. The introduction of oxygen vacancies in TiO2 facilitates the temporary trapping of carriers and triggers rapid carrier transfer at the interface of the heterojunction, which hinders the recombination of photogenerated holes, thereby facilitating their further participation in the oxygen evolution reaction. Moreover, FeNC exhibits superior oxygen reduction reaction performance due to strong d-π interactions. As a result, the well-built ZABs deliver a low charge voltage (0.71 V) under illumination at 0.1 mA cm-2, and a high power density (167.6 mW cm-2) in dark. This work paves a special way for the development of ZABs by directly harvesting solar energy in charging and efficiently discharging regardless of lighting conditions.
Collapse
Affiliation(s)
- Yongjian Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, P. R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
4
|
Carozo AM, López-Tenllado FJ, Herrera-Beurnio MC, Hidalgo-Carrillo J, Martín-Gómez J, Estevez R, Ariza-Pérez A, Urbano FJ, Marinas A. Pt-TiO 2 Systems for Enhanced Hydrogen Production from Glycerol: Direct vs Sequential Incorporation Through Photodeposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5109. [PMID: 39459815 PMCID: PMC11509525 DOI: 10.3390/ma17205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Pt-TiO2 systems are the most widely used photocatalysts in the production of green hydrogen from glycerol photoreforming. To incorporate metals on the surface of materials, photodeposition is the most used method because it employs mild conditions. However, despite its use, there are some parameters that have not been deeply studied, such as the appropriate metal loading and the method itself, to obtain a better dispersion of Pt. In this work, six Pt-TiO2 catalysts were synthesized by a classical photodeposition method employing UV radiation. The studied Pt wt.% range was 0.15-0.60 wt.%, being incorporated in one step or in subsequent ones. HRTEM analyses showed that both methods allowed a homogeneous distribution of Pt, and in both, the particle size was around 2.3-3.6 nm, increasing with metal loading. The photocatalytic activity of materials was tested in glycerol photoreforming under UV radiation, and the 0.45 wt.% Pt-containing solid that had been synthesized in one step was the one that allowed the highest hydrogen production. This might suggest that around 0.40% is the appropriate metal loading for hydrogen production under these conditions and that incorporating the desired metal percentage in one step is the most efficient method in terms of energy and time savings.
Collapse
Affiliation(s)
| | | | - M. Carmen Herrera-Beurnio
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain; (A.M.C.); (F.J.L.-T.); (J.H.-C.); (J.M.-G.); (R.E.); (A.A.-P.); (F.J.U.)
| | | | | | | | | | | | - Alberto Marinas
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain; (A.M.C.); (F.J.L.-T.); (J.H.-C.); (J.M.-G.); (R.E.); (A.A.-P.); (F.J.U.)
| |
Collapse
|
5
|
Liu L, Li S, Wang D, Bae JS, Rhee SJ, Lee BW, Liu C. Mid-gap levels induced near-infrared response and photothermal catalytic degradation of chlortetracycline hydrochloride by (SnFe 2)O x under solar light. J Colloid Interface Sci 2024; 679:1127-1140. [PMID: 39423679 DOI: 10.1016/j.jcis.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
We present a comprehensive photocurrent characterization to explore the near-infrared (NIR) response and photothermal effects induced by mid-gap levels in (SnFe2)Ox (SFO) nanoparticles. X-ray photoelectron spectroscopy and diffuse reflectance spectroscopy revealed multiple mid-gap levels due to multivalent Fe ions. The SFO photocatalyst displayed a noticeable temperature rise under NIR irradiation and a considerable photothermal effect across the full solar spectrum during the photocatalytic degradation of chlortetracycline hydrochloride (CTC·HCl). In photothermal catalysis, after 150 min, SFO was able to remove 88% of CTC·HCl (60 mg/L), outperforming photocatalysis (79%) and thermal catalysis (73%). Rapid and slow response processes were observed in the photocurrent characterization under light-emitting diodes of different wavelengths (365-1500 nm), which revealed a clear dependence on the incident wavelength. Furthermore, innovative photocurrent response tests using alternating ultraviolet (UV) and NIR irradiation revealed that, in the presence of mid-gap levels, UV-excited electrons can aid NIR-excited electrons in achieving cascaded electron transitions, enhancing the utilization of NIR-excited electrons. Our findings demonstrate that mid-gap levels effectively improve the utilization of low-energy photons and boost the photocatalytic process through photothermal effects and increased active charge carrier density.
Collapse
Affiliation(s)
- Lei Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Shiping Li
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea; School of Physics and Electronic Information, Yan'an University, Shannxi, Yan'an 716000, PR China
| | - Dan Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, PR China
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - S J Rhee
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Bo Wha Lee
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
| |
Collapse
|
6
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
7
|
Zhao W, Chen H, Zhang J, Low PJ, Sun H. Photocatalytic overall water splitting endowed by modulation of internal and external energy fields. Chem Sci 2024:d4sc05065g. [PMID: 39397813 PMCID: PMC11467725 DOI: 10.1039/d4sc05065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The pursuit of sustainable and clean energy sources has driven extensive research into the generation and use of novel energy vectors. The photocatalytic overall water splitting (POWS) reaction has been identified as a promising approach for harnessing solar energy to produce hydrogen to be used as a clean energy carrier. Materials chemistry and associated photocatalyst design are key to the further improvement of the efficiency of the POWS reaction through the optimization of charge carrier separation, migration and interfacial reaction kinetics. This review examines the latest progress in POWS, ranging from key catalyst materials to modification strategies and reaction design. Critical analysis focuses on carrier separation and promotion from the perspective of internal and external energy fields, aiming to trace the driving force behind the POWS process and explore the potential for industrial development of this technology. This review concludes by presenting perspectives on the emerging opportunities for this technology, and the challenges to be overcome by future studies.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Haijun Chen
- Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University Nanjing 211816 Jiangsu China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| |
Collapse
|
8
|
Kubiak A. Impact of LED radiation intensity on gold nanoparticles photodeposition on TiO 2 with physicochemical and photocatalytic characterization. Sci Rep 2024; 14:20563. [PMID: 39232108 PMCID: PMC11375081 DOI: 10.1038/s41598-024-71605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
This study investigates the influence of LED radiation intensity on the photodeposition of gold nanoparticles onto TiO2 substrates, examining their physicochemical properties and photocatalytic activities. Utilizing a range of radiation intensities and wavelengths, TiO2-Au composites were synthesized and characterized through techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The deposition process, markedly enhanced by shorter wavelengths and higher intensities, efficiently formed gold nanoparticles. This research distinctly highlights observable morphological changes in the nanoparticles; increased radiation intensity not only augmented the size but also altered their shape from spherical to hexagonal. These morphological transformations significantly improve the composites' light absorption and catalytic properties due to the surface plasmon resonance of the gold nanoparticles. Photocatalytic assessments, using metronidazole as a model pollutant, demonstrated that composites prepared with higher LED intensities showed significantly enhanced degradation capabilities compared to those synthesized with lower intensities. The findings underscore that manipulating photodeposition parameters can critically influence the structural and functional properties of TiO2-Au composites, potentially advancing their applications in environmental remediation and solar energy utilization.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| |
Collapse
|
9
|
Khan SU, Hussain R, Ali Z, Maryam R, Hussain A, Alajmi MF, Rahman SU, Zulfiqar S, Cochran EW. Facile synthesis of NiSe 2-ZnO nanocomposites for enhanced photocatalysis and wastewater remediation. RSC Adv 2024; 14:28626-28637. [PMID: 39252997 PMCID: PMC11381969 DOI: 10.1039/d4ra04715j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, NiSe2 nanocubes, ZnO rods, and their composites were prepared by simple chemical methods to investigate their photocatalytic response and antibacterial activity. The optimal concentration of NiSe2 nanocubes was explored for enhanced photocatalytic performance by varying its percentage in the NiSe2-ZnO composites. The findings suggested that the optical response of ZnO was significantly improved and shifted towards visible region by incorporating NiSe2 as a co-catalyst. The photocatalytic properties of NiSe2, ZnO, and NiSe2-ZnO composites were assessed under visible light by using methylene blue (MB) as a model pollutant. The results showed that the optimized composite containing 75% NiSe2 with ZnO exhibited outstanding photocatalytic efficiency of 97%. The degradation of MB dye by NiSe2, ZnO, and their composites followed the pseudo-first-order reaction kinetics (Langmuir-Hinshelwood model). Furthermore, the prepared NiSe2-ZnO composite displayed exceptional reusability and stability over a number of cycles, demonstrating its practical applicability. This research presents unique findings, showcasing the comparative antibacterial performance of NiSe2, ZnO, and NiSe2-ZnO nanocomposites against Bacillus cereus (B. cereus). Of all the prepared photocatalysts, the 75% NiSe2-ZnO nanocomposite revealed the best performance, exhibiting an inhibition zone of 28 mm.
Collapse
Affiliation(s)
- Sibghat Ullah Khan
- Department of Physics, COMSATS University Islamabad Park Road Islamabad 45550 Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, COMSATS University Islamabad Park Road Islamabad 45550 Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad 45550 Pakistan
| | - Rabia Maryam
- Department of Physics, University of Milano Bicocca P.zza della Scienza 3 Milano I-20126 Italy
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Shams Ur Rahman
- Department of Physics, COMSATS University Islamabad Park Road Islamabad 45550 Pakistan
| | - Sonia Zulfiqar
- Department of Physical Sciences, Lander University 320 Stanley Ave Greenwood South Carolina 29649 USA
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| |
Collapse
|
10
|
Wang X, Ding Y, Yu X, Dai P, Bai Z, Wu M, Jiang T. Photo-Stimulated Zn-based Batteries: Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402310. [PMID: 38726774 DOI: 10.1002/smll.202402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China
| | - Xinxin Yu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Peng Dai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Zhiman Bai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
11
|
Putri RA, Tahir D, Heryanto. Effect of crystallite size reduction and widening of optical phonon vibration due to AC variation on ZnO/Mg composites in implementation of methylene blue degradation. Photochem Photobiol Sci 2024:10.1007/s43630-024-00624-4. [PMID: 39212858 DOI: 10.1007/s43630-024-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The fashion industry's reliance on dyes contributes significantly to environmental pollution, which disturbs the ecological balance. To address this issue, we used ZnO/Mg combined with activated carbon (AC) at various concentrations (0.1 g, 0.5 g, and 1 g), which were synthesized via sol-gel and mechanical alloying processes. The analysis of X-ray diffraction shows reduced crystallite size, with d-spacing change ( → d ← ) for ZnO/Mg/AC (0.5 g) and ( ← d → ) for ZnO/Mg/AC (1 g), respectively. The results of the IR spectrum indicated the main vibrations is MgO and Zn-O bonds at wave numbers 673 cm-1 and 467 cm-1. It was found that ZnO/Mg/AC (1 g) shows high degradation performance D % : 86.15% as a consequence of reduced crystallite size: 22.67 nm, decreased skin depth: 0.002 cm, widening of optical phonon vibration ( Δ ( LO - TO ) ): 252 cm-1 and increased E g : 4.6 eV as a function AC variation. Moreover, the finding of high photocatalytic performance ≥ 80% for 0.25 mL MB dissolved in 250 mL distilled water is obtained from all composites. Based on these results, ZnO/Mg/AC shows potential as a photocatalyst to solve the MB waste problem.
Collapse
Affiliation(s)
| | - Dahlang Tahir
- Physics Department, Hasanuddin University, Makassar, 90245, Indonesia
| | - Heryanto
- Physics Department, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
12
|
Li N, Ma Y, Sun W. Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy. Molecules 2024; 29:3995. [PMID: 39274845 PMCID: PMC11396338 DOI: 10.3390/molecules29173995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the photo-generated charge separation process spans a huge spatio-temporal scale from femtoseconds to seconds, and involves complex physical processes from microscopic atoms to macroscopic materials. Femtosecond transient absorption (fs-TA) spectroscopy is a powerful tool for studying electron transfer paths in photogenerated carrier dynamics of photocatalysts. By extracting the attenuation characteristics of the spectra, the quenching path and lifetimes of carriers can be simulated on femtosecond and picosecond time scales. This paper introduces the principle of transient absorption, typical dynamic processes and the application of femtosecond transient absorption spectroscopy in photocatalysis, and summarizes the bottlenecks faced by ultrafast spectroscopy in photocatalytic applications, as well as future research directions and solutions. This will provide inspiration for understanding the charge transfer mechanism of photocatalytic processes.
Collapse
Affiliation(s)
- Na Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanlong Ma
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
13
|
Tarasov AM, Sorokina LI, Dronova DA, Volovlikova O, Trifonov AY, Itskov SS, Tregubov AV, Shabaeva EN, Zhurina ES, Dubkov SV, Kozlov DV, Gromov D. Influence of the Structure of Hydrothermal-Synthesized TiO 2 Nanowires Formed by Annealing on the Photocatalytic Reduction of CO 2 in H 2O Vapor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1370. [PMID: 39195408 DOI: 10.3390/nano14161370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The present study investigates the photocatalytic properties of hydrothermally synthesized TiO2 nanowires (NWs) for CO2 reduction in H2O vapor. It has been demonstrated that TiO2 NWs, thermally treated at 500-700 °C, demonstrate an almost tenfold higher yield of products compared to the known commercial powder TiO2 P25. It has been found that the best material is a combination of anatase, TiO2-B and rutile. The product yield increases with increasing heat treatment temperature of TiO2 NWs. This is associated with an increase in the degree of crystallinity of the material. It is shown that the best product yield of the CO2 reduction in H2O vapor is achieved when the TiO2 NW photocatalyst is heated to 100 °C.
Collapse
Affiliation(s)
- Andrey M Tarasov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Larisa I Sorokina
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Daria A Dronova
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Olga Volovlikova
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Alexey Yu Trifonov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
- National Research Centre "Kurchatov Institute", 1 Kurchatov Square, 123182 Moscow, Russia
| | - Sergey S Itskov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Aleksey V Tregubov
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Elena N Shabaeva
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Ekaterina S Zhurina
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Sergey V Dubkov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
| | - Dmitry V Kozlov
- S.P. Kapitsa Scientific Technological Research Institute, Ulyanovsk State University, 42 Leo Tolstoy Street, 432017 Ulyanovsk, Russia
| | - Dmitry Gromov
- Institute of Advanced Materials and Technologies, National Research University of Electronic Technology MIET, Bld. 1, Shokin Square, Zelenograd, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, 119435 Moscow, Russia
| |
Collapse
|
14
|
Mantilla Á, Guerrero-Araque D, Sierra-Uribe JH, Lartundo-Rojas L, Gómez R, Calderon HA, Zanella R, Ramírez-Ortega D. Highly efficient mobility, separation and charge transfer in black SnO 2-TiO 2 structures with co-catalysts: the key step for the photocatalytic hydrogen evolution. RSC Adv 2024; 14:26259-26271. [PMID: 39161446 PMCID: PMC11332590 DOI: 10.1039/d4ra03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Oxygen vacancies and co-catalysts enhance photocatalytic hydrogen production by improving the charge carrier separation. Herein, the black SnO2-TiO2 structure (BST) was synthesized for the first time by two consecutive methods. First, the sol-gel nucleation method allowed TiO2 to form on the SnO2 nanoparticles, creating a strong interaction and direct contact between them. Subsequently, this structure was reduced by NaBH4 during thermal treatment, generating (Ti3+/Sn2+) states to form the BST. Then, 2 wt% of Co, Cu or Pd was impregnated onto BST. The results showed that the activity raised with the presence of Ti3+/Sn2+ states, reaching a hydrogen generation rate of 147.50 μmol g-1 h-1 with BST in comparison with the rate of 99.50 μmol g-1 h-1 for white SnO2-TiO2. On the other hand, the interaction of the co-catalysts with the BST structure helped to increase the photocatalytic hydrogen production rates: 154.10 μmol g-1 h-1, 384.18 μmol g-1 h-1 and 480.20 μmol g-1 h-1 for cobalt-BST, copper-BST and palladium-BST, respectively. The results can be associated with the creation of Ti3+/Sn2+ at the BST interface that changes the lifetime of the charge carrier, improving the separation of photogenerated electrons and holes and the co-catalysts in the structures move the flat band position and increasing the photocurrent response to having electrons with greater reducing power.
Collapse
Affiliation(s)
- Ángeles Mantilla
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
| | - Diana Guerrero-Araque
- CONAHCyT-Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Jhon Harrison Sierra-Uribe
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Luis Lartundo-Rojas
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnología, Zacatenco Mexico City Mexico
| | - Ricardo Gómez
- Universidad Autónoma Metropolitana, Departamento de Química Av. San Rafael Atlixco 156 09340 Mexico City Mexico
| | - Héctor A Calderon
- Instituto Politécnico Nacional, ESFM, Departamento de Física, UPALM Miguel Othon de Mendizabal s/n 07320 Mexico City Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria Circuito Exterior S/N, Coyoacan 04510 Mexico City Mexico
| | - David Ramírez-Ortega
- Instituto Politécnico Nacional, Laboratorio de Fotocatálisis, CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
- Instituto Politécnico Nacional-ENCB Edificio 8, Av. Luis Enrique Erro S/N, UPALM 07738 Mexico City Mexico
| |
Collapse
|
15
|
Elias M, Alam R, Sarker S, Hossain MA. Fabrication of Ag-doped BiOF-reduced graphene oxide composites for photocatalytic elimination of organic dyes. Heliyon 2024; 10:e34921. [PMID: 39166032 PMCID: PMC11333893 DOI: 10.1016/j.heliyon.2024.e34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Bismuth oxyfluoride (BiOF) is an emerging class of material with notable chemical stability, unique layered structure and striking energy band structure. Bi-based semiconductor materials and reduced graphene oxides (rGOs) have attracted considerable attention due to their broad spectrum of potential applications. Herein, we successfully synthesised an efficient photocatalyst comprising BiOF-rGO nanocomposites with embedded Ag nanoparticles using a simple hydrothermal method. The synthesised nanocomposites were characterised through Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy and ultraviolet (UV)-visible spectroscopy. The XRD results indicated the crystalline structures of the BiOF, Ag-doped BiOF and Ag-doped BiOF-rGO composites. Photocatalytic activity assessments focused on the degradation of methylene blue (MB) and methyl orange (MO) dyes under UV-light and sunlight irradiation. The Ag-doped BiOF-rGO composite exhibited significantly enhanced degradation efficiency, achieving 61.81 % and 74.25 % degradation of MB and MO, respectively, after 300 min under UV-light irradiation. On the contrary, pure BiOF demonstrated only 17.63 % and 48.29 % degradation for MB and MO, respectively, under similar conditions. Furthermore, under sunlight irradiation, the Ag-doped BiOF-rGO composite exhibited an MB removal efficiency of 43.87 % after 300 min, whereas pure BiOF showed only 27.47 % under identical conditions. These results underscore the potential of Ag-doped BiOF-rGO composites as highly efficient and adaptable photocatalysts for the photodegradation of organic dyes in industrial wastewater.
Collapse
Affiliation(s)
- Md. Elias
- Department of Chemistry, Jagannath University, Dhaka-1100, Dhaka, Bangladesh
| | - Rowshon Alam
- Department of Chemistry, Jagannath University, Dhaka-1100, Dhaka, Bangladesh
| | - Sebak Sarker
- Department of Chemistry, Jagannath University, Dhaka-1100, Dhaka, Bangladesh
| | | |
Collapse
|
16
|
Majnis MF, Mohd Adnan MA, Yeap SP, Muhd Julkapli N. How can heteroatoms boost the performance of photoactive nanomaterials for wastewater purification? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121808. [PMID: 39025012 DOI: 10.1016/j.jenvman.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Photocatalysis, as an alternative for treating persistent water pollutants, holds immense promise. However, limitations hinder sustained treatment and recycling under varying light conditions. This comprehensive review delves into the novel paradigm of metal and non-metal doping to overcome these challenges. It begins by discussing the fundamental principles of photocatalysis and its inherent limitations. Understanding these constraints is crucial for developing effective strategies. Band gap narrowing by metal and non-metal doping modifies the band gap, enabling visible-light absorption. Impurity energy levels and oxygen vacancies influenced the doping energy levels and surface defects. Interfacial electron transfer and charge carrier recombination are the most important factors that impact overall efficiency. The comparative analysis of nanomaterials are reviewed on various, including nanometal oxides, nanocarbon materials, and advanced two-dimensional structures. The synthesis process are narratively presented, emphasizing production yields, selectivity, and efficiency. The review has potential applications in the environment for efficient pollutant removal and water purification, economic cost-effective and scalable production and technological advancement catalyst design, in spite of its challenges in material stability, synthesis methods and optimizing band gaps. The novelty of the review paper is on the proposal of a new paradigm of heterojunctions of doped metal and non-metal photocatalysts to promise highly efficient water treatment. This review bridges the gap between fundamental research and practical applications, offering insights into tailored nano photocatalysts.
Collapse
Affiliation(s)
- Mohd Fadhil Majnis
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Azam Mohd Adnan
- Advanced Materials Research Group (AMRG) Department of Engineering, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya Campus, Jalan Timur Tambahan, 45600, Bestari Jaya, Selangor, Malaysia
| | - Swee Pin Yeap
- Department of Chemical Engineering UCSI University. UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT) Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Kumar G, Ahlawat A, Bhardwaj H, Sahu GK, Rana PS, Solanki PR. Ultrasonication-assisted synthesis of transition metal carbide of MXene: an efficient and promising material for photocatalytic organic dyes degradation of rhodamine B and methylene blue in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38232-38250. [PMID: 38801609 DOI: 10.1007/s11356-024-33505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Water pollutants of non-biodegradable toxic aromatic dye including Methylene blue (MB) and Rhodamine (RhB) are extremely carcinogenic thiazines used in various industries such as leather industry, paper industry, and the dyeing industry. The presence of dyes in wastewater causes severe threats to human health that are responsible for various harmful chronic or acute diseases and also shows an adverse impact on the environment as it reduces transparency and is harmful to water microorganisms. To overcome severe issues, many traditional techniques have been used to remove toxic pollutants, but these methods are insufficient to remove chemically stable dyes that remain in the treated wastewater. However, the photocatalytic degradation process is an efficient approach to degrade the dye up to the maximum extent with improved efficiency. Therefore, in this work, a new class of two-dimensional (2D) transition metal carbide of Titanium Carbide (Ti3C2Tx) MXene material was used for the organic dyes degradation such as MB and RhB using a photocatalytic process. A layered structure of hexagonal lattice symmetry of Ti3C2Tx MXene was successfully synthesized from the Titanium Aluminum Carbide of Ti3AlC2 bulk phase using an exfoliation process. Further, the XRD spectrum confirms the transformation of bulk MAX phase having (002) plane at 9.2° to Ti3C2Tx MXene of (002) plane at 8.88° confirms the successful removal of Al layer from MAX phase. A smooth, transparent, thin sheet-like morphology of Ti3C2Tx nanosheet size were found to be in the range of 70 to 150 nm evaluated from TEM images. Also, no holes or damages in the thin sheets were found after the treatment with strong hydrofluoric acid confirms the formation Ti3C2Tx layered sheets. The synthesized Ti3C2Tx MXene possesses excellent photocatalytic activity for the degradation of dyes MB, RhB, and mixtures of MB and RhB dyes. MB dye degraded with a degradation percentage efficiency of 99.32% in 30 min, while RhB dye was degraded upto 98.9% in 30 min. Also, experiments were conducted for degradation of mixture of MB and RhB dyes by UV light, and the degradation percentage efficiency were found to be 98.9% and 99.75% for mixture of MB and RhB dye in 45 min, respectively. Moreover, reaction rate constant (k) was determined for each dye of MB, RhB, and mixtures of MB and RhB and was found to be 0.0215 min-1 and 0.0058 min-1, and for mixtures, it was 0.0020 min-1 and 0.009 min-1, respectively.
Collapse
Affiliation(s)
- Gautam Kumar
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Ahlawat
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Hema Bhardwaj
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pawan S Rana
- Hydrogen Energy Lab, Department of Physics, DCRUST, Murthal, Sonepat, Haryana, 131001, India
| | - Partima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Halder P, Mondal I, Mukherjee A, Biswas S, Sau S, Mitra S, Paul BK, Mondal D, Chattopadhyay B, Das S. Te 4+ and Er 3+ doped ZrO 2 nanoparticles with enhanced photocatalytic, antibacterial activity and dielectric properties: A next generation of multifunctional material. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120985. [PMID: 38677226 DOI: 10.1016/j.jenvman.2024.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Amid rising water contamination from industrial sources, tackling toxic dyes and pathogens is critical. Photocatalysis offers a cost-effective and eco-friendly solution to this pressing challenges. Herein, we synthesized Te4+ and Er3+ doped ZrO2 photocatalysts through hydrothermal method and investigated their efficacy in degrading Congo red (CR) and pathogens under visible light. XRD and Raman Spectroscopy confirm monoclinic and tetragonal mixed-phases without any impurities. Doping-induced defects, reduced crystalline diameter, high surface area, modified bandgap (2.95 eV), photoluminescence quenching, coupled with interfacial polarization, contribute to EZO's excellent dielectric response (1.149 × 106), for achieving remarkable photocatalytic activity, verified by photoelectrochemical measurements, LC-MS and phytotoxicity analysis. Under optimal conditions, EZO achieves 99% CR degradation within 100 min (TOC 79.9%), surpassing ZO (77%) and TZO (84%). Catalyst dosages, dye concentrations, and solution pH effect on EZO's photocatalytic performance are systematically assessed. Scavenging experiment emphasized the pivotal role of · OH in CR degradation with 96.4% efficiency after 4 cycles, affirming its remarkable stability. Moreover, EZO demonstrates ROS-mediated antibacterial activity against E. faecalis and E. coli bacteria under visible light, achieving >97% and >94% inhibition rate with an inhibition zone > 3 mm. Hence, the nanoparticle's dual action offers a practical solution for treating contaminated wastewater, ensuring safe irrigation.
Collapse
Affiliation(s)
- Piyali Halder
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Indrajit Mondal
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | | | - Somen Biswas
- Department of Physics, Jadavpur University, Kolkata, 700032, India; Department of Physics, Bangabasi College, Kolkata, 700009, India
| | - Souvik Sau
- Department of Physics, Jadavpur University, Kolkata, 700032, India; Department of Physics, Bangabasi College, Kolkata, 700009, India
| | - Sucheta Mitra
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | | | - Dheeraj Mondal
- Department of Physics, Nabagram Hiralal Paul College, Hooghly, 712246, India
| | | | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
19
|
Zhao X, Shang S, Liu H, Peng C, Hu J. Dipole moment regulation for enhancing internal electric field in covalent organic frameworks photocatalysts. CHEMOSPHERE 2024; 356:141947. [PMID: 38599332 DOI: 10.1016/j.chemosphere.2024.141947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have recently emerged as a kind of promising photocatalytic platform in addressing the growing threat of trace pollutants in aquatic environments. Along this, we propose a strategy of constructing internal electric field (IEF) in COFs through the dipole moment regulation, which intrinsically facilitates the separation and transfer of photogenerated excitons. Two COFs of BTT-TZ-COF and BTT-TB-COF are developed by linking the electron-donor of benzotrithiophene (BTT) block and the electron-acceptor of triazine (TZ) or tribenzene (TB) block, respectively. DFT calculations demonstrate TZ block with larger dipole moment can achieve more efficient IEF due to the stronger electron-attractive force and hence narrower bandgap. Moreover, featuring the highly-order crystalline structure for accelerating photo-excitons transfer and rich porosity for facilitating the adsorption, BTT-TZ-COF exhibited an excellent universal performance of photocatalytic degradations of various dyes. Specifically, a superior photodegradation efficiency of 99% Rhodamine B (RhB) is achieved within 20 min under the simulated sunlight. Therefore, this convenient construction approach of enhanced IEF in COFs through rational regulation of the dipole moment can be a promising way to realize high photocatalytic activity.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shuaishuai Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Changjun Peng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jun Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Katayama K. Pattern-illumination time-resolved phase microscopy and its applications for photocatalytic and photovoltaic materials. Phys Chem Chem Phys 2024; 26:9783-9815. [PMID: 38497609 DOI: 10.1039/d3cp06211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pattern-illumination time-resolved phase microscopy (PI-PM) is a technique used to study the microscopic charge carrier dynamics in photocatalytic and photovoltaic materials. The method involves illuminating a sample with a pump light pattern, which generates charge carriers and they decay subsequently due to trapping, recombination, and transfer processes. The distribution of photo-excited charge carriers is observed through refractive index changes using phase-contrast imaging. In the PI-PM method, the sensitivity of the refractive index change is enhanced by adjusting the focus position, the method takes advantage of photo-excited charge carriers to observe non-radiative processes, such as charge diffusion, trapping in defect/surface states, and interfacial charge transfer of photocatalytic and photovoltaic reactions. The quality of the image sequence is recovered using various informatics calculations. Categorizing and mapping different types of charge carriers based on their response profiles using clustering analysis provides spatial information on charge carrier types and the identification of local sites for efficient and inefficient photo-induced reactions, providing valuable information for the design and optimization of photocatalytic materials such as the cocatalyst effect.
Collapse
Affiliation(s)
- Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
21
|
Kanan S, Obeideen K, Moyet M, Abed H, Khan D, Shabnam A, El-Sayed Y, Arooj M, Mohamed AA. Recent Advances on Metal Oxide Based Sensors for Environmental Gas Pollutants Detection. Crit Rev Anal Chem 2024:1-34. [PMID: 38506453 DOI: 10.1080/10408347.2024.2325129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Optimizing materials and associated structures for detecting various environmental gas pollutant concentrations has been a major challenge in environmental sensing technology. Semiconducting metal oxides (SMOs) fabricated at the nanoscale are a class of sensor technology in which metallic species are functionalized with various dopants to modify their chemiresistivity and crystalline scaffolding properties. Studies focused on recent advances of gas sensors utilizing metal oxide nanostructures with a special emphasis on the structure-surface property relationships of some typical n-type and p-type SMOs for efficient gas detection are presented. Strategies to enhance the gas sensor performances are also discussed. These oxide material sensors have several advantages such as ease of handling, portability, and doped-based SMO sensing detection ability of environmental gas pollutants at low temperatures. SMO sensors have displayed excellent sensitivity, selectivity, and robustness. In addition, the hybrid SMO sensors showed exceptional selectivity to some CWAs when irradiated with visible light while also displaying high reversibility and humidity independence. Results showed that TiO2 surfaces can sense 50 ppm SO2 in the presence of UV light and under operating temperatures of 298-473 K. Hybrid SMO displayed excellent gas sensing response. For example, a CuO-ZnO nanoparticle network of a 4:1 vol.% CuO/ZnO ratio exhibited responses three times greater than pure CuO sensors and six times greater than pure ZnO sensors toward H2S. This review provides a critical discussion of modified gas pollutant sensing capabilities of metal oxide nanoparticles under ambient conditions, focusing on reported results during the past two decades on gas pollutants sensing.
Collapse
Affiliation(s)
- Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Khaled Obeideen
- Sustainable Energy and Power Systems Research Center, RISE, University of Sharjah, Sharjah, UAE
| | - Matthew Moyet
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Heba Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Danyah Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Aysha Shabnam
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | | | - Mahreen Arooj
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| |
Collapse
|
22
|
Quilumbaquin W, Castillo-Cabrera GX, Borrero-González LJ, Mora JR, Valle V, Debut A, Loor-Urgilés LD, Espinoza-Montero PJ. Photoelectrocatalytic degradation of high-density polyethylene microplastics on TiO 2-modified boron-doped diamond photoanode. iScience 2024; 27:109192. [PMID: 38433924 PMCID: PMC10906510 DOI: 10.1016/j.isci.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
Collapse
Affiliation(s)
- Wendy Quilumbaquin
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | | - Luis J. Borrero-González
- Laboratorio de Óptica Aplicada, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Vladimir Valle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Luis D. Loor-Urgilés
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | |
Collapse
|
23
|
Mengting Z, Duan L, Zhao Y, Song Y, Xia S. Fabrication of the flower-like Z-scheme heterojunction photocatalyst Bi-BiOI/UiO 66 for enhanced photodegradation of acetaminophen in simulated wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120325. [PMID: 38354614 DOI: 10.1016/j.jenvman.2024.120325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Acetaminophen is a representative contaminant of emerging persistent organic pollutants that can cause environmental problems when it enters municipal wastewater. An innovative flower-like Z-scheme photocatalyst Bi-BiOI/UiO 66 heterojunction composite was designed and constructed via a one-step solvothermal method. Investigations demonstrated that the Z-scheme structure strongly contributes to increasing the degradation efficiency of micropollutants. The results indicate that the bandgap energy (Eg) of the Bi-BiOI/UiO 66 composite decreases significantly from 3.22 eV to 2.43 eV, in comparison with that of pure copper-based UiO 66. Under suitable conditions (5 mg/L Ace, pH 3, 0.05 g/L), the organic pollutants in the water can be removed completely. A k value of 5.67 × 10-2 min-1 for the Bi-BiOI/UiO 66 heterojunction composite was found to effectively represent the acetaminophen photodegradation process. The reaction mechanism of acetamide in aqueous solution is also discussed. The Bi in Bi-BiOI can use surface plasmon resonance to form an electric field and accelerate the separation of photogenerated electrons and holes. This study highlights the potential of a novel photocatalyst for practical application.
Collapse
Affiliation(s)
- Zhu Mengting
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Valero R, Morales-García Á, Illas F. Estimating Nonradiative Excited-State Lifetimes in Photoactive Semiconducting Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2713-2721. [PMID: 38379918 PMCID: PMC10875665 DOI: 10.1021/acs.jpcc.3c08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The time evolution of the exciton generated by light adsorption in a photocatalyst is an important feature that can be approached from full nonadiabatic molecular dynamics simulations. Here, a crucial parameter is the nonradiative recombination rate between the hole and the electron that form the exciton. In the present work, we explore the performance of a Fermi's golden rule-based approach on predicting the recombination rate in a set of photoactive titania nanostructures, relying solely on the coupling of the ground and first excited state. In this scheme the analysis of the first excited state is carried out by invoking Kasha's rule thus avoiding computationally expensive nonadiabatic molecular dynamics simulations and resulting in an affordable estimate of the recombination rate. Our results show that, compared to previous ones from nonadiabatic molecular dynamics simulations, semiquantitative recombination rates can be predicted for the smaller titania nanostructures, and qualitative values are obtained from the larger ones. The present scheme is expected to be useful in the field of computational heterogeneous photocatalysis whenever a complex and computationally expensive full nonadiabatic molecular dynamics cannot be carried out.
Collapse
Affiliation(s)
- Rosendo Valero
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
- Headquarters
Research Institute, Zhejiang Huayou Cobalt, 018 Wuzhen East Rd, 314599 Jiaxing, Zhejiang, China
| | - Ángel Morales-García
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Tian Y, Yang D, Ma Y, Li Z, Li J, Deng Z, Tian H, Yang H, Sun S, Li J. Spatiotemporal Visualization of Photogenerated Carriers on an Avalanche Photodiode Surface Using Ultrafast Scanning Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:310. [PMID: 38334581 PMCID: PMC10857202 DOI: 10.3390/nano14030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The spatiotemporal evolution of photogenerated charge carriers on surfaces and at interfaces of photoactive materials is an important issue for understanding fundamental physical processes in optoelectronic devices and advanced materials. Conventional optical probe-based microscopes that provide indirect information about the dynamic behavior of photogenerated carriers are inherently limited by their poor spatial resolution and large penetration depth. Herein, we develop an ultrafast scanning electron microscope (USEM) with a planar emitter. The photoelectrons per pulse in this USEM can be two orders of magnitude higher than that of a tip emitter, allowing the capture of high-resolution spatiotemporal images. We used the contrast change of the USEM to examine the dynamic nature of surface carriers in an InGaAs/InP avalanche photodiode (APD) after femtosecond laser excitation. It was observed that the photogenerated carriers showed notable longitudinal drift, lateral diffusion, and carrier recombination associated with the presence of photovoltaic potential at the surface. This work demonstrates an in situ multiphysics USEM platform with the capability to stroboscopically record carrier dynamics in space and time.
Collapse
Affiliation(s)
- Yuan Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongwen Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
| | - Zhen Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (Y.T.); (D.Y.); (Y.M.); (Z.L.); (J.L.); (Z.D.); (H.T.); (H.Y.); (S.S.)
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
26
|
Yanagiyama K, Takimoto K, Dinh Le S, Nu Thanh Ton N, Taniike T. High-throughput experimentation for photocatalytic water purification in practical environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122974. [PMID: 37981181 DOI: 10.1016/j.envpol.2023.122974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
High-throughput screening instrument was developed for photocatalytic water purification, enabling the simultaneous testing of 132 photocatalytic reactions under uniform visible light irradiation, temperature control, and stirring. The instrument was used to investigate the effects of different catalysts (TiO2, ZnO, α-Fe2O3) and environmental waters (seawater, urban wastewater, and industrial wastewater) on dye degradation. It was observed environmental ions, particularly carbonate and phosphate ions, significantly reduced catalyst activity by inhibiting the adsorption of dye molecules. To develop effective catalysts for dye degradation in industrial wastewater, 15 types of noble metal nanoparticles (NPs) were supported on photocatalysts. The study found that noble metal NPs with high work functions and oxidation resistance, such as Au and Pt, exhibited higher activity even in the industrial wastewater, likely converting environmental ions into active species. These findings, based on 432 test results, demonstrate the effectiveness of the developed high-throughput screening instrument for optimizing photocatalytic water purification.
Collapse
Affiliation(s)
- Kyo Yanagiyama
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Ken Takimoto
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Nhan Nu Thanh Ton
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
27
|
Barawi M, García-Tecedor M, Gomez-Mendoza M, Gorni G, Liras M, de la Peña O'Shea VA, Collado L. Light-Driven Nitrogen Fixation to Ammonia over Aqueous-Dispersed Mo-Doped TiO 2 Colloidal Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53382-53394. [PMID: 37950688 DOI: 10.1021/acsami.3c10396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 μmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.
Collapse
Affiliation(s)
- Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Giulio Gorni
- CLÆSS Beamline, CELLS-ALBA Synchrotron, carrer de la Llum, 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
- Laser Processing Group, Instituto de Óptica (CSIC), c/Serrano 121, Madrid 28006, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| |
Collapse
|
28
|
Yang H, Tian L, Grirrane A, García-Baldoví A, Hu J, Sastre G, Hu C, García H. Enhanced Fatty Acid Photodecarboxylation over Bimetallic Au-Pd Core-Shell Nanoparticles Deposited on TiO 2. ACS Catal 2023; 13:15143-15154. [PMID: 38352955 PMCID: PMC10859932 DOI: 10.1021/acscatal.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 02/16/2024]
Abstract
Photodecarboxylation of biomass-derived fatty acids to alkanes offers significant potential to obtain hydrocarbons and economic benefits due to the mild conditions and high activity. Herein, the photodecarboxylation of hexanoic acid into alkanes using TiO2-supported monometallic Au or Pd and bimetallic Au-Pd catalysts is reported. It was found that bimetallic Au-Pd catalysts, featuring a core-shell structure evidenced by EDX-mapping and element line profile, show better photocatalytic performance, achieving 94.7% conversion of hexanoic acid and nearly 100% selectivity to pentane under UV-vis irradiation in the absence of H2 than the monometallic Au analogue. This remarkable enhancement in activity compared to its TiO2 supported monometallic Au or Pd analogues can be attributed to the synergistic effect between Au and Pd within the nanostructured Au(core)-Pd(shell) alloy for achieving more efficient charge-separation efficiency upon visible light excitation. This photocatalyst exhibits a wide scope converting multiple fatty acids into hydrocarbons. Moreover, it can even photocatalyze the conversion of raw bio-oils into alkanes directly. No obvious activity loss was observed during the reusability tests, demonstrating the good stability of the present catalyst. Density functional theory (DFT) calculations indicate that oxidation of carboxylates on TiO2 leads to alkyl radicals that become bound to metal nanoparticles. The superior catalytic performance of Au(core)-Pd(shell)/TiO2 is derived from the weaker adsorption for H on the alloy and the lower hydrogen evolution reaction overpotential. Our research can result in an efficient bio-oil upgrading, resulting in the synthesis of biofuels from biomass under mild conditions.
Collapse
Affiliation(s)
- Huiru Yang
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - Liang Tian
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - Abdessamad Grirrane
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - Alberto García-Baldoví
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - Jiajun Hu
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - German Sastre
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| | - Changwei Hu
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hermenegildo García
- Instituto
Universitario de Tecnología Química, Consejo Superior
de Investigaciones Científicas, Universitat
Politecnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
29
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
30
|
Gao D, Zhong W, Zhang X, Wang P, Yu H. Free-Electron Inversive Modulation to Charge Antibonding Orbital of ReS 2 Cocatalyst for Efficient Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309123. [PMID: 37948440 DOI: 10.1002/smll.202309123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The free electron transfer between cocatalyst and photocatalyst has a great effect on the bonding strength between the active site and adsorbed hydrogen atom (Hads ), but there is still a lack of effective means to purposely manipulate the electron transfer in a beneficial direction of H adsorption/desorption activity. Herein, when ReSx cocatalyst is loaded on TiO2 surface, a spontaneous free-electron transfer from ReSx to TiO2 happens due to the smaller work function of ReSx , causing an over-strong S-Hads bond. To prevent the over-strong S-Hads bonds of ReSx in the ReSx /TiO2 , a free-electron reversal transfer strategy is developed to weaken the strong S-Hads bonds via increasing the work function of ReSx by incorporating O to produce ReOSx cocatalyst. Research results attest that a larger work function of ReOSx than that of TiO2 can induce reversal transfer of electrons from TiO2 to ReOSx to produce electron-rich S(2+δ)- , causing the increased antibonding-orbital occupancy of S-Hads in ReOSx /TiO2 . Accordingly, the stability of adsorbed H on S sites is availably decreased, thus weakening the S-Hads of ReOSx . In this case, an electron-rich S(2+δ)- -mediated "capture-hybridization-conversion" mechanism is raised . Benefiting from such property, the resultant ReOSx /TiO2 photocatalyst exhibits a superior H2 -evolution rate of 7168 µmol h-1 g-1 .
Collapse
Affiliation(s)
- Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ping Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
31
|
Bacha AUR, Nabi I, Chen Y, Li Z, Iqbal A, Liu W, Afridi MN, Arifeen A, Jin W, Yang L. Environmental application of perovskite material for organic pollutant-enriched wastewater treatment. Coord Chem Rev 2023; 495:215378. [DOI: 10.1016/j.ccr.2023.215378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
32
|
Habibi M, Habibi-Yangjeh A, Akinay Y, Khataee A. Oxygen vacancy-rich CeO 2 decorated with Cu 3BiS 3 nanoparticles: Outstanding visible-light photocatalytic performance towards tetracycline degradation. CHEMOSPHERE 2023; 340:139828. [PMID: 37586492 DOI: 10.1016/j.chemosphere.2023.139828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Recently, the degradation of antibiotics has attracted a lot of attention all over the world, because the accumulation of these recalcitrant compounds in the environment, and their entry into the food chain have severely affected on human health. Herein, oxygen vacancy-rich CeO2 was decorated with Cu3BiS3 nanoparticles to fabricate Z-scheme CeO2-x/Cu3BiS3 photocatalysts with a simple procedure. Intriguingly, photocatalytic ability of CeO2-x/Cu3BiS3 (30%) nanocomposite in the detoxification of tetracycline hydrochloride, cephalexin, azithromycin, and rhodamine B was elevated 31.3, 28.2, 45.2, and 10.1-folds as much as CeO2, and 5.19, 5.97, 32.2, and 4.69-folds compared with the CeO2-x photocatalyst, respectively. The admirable activity of CeO2-x/Cu3BiS3 (30%) nanocomposite was ascribed to the production of many charge carriers, efficacious segregation and transfer of charges, and improved textural features, which were confirmed by UV-vis DRS, EIS, photocurrent density, PL, and BET analyses. In addition, the TC degradation pathway was investigated with LC-MS analysis, and also the biocompatibility of the purified solution was displayed with wheat seed cultivation. Regarding outstanding activity and facile synthesis, the CeO2-x/Cu3BiS3 (30%) photocatalyst could be utilized for wastewater treatment.
Collapse
Affiliation(s)
- Meysam Habibi
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Yuksel Akinay
- Department of Engineering, Faculty of Mining Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
33
|
Mora-Hernandez JM, Alfonso Herrera LA, Garay-Rodriguez LF, Torres-Martínez LM, Hernandez-Perez I. An enhanced photo(electro)catalytic CO 2 reduction onto advanced BiOX (X = Cl, Br, I) semiconductors and the BiOI-PdCu composite. Heliyon 2023; 9:e20605. [PMID: 37842589 PMCID: PMC10568340 DOI: 10.1016/j.heliyon.2023.e20605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
The photoelectrocatalytic reduction of CO2 (CO2RR) onto bismuth oxyhalides (BiOX, X = Cl, Br, I) was studied through physicochemical and photoelectrochemical measurements. The successful synthesis of the BiOX compounds was carried out through a solvothermal methodology and confirmed by XRD measurements. The morphology was analyzed by SEM; meanwhile, area and pore size were determined through BET area measurements. BiOI and BiOCl present a lower particle size (3.15 and 2.71 μm, respectively); however, the sponge-like morphology presented by BiOI results in an increase in the BET area, which can enhance the catalytic activity of this semiconductor. In addition, DRS measurements allowed us to determine bandgap values of 1.9, 2.4, and 3.6 eV for BiOI, BiOBr, and BiOCl, respectively. Such results predict better visible light harvesting for BiOI. Photoelectrochemical measurements indicated that BiOX shows p-type semiconductor behavior, being the holes the majority charge carriers, making BiOI the most active material to carry out photoelectrocatalytic CO2RR. In the second stage, three different composites, BiOI-Pd, BiOI-Cu, and BiOI-PdCu, (BiOI-M; M = Pd, Cu, PdCu), were fabricated to study the influence of active metal nanoparticles (NP's) in the BiOI CO2RR activity. XRD measurements confirmed the interaction between BiOI and the metallic NP's, the three composites overpassed by 20% the BET area of pristine BiOI. Photoelectrochemical measurements indicate that all BiOI-metal composites are suitable materials to perform CO2 reduction in neutral media efficiently; however, the BiOI-PdCu composites surpassed the faradaic current of BiOI-Pd and BiOI-Cu at 0.85 V vs. RHE (3.15, 2.06 and 2.15 mA cm-2, respectively). BiOI-PdCu presented photoactivity to carry out the CO2 reduction evolving formic acid and acetic acid as the main products under visible-light irradiation.
Collapse
Affiliation(s)
- J. Manuel Mora-Hernandez
- CONAHCYT - Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Luis A. Alfonso Herrera
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Luis F. Garay-Rodriguez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Leticia M. Torres-Martínez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120. Complejo Ind. Chihuahua, Chihuahua, Chih, C.P. 31136, Mexico
| | - Irina Hernandez-Perez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| |
Collapse
|
34
|
Vahabirad S, Nezamzadeh-Ejhieh A. Evaluation of the photodegradation activity of bismuth oxoiodide/bismuth sub-carbonate nanocatalyst: Experimental design and the mechanism study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115254. [PMID: 37467563 DOI: 10.1016/j.ecoenv.2023.115254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In this study, a binary BiOI/(BiO)2CO3 catalyst was prepared and used for sulfasalazine (SSZ) photodegradation in an aqueous phase. The semiconductors were identified by XRD, SEM-EDX, and UV-Vis diffuse reflectance spectroscopy (DRS) methods. Applying the Kubelka-Munk model on DRS results, the band gap energies of 2.09, 3.5, and 2.07 eV were obtained for BiOI, (BiO)2CO3, and BiOI/(BiO)2CO3 samples. pHpzc values of 6.3, 10.1, and 8.1 were estimated for BiOI, (BiO)2CO3, and BiOI/(BiO)2CO3, respectively. After observing the boosted photocatalytic activity by the coupled system, the interaction effects of the influencing variables in SSZ photodegradation were evaluated via the response surface methodology (RSM) approach. The optimal RSM-run conditions were 8.5 ppm SSZ at pH 8, which contained 0.28 g/L of the BiOI/(BiO)2CO3 catalyst and 29 min illumination time, resulting in 87% SSZ photodegradation. The effects of some scavenging agents were also studied to elucidate the relative roles of the reactive species in the SSZ photodegradation by the proposed catalyst, that is, hydroxyl radicals ∼ photoinduced electrons > superoxide radicals ∼ photoinduced holes. The proposed catalyst retained good activity after 5 successive reusing runs.
Collapse
Affiliation(s)
- Samira Vahabirad
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
35
|
Al-Murish M, Autade V, Kumi-Barimah E, Panmand R, Kale B, Jha A. Engineering of Solar Energy Harvesting Tb 3+-Ion-Doped CdS Quantum Dot Glasses for Photodissociation of Hydrogen Sulfide. ACS APPLIED ENERGY MATERIALS 2023; 6:8875-8888. [PMID: 37712089 PMCID: PMC10498422 DOI: 10.1021/acsaem.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The photocatalytic properties of CdS quantum dots (Q-dots) and Tb3+-doped CdS Q-dots dispersed in a borosilicate glass matrix were investigated for the photodissociation of hydrogen sulfide (H2S) into hydrogen (H2) gas and elemental sulfur (S). The Q-dot-containing glass samples were fabricated using the conventional melt-quench method and isothermal annealing between 550 and 600 °C for 6 h for controlling the growth of CdS and Tb3+-ion-doped CdS Q-dots. The structure, electronic band gap, and spectroscopic properties of the Q-dots formed in the glass matrix after annealing were analyzed using Raman and UV-visible spectroscopies, X-ray powder diffraction, and transmission electron microscopy. With increasing annealing temperature, the average size range of the Q-dots increased, corresponding to the decrease of electronic band gap from 3.32 to 2.24 eV. For developing the model for photocatalytic energy exchange, the excited state lifetime and photoluminescence emission were investigated by exciting the CdS and Tb3+-doped CdS quantum states with a 450 nm source. The results from the photoluminescence and lifetime demonstrated that the Tb3+-CdS photodissociation energy exchange is more efficient from the excited Q-dot states compared to the CdS Q-dot glasses. Under natural sunlight, the hydrogen production experiment was conducted, and an increase of 26.2% in hydrogen evolution rate was observed from 0.02 wt % Tb3+-doped CdS (3867 μmol/h/0.5 g) heat-treated at 550 °C when compared to CdS Q-dot glass with a similar heat treatment temperature (3064 μmol/h/0.5 g). Furthermore, the photodegradation stability of 0.02 wt % Tb3+-CdS was analyzed by reusing the catalyst glass powders four times with little evidence of degradation.
Collapse
Affiliation(s)
- Mohanad Al-Murish
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Vijay Autade
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Eric Kumi-Barimah
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Rajendra Panmand
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Bharat Kale
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Animesh Jha
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
36
|
Masahashi N, Hatakeyama M, Mori Y, Kurishima H, Inoue H, Mokudai T, Ohmura K, Aizawa T, Hanada S. Photoinduced properties of anodized Ti alloys for biomaterial applications. Sci Rep 2023; 13:13916. [PMID: 37626098 PMCID: PMC10457320 DOI: 10.1038/s41598-023-41189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
The photocatalytic properties of anodic oxides on a newly developed TiNbSn and commonly used Ti6Al4V alloys as biomaterials were investigated. The alloys were anodized in an electrolyte of sodium tartrate acid with H2O2 at a high voltage and the mechanism of the photocatalytic and antiviral activities was studied. The anodized TiNbSn and Ti6Al4V exhibited highly crystallized rutile TiO2 and poorly crystallized anatase TiO2, respectively. X-ray photoelectron spectroscopy analysis revealed the presence of oxides of the alloying elements in addition to TiO2. The anodized TiNbSn exhibited higher activities than Ti6Al4V, and electron spin resonance spectra indicated that the number of hydroxyl radicals (⋅OH) generated from the anodized TiNbSn was higher than that from the anodized Ti6Al4V. The results can be explained by two possible mechanisms: the higher crystallinity of TiO2 on TiNbSn than that on the Ti6Al4V reduces the number of charge recombination sites and generates abundant ⋅OH; charge separation in the anodic oxide on TiNbSn due to the electronic band structure between TiO2 and the oxides of alloying elements enhances photo activities. The excellent photoinduced characteristics of the anodized TiNbSn are expected to contribute to the safe and reliable implant treatment.
Collapse
Affiliation(s)
- N Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan.
| | - M Hatakeyama
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - Y Mori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - H Kurishima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - H Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 5998531, Japan
| | - T Mokudai
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - K Ohmura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - T Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - S Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| |
Collapse
|
37
|
Khan MF, Paul Guin J, Thampi RK, Sullivan JA, Murphy CD. Enhanced removal of perfluorooctanoic acid with sequential photocatalysis and fungal treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91478-91486. [PMID: 37474853 PMCID: PMC10439853 DOI: 10.1007/s11356-023-28588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
In this paper, we report the degradation of perfluorooctanoic acid (PFOA), which is a persistent contaminant in the environment that can severely impact human health, by exposing it to a photocatalyst, bismuth oxyiodide (BiOI), containing both Bi4O5I2 and Bi5O7I phases and a fungal biocatalyst (Cunninghamella elegans). Individually, the photocatalyst (after 3 h) and biocatalyst (after 48 h) degraded 35-40% of 100 ppm PFOA with 20-30% defluorination. There was a marked improvement in the degree of degradation (90%) and defluorination (60%) when PFOA was first photocatalytically treated, then exposed to the fungus. GC- and LC-MS analysis identified the products formed by the different treatments. Photocatalytic degradation of PFOA yielded short-chain perfluorocarboxylic acids, whereas fungal degradation yielded mainly 5:3 fluorotelomer carboxylic acid, which is a known inhibitor of cytochrome P450-catalysed degradation of PFAS in C. elegans. The combined treatment likely resulted in greater degradation because photocatalysis reduced the PFOA concentration without generating the inhibitory 5:3 fluorotelomer carboxylic acid, enabling the fungus to remove most of the remaining substrate. In addition, new fluorometabolites were identified that shed light on the initial catabolic steps involved in PFOA biodegradation.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield , Dublin 4, Ireland
| | - Jhimli Paul Guin
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ravindranathan K Thampi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Sullivan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield , Dublin 4, Ireland.
| |
Collapse
|
38
|
Yang Z, Zhou S, Feng X, Wang N, Ola O, Zhu Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2028. [PMID: 37446544 DOI: 10.3390/nano13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The global energy shortage and environmental degradation are two major issues of concern in today's society. The production of renewable energy and the treatment of pollutants are currently the mainstream research directions in the field of photocatalysis. In addition, over the last decade or so, graphene (GR) has been widely used in photocatalysis due to its unique physical and chemical properties, such as its large light-absorption range, high adsorption capacity, large specific surface area, and excellent electronic conductivity. Here, we first introduce the unique properties of graphene, such as its high specific surface area, chemical stability, etc. Then, the basic principles of photocatalytic hydrolysis, pollutant degradation, and the photocatalytic reduction of CO2 are summarized. We then give an overview of the optimization strategies for graphene-based photocatalysis and the latest advances in its application. Finally, we present challenges and perspectives for graphene-based applications in this field in light of recent developments.
Collapse
Affiliation(s)
- Zanhe Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siqi Zhou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiangyu Feng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
39
|
Song S, Kim H, Kang C, Bae J. Terahertz Optical Properties and Carrier Behaviors of Graphene Oxide Quantum Dot and Reduced Graphene Oxide Quantum Dot via Terahertz Time-Domain Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1948. [PMID: 37446464 DOI: 10.3390/nano13131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Graphene quantum dots (GQDs) with a band gap have been widely applied in many fields owing to their unique optical properties. To better utilize the optical advantages of GQDs, it is important to understand their optical characteristics. Our study demonstrates the optical properties and carrier behaviors of synthesized graphene oxide quantum dot (GOQD) and reduced graphene oxide quantum dot (rGOQD) pellets via Terahertz time-domain spectroscopy (THz-TDS). The complex permittivity and optical conductivity are obtained in the terahertz region, indicating that the optical conductivity of the GOQD is higher than that of the rGOQD. Although rGOQD has a higher carrier density, approximately 1.5-times than that of GOQD, the lower charge carrier mobility of the rGOQD, which is obtained using Drude-Lorentz oscillator model fitting contributes to a decrease in optical conductivity. This lower mobility can be attributed to the more significant number of defect states within the rGOQD compared to GOQD. To the best of our knowledge, our study initially demonstrates the optical property and carrier behaviors of GOQD and rGOQD in the THz region. Moreover, this study provides important information on factors influencing carrier behavior to various fields in which carrier behavior plays an important role.
Collapse
Affiliation(s)
- Seunghyun Song
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Hyeongmun Kim
- Department of Physics, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Advanced Photonics Research Institute, Gwangju Institue of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chul Kang
- Advanced Photonics Research Institute, Gwangju Institue of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
40
|
Kumar R, Sudhaik A, Sonu A, Raizada P, Nguyen VH, Van Le Q, Ahamad T, Thakur S, Hussaind CM, Singh P. Integrating K and P co-doped g-C 3N 4 with ZnFe 2O 4 and graphene oxide for S-scheme-based enhanced absorption coupled photocatalytic real wastewater treatment. CHEMOSPHERE 2023:139267. [PMID: 37343631 DOI: 10.1016/j.chemosphere.2023.139267] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Recently, there has been a significant increase in the interest of using photocatalysis for environmental clean-up applications. In this research, potassium, and phosphorus co-doped graphitic carbon nitride (KPCN) photocatalyst modified with graphene oxide (GO) and heterostructured with ZnFe2O4 was synthesized via the hydrothermal method (KPCN/GO/ZnFe2O4). The photoactivity of KPCN/GO/ZnFe2O4 photocatalyst was examined for the photocatalytic degradation of target pollutants such as methylene blue (MB) dye, rhodamine B (RhB) dye, and tetracycline (TC) antibiotic. Furthermore, the chemical oxygen demand (COD) removal efficiency for real wastewater was determined to explore the practical application of KPCN/GO/ZnFe2O4 photocatalyst. The degradation efficiencies of bare graphitic carbon nitride, KPCN, KPCN/GO, and KPCN/GO/ZnFe2O4 photocatalysts for tetracycline antibiotics were 30%, 42%, 57%, and 87% within 60 min, respectively. Moreover, KPCN/GO/ZnFe2O4 photocatalyst showed 71% COD removal efficiency within 240 min. The •OH and •O2- were the major reactive species in the photocatalytic process. Results showed that the degradation efficiencies of graphitic carbon nitride were greatly enhanced upon doping and further improved with the addition of GO and ZnFe2O4. Doping improved light harvesting, GO enhanced the adsorption ability and heterojunction with ZnFe2O4 enhanced the charge separation as well as the reusability of synthesized KPCN/GO/ZnFe2O4 photocatalyst.
Collapse
Affiliation(s)
- Rohit Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - A Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
41
|
Balseviciute A, Martí-Calatayud MC, Pérez-Herranz V, Mestre S, García-Gabaldón M. Novel Sb-doped SnO 2 ceramic anode coated with a photoactive BiPO 4 layer for the photoelectrochemical degradation of an emerging pollutant. CHEMOSPHERE 2023; 335:139173. [PMID: 37301515 DOI: 10.1016/j.chemosphere.2023.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
In the present work, a study about the electrochemical and photoelectrochemical degradation of an emerging pollutant using an Sb-doped SnO2 anode coated with a photocatalytic layer of BiPO4 has been performed. The electrochemical characterization of the material was carried out by means of linear sweep voltammetry, light-pulsed chronoamperometry and electrochemical impedance spectroscopy. These studies confirmed that the material is photoactive at intermediate potential values (around 2.5 V), and that the charge transfer resistance decreases in the presence of light. A positive effect of the illuminated area on the degradation degree of norfloxacin was observed: at 15.50 mA cm-2, the degradation rate was 83.37% in the absence of light, 92.24% with an illuminated area of 5.7 cm2, and it increased up to 98.82% with an illuminated area of 11.4 cm2. The kinetics of the process were evaluated, and the by-products of the degradation were identified by ion chromatography and HPLC. In the case of the mineralization degree, the effect of light is less significant, especially at higher current densities. The specific energy consumption of the process was lower in the photoelectrochemical experiments as compared to the experiments in dark conditions. At intermediate current densities (15.50 mA cm-2) a decrease in energy consumption of 53% was achieved by illuminating the electrode.
Collapse
Affiliation(s)
- A Balseviciute
- IEC Group, Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camí de Vera, S/n, 46022, València, Spain
| | - M C Martí-Calatayud
- IEC Group, Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camí de Vera, S/n, 46022, València, Spain
| | - V Pérez-Herranz
- IEC Group, Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camí de Vera, S/n, 46022, València, Spain
| | - S Mestre
- University Institute of Ceramic Technology, Chemical Engineering Department, Universitat Jaume I, Castellón, Spain
| | - M García-Gabaldón
- IEC Group, Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camí de Vera, S/n, 46022, València, Spain.
| |
Collapse
|
42
|
Tariq MU, Bahnemann D, Idrees F, Iqbal S, Iqbal F, Butt FK, Choi JR, Bilal M. Laser flash photolysis study of Nb 2O 5/g-C 3N 4 heterostructures as efficient photocatalyst for molecular H 2 evolution. Heliyon 2023; 9:e16772. [PMID: 37303547 PMCID: PMC10248273 DOI: 10.1016/j.heliyon.2023.e16772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Improvements of visible light activity, slow recombination rate, stability, and efficiency are major challenges facing photocatalyst technologies today. Utilizing heterostructures of g-C3N4 (bandgap ∼2.7eV) with Nb2O5 (bandgap ∼3.4eV) as an alternative materials for the first time, we tried to overcome such challenges in this work. Heterostructures of Nb2O5/g-C3N4 have been synthesized via hydrothermal technique. And then a time-resolved laser flash photolysis of those heterostructures has been analyzed, focusing on seeking how to improve photocatalytic efficiency for molecular hydrogen (H2) evolution. The transient absorption spectra and the lifetime of charge carriers at different wavelengths have been observed for Nb2O5/g-C3N4, where g-C3N4 was used for a control. The role of hole scavenger (methanol) has also been investigated for the purpose of boosting charge trapping and H2 evolution. The long lifetime of Nb2O5/g-C3N4 heterostructures (6.54165 μs) compared to g-C3N4 (3.1651897 μs) has successfully supported the increased H2 evolution of 75 mmol/h.g. An enhancement in the rate of H2 evolution (160 mmol/h.g) in the presence of methanol has been confirmed. This study not only deepens our understanding of the role of scavenger, but also enables a rigorous quantification of the recombination rate crucial for photocatalytic applications in relation with efficient H2 production.
Collapse
Affiliation(s)
| | - Detlef Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
- Institut Fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint‐Petersburg State University, Ulyanovskaya Str. 1, Peterhof, Saint Petersburg, 198504, Russia
| | - Faryal Idrees
- Department of Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Saman Iqbal
- Department of Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Fauzia Iqbal
- Department of Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Faheem K. Butt
- Department of Physics, Division of Science and Technology, University of Education Lahore, Township, Lahore 54770, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Muhammad Bilal
- Department of Physics, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
43
|
Bathla A, Younis SA, Kim KH, Li X. TiO 2-based catalytic systems for the treatment of airborne aromatic hydrocarbons. MATERIALS HORIZONS 2023; 10:1559-1579. [PMID: 36799148 DOI: 10.1039/d2mh01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among diverse strategies to manage air quality, catalytic oxidation has been a widely used option to mitigate diverse pollutants such as aromatic volatile organic compounds (VOCs), especially benzene, toluene, and xylene (BTX). For such applications, TiO2-based catalysts have drawn significant research attention for their prominent photo/thermal catalytic activities and photochemical stability. This review has been organized to elaborate on the recent developments achieved in the thermocatalytic, photocatalytic, and photothermal applications of metal/non-metal doped TiO2 catalysts towards BTX vapors and their reaction mechanisms. The performance of the reported TiO2-based catalysts has also been analyzed based on multiple computational metrics such as reaction rate (r), quantum yield (QY), space-time yield, and figure of merit (FOM). At last, the research gap and prospects in the catalytic treatment of BTX are also discussed in association with the feasibility and utility of TiO2-based catalysts in air purification applications.
Collapse
Affiliation(s)
- Aadil Bathla
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
44
|
Aslam A, Abid MZ, Rafiq K, Rauf A, Hussain E. Tunable sulphur doping on CuFe 2O 4 nanostructures for the selective elimination of organic dyes from water. Sci Rep 2023; 13:6306. [PMID: 37072442 PMCID: PMC10113332 DOI: 10.1038/s41598-023-33185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
In this work, sulphur doped copper ferrites (S-CuFe2O4) photocatalysts were successfully synthesized for the first time using the facile hydrothermal method. The as-synthesized photocatalysts were characterized through XRD, Raman, TGA, FT-IR, UV-Vis-DRS, SEM, EDX and PL techniques. The results revealed that doping with sulphur has been found to be a suitable alternative that causes strain in the lattices as anions replace the oxygen from the CuFe2O4 nanostructures. Due to sulphur dopants, photocatalysts are able to efficiently trap and transfer the photoinduced charges, which readily suppress charge recombination. A UV-Vis spectrophotometer was used to monitor the degradation of selective toxic organic dyes (RhB, CR, MO, and CV) in aqueous media. The dye degradation results provide evidence for the surprisingly superior performance of S-CuFe2O4 over pristine CuFe2O4. On the basis of its efficiencies, this work can be assigned as an excellent candidate for photocatalysis science.
Collapse
Affiliation(s)
- Anam Aslam
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
45
|
Hussain A, Rauf A, Ahmed E, Khan MS, Mian SA, Jang J. Modulating Optoelectronic and Elastic Properties of Anatase TiO2 for Photoelectrochemical Water Splitting. Molecules 2023; 28:molecules28073252. [PMID: 37050015 PMCID: PMC10096401 DOI: 10.3390/molecules28073252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Titanium dioxide (TiO2) has been investigated for solar-energy-driven photoelectrical water splitting due to its suitable band gap, abundance, cost savings, environmental friendliness, and chemical stability. However, its poor conductivity, weak light absorption, and large indirect bandgap (3.2 eV) has limited its application in water splitting. In this study, we precisely targeted these limitations using first-principle techniques. TiO2 only absorbs near-ultraviolet radiation; therefore, the substitution (2.1%) of Ag, Fe, and Co in TiO2 significantly altered its physical properties and shifted the bandgap from the ultraviolet to the visible region. Cobalt (Co) substitution in TiO2 resulted in high absorption and photoconductivity and a low bandgap energy suitable for the reduction in water without the need for external energy. The calculated elastic properties of Co-doped TiO2 indicate the ductile nature of the material with a strong average bond strength. Co-doped TiO2 exhibited fewer microcracks with a mechanically stable composition.
Collapse
Affiliation(s)
- Akbar Hussain
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdur Rauf
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Ejaz Ahmed
- Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Saleem Khan
- Department of Chemical Engineering, NFC Institute of Engineering & Technology, Multan 60000, Pakistan
| | | | - Joonkyung Jang
- Department of Nano Energy Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
46
|
Wagstaffe M, Dominguez-Castro A, Wenthaus L, Palutke S, Kutnyakhov D, Heber M, Pressacco F, Dziarzhytski S, Gleißner H, Gupta VK, Redlin H, Dominguez A, Frauenheim T, Rubio A, Stierle A, Noei H. Photoinduced Dynamics at the Water/TiO_{2}(101) Interface. PHYSICAL REVIEW LETTERS 2023; 130:108001. [PMID: 36962043 DOI: 10.1103/physrevlett.130.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.
Collapse
Affiliation(s)
- Michael Wagstaffe
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Adrian Dominguez-Castro
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Lukas Wenthaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Steffen Palutke
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Dmytro Kutnyakhov
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Michael Heber
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Federico Pressacco
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | | | - Helena Gleißner
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Verena Kristin Gupta
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Adriel Dominguez
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China
- Beijing Computational Science Research Center (CSRC), 100193, Beijing, China
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain
| | - Thomas Frauenheim
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China
- Beijing Computational Science Research Center (CSRC), 100193, Beijing, China
| | - Angel Rubio
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Flatiron Institute, New York 10010, New York, USA
| | - Andreas Stierle
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Heshmat Noei
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
47
|
Wu Z, Wang B, Zhu Y, Xue J, Nie Y, Xie Z, Le Z. Synthesis of crystalline carbon nitride with molten salt thermal treatment for efficient photocatalytic reduction and removal of U(VI). RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
48
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
49
|
Wang H, Hailili R, Jiang X, Yuan G, Bahnemann DW, Wang X. Boosting photocatalytic performances of lamellar BiVO 4by constructing S-scheme heterojunctions with AgBr for efficient charge transfer. NANOTECHNOLOGY 2023; 34:215703. [PMID: 36780669 DOI: 10.1088/1361-6528/acbb7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVO4which was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVO4ratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.85 times higher than that of pure BiVO4) and high stability after four cycles. The unique photocatalytic mechanism of S-scheme carrier migration was investigated on the bases of radical trapping tests and photo/electrochemical characterizations. Results showed that the enhanced migration strategy and intimately interfacial collaboration guaranteed the effective charge carriers separation/transfer, leading to magnificent photocatalytic performance as well as excellent stability.
Collapse
Affiliation(s)
- Haoran Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
| | - Reshalaiti Hailili
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaoyu Jiang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Detlef W Bahnemann
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
| | - Xiong Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
50
|
Bryant JT, Logan MW, Chen Z, Djokic M, Cairnie DR, Vazquez-Molina DA, Nijamudheen A, Langlois KR, Markley MJ, Pombar G, Holland AA, Caranto JD, Harper JK, Morris AJ, Mendoza-Cortes JL, Jurca T, Chapman KW, Uribe-Romo FJ. Synergistic Steric and Electronic Effects on the Photoredox Catalysis by a Multivariate Library of Titania Metal-Organic Frameworks. J Am Chem Soc 2023; 145:4589-4600. [PMID: 36795004 DOI: 10.1021/jacs.2c12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Metal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-n, and UCFMTV-n-x% with a formula Ti6O9[links]3, where the links are linear oligo-p-arylene dicarboxylates with n number of p-arylene rings and x mol% of multivariate links containing electron-donating groups (EDGs). The average and local structures of UCFMOFs were elucidated from advanced powder X-ray diffraction (XRD) and total scattering tools, consisting of parallel arrangements of one-dimensional (1D) [Ti6O9(CO2)6]∞ nanowires connected through the oligo-arylene links with the topology of the edge-2-transitive rod-packed hex net. Preparation of an MTV library of UCFMOFs with varying link sizes and amine EDG functionalization enabled us to study both their steric (pore size) and electronic (highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO, gap) effects on the substrate adsorption and photoredox transformation of benzyl alcohol. The observed relationship between the substrate uptake and reaction kinetics with the molecular traits of the links indicates that longer links, as well as increased EDG functionalization, exhibit impressive photocatalytic rates, outperforming MIL-125 by almost 20-fold. Our studies relating photocatalytic activity with pore size and electronic functionalization demonstrate how these are important parameters to consider when designing new MOF photocatalysts.
Collapse
Affiliation(s)
| | | | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Marcus Djokic
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel R Cairnie
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - A Nijamudheen
- Department of Chemical & Biomedical Engineering, Florida A&M─Florida State University, Department of Physics, Scientific Computing, Materials Science and Engineering, High Performance Materials Institute, Condensed Matter Theory, National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32310, United States
| | | | | | | | | | | | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Chemical & Biomedical Engineering, Florida A&M─Florida State University, Department of Physics, Scientific Computing, Materials Science and Engineering, High Performance Materials Institute, Condensed Matter Theory, National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32310, United States
| | | | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | | |
Collapse
|