1
|
Gao QC, Liu GL, Wang Q, Zhang SX, Ji ZL, Wang ZJ, Wu MN, Yu Q, He PF. A promising drug repurposing approach for Alzheimer's treatment: Givinostat improves cognitive behavior and pathological features in APP/PS1 mice. Redox Biol 2024; 78:103420. [PMID: 39577323 PMCID: PMC11621940 DOI: 10.1016/j.redox.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by memory loss, speech and motor defects, personality changes, and psychological disorders. The exact cause of AD remains unclear. Current treatments focus on maintaining neurotransmitter levels or targeting β-amyloid (Aβ) protein, but these only alleviate symptoms and do not reverse the disease. Developing new drugs is time-consuming, costly, and has a high failure rate. Utilizing multi-omics for drug repositioning has emerged as a new strategy. Based on transcriptomic perturbation data of over 40,000 drugs in human cells from the LINCS-L1000 database, our study employed the Jaccard index and hypergeometric distribution test for reverse transcriptional feature matching analysis, identifying Givinostat as a potential treatment for AD. Our research found that Givinostat improved cognitive behavior and brain pathology in models and enhanced hippocampal synaptic plasticity. Transcriptome sequencing revealed increased expression of mitochondrial respiratory chain complex proteins in the brains of APP/PS1 mice after Givinostat treatment. Functionally, Givinostat restored mitochondrial membrane potential, reduced reactive oxygen species, and increased ATP content in Aβ-induced HT22 cells. Additionally, it improved mitochondrial morphology and quantity in the hippocampus of APP/PS1 mice and enhanced brain glucose metabolic activity. These effects are linked to Givinostat promoting mitochondrial biogenesis and improving mitochondrial function. In summary, Givinostat offers a promising new strategy for AD treatment by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Ge-Liang Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Zhi-Lin Ji
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhao-Jun Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Mei-Na Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Qi Yu
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Jee A, Sernoskie SC, Uetrecht J. The role of corticosterone in nevirapine-induced idiosyncratic drug-induced liver injury. Toxicol Sci 2024; 200:146-164. [PMID: 38636494 PMCID: PMC11199915 DOI: 10.1093/toxsci/kfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Nevirapine, an antiretroviral used in the treatment of HIV, is associated with idiosyncratic drug-induced liver injury (IDILI), a potentially life-threatening adverse drug reaction. Its usage has decreased due to this concern, but it is still widely used in lower-resource settings. In general, the mechanisms underlying idiosyncratic drug reactions (IDRs) are poorly understood, but evidence indicates that most are immune-mediated. There is very limited understanding of the early immune response following administration of drugs associated with IDRs, which likely occurs due to reactive metabolite formation. In this work, we aimed to characterize the links between covalent binding of nevirapine, the development of an early immune response, and the subsequent liver injury using a mouse model. We describe initial attempts to characterize an early immune response to nevirapine followed by the discovery that nevirapine induced the release of corticosterone. Corticosterone release was partially associated with the degree of drug covalent binding in the liver but was also likely mediated by additional mechanisms at higher drug doses. Transcriptomic analysis confirmed metabolic activation, glucocorticoid signaling, and decreased immune activation; GDF-15 also warrants further investigation as part of the immune response to nevirapine. Finally, glucocorticoid blockade preceding the first dose of nevirapine attenuated nevirapine-induced liver injury at 3 weeks, suggesting that acute glucocorticoid signaling is harmful in the context of nevirapine-induced liver injury. This work demonstrates that nevirapine induces acute corticosterone release, which contributes to delayed-onset liver injury. It also has implications for screening drug candidates for IDILI risk and preventing nevirapine-induced IDILI.
Collapse
Affiliation(s)
- Alison Jee
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
3
|
Lungu GN, Diaconescu GI, Dumitrescu F, Docea OO, Mitrut R, Giubelan L, Zlatian O, Mitrut P. Liver Damage During Treatment with Reverse-Transcriptase Inhibitors in HIV Patients. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:181-197. [PMID: 39371070 PMCID: PMC11447508 DOI: 10.12865/chsj.50.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/18/2024] [Indexed: 10/08/2024]
Abstract
The advent of highly active antiretroviral therapy (HAART) in 1996 has markedly enhanced the life expectancy of people living with HIV (PLWH), largely due to the effectiveness of reverse transcriptase inhibitors (RTIs). These drugs target the reverse transcriptase enzyme, crucial for the HIV virus to convert its RNA into DNA within host cells, effectively disrupting the viral replication process. This action reduces the patient's viral load, helping preserve immune function and prevent progression to AIDS. Consequently, the predominant causes of mortality among individuals living with HIV have transitioned from opportunistic infections and AIDS-related cancers to liver disease and cardiovascular complications. Liver damage in PLWH could arise from multiple sources including co-infections, chronic substance use, and notably, antiretroviral therapy itself, which can be hepatotoxic. This review highlights the risks of hepatic damage associated with nucleoside and non-nucleoside RTIs and underscores the variability in hepatotoxicity risks among different drugs. It emphasizes the necessity for regular monitoring of liver health in PLWH and adjusting antiretroviral regimens to minimize liver fibrosis risk. This risk is particularly pronounced in patients who associate the infection with hepatitis B or C virus, where the potential for hepatotoxicity significantly increases.
Collapse
Affiliation(s)
| | - Gheorghe Iulian Diaconescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- VITAPLUS Clinic, 200345 Craiova, Romania
| | - Florentina Dumitrescu
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Oanca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Radu Mitrut
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Lucian Giubelan
- Victor Babes" Infectious Diseases and Pneumophtisiology Clinical Hospital, Craiova, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Ovidiu Zlatian
- Microbiology Department, University of Medicine and Pharmacy of Craiova, Romania
- Medical Laboratory, County clinical emergency hospital of Craiova, Romania
| | - Paul Mitrut
- Division of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
- Department of Internal Medicine II, County Clinical Emergency Hospital, Craiova, Romania
| |
Collapse
|
4
|
Feaver RE, Bowers MS, Cole BK, Hoang S, Lawson MJ, Taylor J, LaMoreaux BD, Zhao L, Henke BR, Johns BA, Nyborg AC, Wamhoff BR, Figler RA. Human cardiovascular disease model predicts xanthine oxidase inhibitor cardiovascular risk. PLoS One 2023; 18:e0291330. [PMID: 37682977 PMCID: PMC10490929 DOI: 10.1371/journal.pone.0291330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.
Collapse
Affiliation(s)
- Ryan E. Feaver
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - M. Scott Bowers
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Banumathi K. Cole
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Steve Hoang
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Mark J. Lawson
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Justin Taylor
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | | | - Lin Zhao
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Brad R. Henke
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Brian A. Johns
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Andrew C. Nyborg
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Brian R. Wamhoff
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Robert A. Figler
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| |
Collapse
|
5
|
McDuffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022; 13:999366. [PMID: 36246284 PMCID: PMC9555087 DOI: 10.3389/fmicb.2022.999366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hepatitis is a leading cause of liver disease and mortality. Infection can occur acutely or chronically, but the mechanisms that govern the clearance of virus or lack thereof are poorly understood and merit further investigation. Though cures for viral hepatitis have been developed, they are expensive, not readily accessible in vulnerable populations and some patients may remain at an increased risk of developing hepatocellular carcinoma (HCC) even after viral clearance. To sustain infection in vitro, hepatocytes must be fully mature and remain in a differentiated state. However, primary hepatocytes rapidly dedifferentiate in conventional 2D in vitro platforms. Physiologically relevant or physiomimetic microsystems, are increasingly popular alternatives to traditional two-dimensional (2D) monocultures for in vitro studies. Physiomimetic systems reconstruct and incorporate elements of the native cellular microenvironment to improve biologic functionality in vitro. Multiple elements contribute to these models including ancillary tissue architecture, cell co-cultures, matrix proteins, chemical gradients and mechanical forces that contribute to increased viability, longevity and physiologic function for the tissue of interest. These microsystems are used in a wide variety of applications to study biological phenomena. Here, we explore the use of physiomimetic microsystems as tools for studying viral hepatitis infection in the liver and how the design of these platforms is tailored for enhanced investigation of the viral lifecycle when compared to conventional 2D cell culture models. Although liver-based physiomimetic microsystems are typically applied in the context of drug studies, the platforms developed for drug discovery purposes offer a solid foundation to support studies on viral hepatitis. Physiomimetic platforms may help prolong hepatocyte functionality in order to sustain chronic viral hepatitis infection in vitro for studying virus-host interactions for prolonged periods.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Ashutosh Agarwal,
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
- Emmanuel Thomas,
| |
Collapse
|
6
|
Benedicto AM, Fuster-Martínez I, Tosca J, Esplugues JV, Blas-García A, Apostolova N. NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells 2021; 10:cells10071687. [PMID: 34359857 PMCID: PMC8303744 DOI: 10.3390/cells10071687] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the improved effectiveness and safety of combined antiretroviral therapy, human immunodeficiency virus (HIV) infection has become a manageable, chronic condition rather than a mortal disease. However, HIV patients are at increased risk of experiencing non-AIDS-defining illnesses, with liver-related injury standing out as one of the leading causes of death among these patients. In addition to more HIV-specific processes, such as antiretroviral drug-related toxicity and direct injury to the liver by the virus itself, its pathogenesis is related to conditions that are also common in the general population, such as alcoholic and non-alcoholic fatty liver disease, viral hepatitis, and ageing. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are essential components of combined anti-HIV treatment due to their unique antiviral activity, high specificity, and acceptable toxicity. While first-generation NNRTIs (nevirapine and efavirenz) have been related largely to liver toxicity, those belonging to the second generation (etravirine, rilpivirine and doravirine) seem to be generally safe for the liver. Indeed, there is preclinical evidence of rilpivirine being hepatoprotective in different models of liver injury, independently of the presence of HIV. The present study aims to review the mechanisms by which currently available anti-HIV drugs belonging to the NNRTI family may participate in the development of liver disease.
Collapse
Affiliation(s)
- Ana M. Benedicto
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.M.B.); (I.F.-M.); (N.A.)
| | - Isabel Fuster-Martínez
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.M.B.); (I.F.-M.); (N.A.)
| | - Joan Tosca
- Digestive Medicine Department, University Clinical Hospital of Valencia, 46010 Valencia, Spain;
| | - Juan V. Esplugues
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.M.B.); (I.F.-M.); (N.A.)
- FISABIO–University Hospital Dr Peset, 46017 Valencia, Spain;
- Center for Biomedical Research Network–Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-167; Fax: +34-963-983-879
| | - Ana Blas-García
- FISABIO–University Hospital Dr Peset, 46017 Valencia, Spain;
- Center for Biomedical Research Network–Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadezda Apostolova
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.M.B.); (I.F.-M.); (N.A.)
- FISABIO–University Hospital Dr Peset, 46017 Valencia, Spain;
- Center for Biomedical Research Network–Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
7
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
8
|
Han C, Cui Y, Guo Y, Zhang D, Wang X, Geng Y, Shi W, Bao Y. Proteome and transcriptome analysis revealed florfenicol via affected drug metabolism and lipid metabolism induce liver injury of broilers. Poult Sci 2021; 100:101228. [PMID: 34293615 PMCID: PMC8319801 DOI: 10.1016/j.psj.2021.101228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
In order to explore the mechanism of liver injury induced by florfenicol (FFC) in broilers. Sixty broilers were randomly divided into 2 groups: control group: normal drinking water and feed were given every d; FFC group: tap water containing FFC (0.15g/L) was given every d and feed was taken freely; each group was given 5 dd of continuous medication and feed was taken freely. The results showed that compared with the control group, FFC could significantly inhibit the weight gain of broilers (P < 0.05), and significantly inhibit the expression of CYP1A1 and CYP2H1 in liver tissue (P < 0.05). It was found that the expression of genes related to the effect of cytochrome P450 on the metabolism of exogenous substances, the peroxisome proliferators-activated receptors signal pathway, peroxisome pathway and glutathione metabolic pathway in the liver of broilers. The results of qPCR of UDP glucuronosyltransferase family 2A1 (UGT2A1), glutathione S-transferase-like 2 (GSTAL2), hematopoietic prostaglandin D synthase (HPGDS), glutathione S-transferase theta 1(GSTT1), isocitrate dehydrogenase (NADP(+)) 1 (IDH1), acyl-CoA oxidase 2 (ACOX2), fatty acid binding protein 1 (FABP1), adenylosuccinate lyase (ADSL), and phosphoribosyl aminoim idazolesuccino carboxamide synthase (PAICS) genes which were randomly selected from the most significant genes were consistent with those of RNA-seq. The results showed that FFC can affect the drug metabolism and lipid synthesis in the liver of broiler, thus impairing the normal function of liver and the growth and development of broiler.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yiwei Guo
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Di Zhang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yumeng Geng
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China
| |
Collapse
|
9
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Gruevska A, Moragrega ÁB, Cossarizza A, Esplugues JV, Blas-García A, Apostolova N. Apoptosis of Hepatocytes: Relevance for HIV-Infected Patients under Treatment. Cells 2021; 10:cells10020410. [PMID: 33669403 PMCID: PMC7920460 DOI: 10.3390/cells10020410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Due to medical advances over the past few decades, human immunodeficiency virus (HIV) infection, once a devastatingly mortal pandemic, has become a manageable chronic condition. However, available antiretroviral treatments (cART) cannot fully restore immune health and, consequently, a number of inflammation-associated and/or immunodeficiency complications have manifested themselves in treated HIV-infected patients. Among these chronic, non-AIDS (acquired immune deficiency syndrome)-related conditions, liver disease is one of the deadliest, proving to be fatal for 15–17% of these individuals. Aside from the presence of liver-related comorbidities, including metabolic disturbances and co-infections, HIV itself and the adverse effects of cART are the main factors that contribute to hepatic cell injury, inflammation, and fibrosis. Among the molecular mechanisms that are activated in the liver during HIV infection, apoptotic cell death of hepatocytes stands out as a key pathogenic player. In this review, we will discuss the evidence and potential mechanisms involved in the apoptosis of hepatocytes induced by HIV, HIV-encoded proteins, or cART. Some antiretroviral drugs, especially the older generation, can induce apoptosis of hepatic cells, which occurs through a variety of mechanisms, such as mitochondrial dysfunction, increased production of reactive oxygen species (ROS), and induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR), all of which ultimately lead to caspase activation and cell death.
Collapse
Affiliation(s)
- Aleksandra Gruevska
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Ángela B. Moragrega
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Juan V. Esplugues
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-396-4167; Fax: +34-96-398-3879
| | - Ana Blas-García
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadezda Apostolova
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
11
|
Hu L, Chen S, Fu Y, Gao Z, Long H, Ren HW, Zuo Y, Wang J, Li H, Xu QB, Yu WX, Liu J, Shao C, Hao JJ, Wang CZ, Ma Y, Wang Z, Yanagihara R, Deng Y. Risk Factors Associated With Clinical Outcomes in 323 Coronavirus Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clin Infect Dis 2020; 71:2089-2098. [PMID: 32361738 PMCID: PMC7197620 DOI: 10.1093/cid/ciaa539] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background With evidence of sustained transmission in more than 190 countries, coronavirus disease 2019 (COVID-19) has been declared a global pandemic. Data are urgently needed about risk factors associated with clinical outcomes. Methods A retrospective review of 323 hospitalized patients with COVID-19 in Wuhan was conducted. Patients were classified into three disease severity groups (non-severe, severe, and critical), based on initial clinical presentation. Clinical outcomes were designated as favorable and unfavorable, based on disease progression and response to treatments. Logistic regression models were performed to identify risk factors associated with clinical outcomes, and log-rank test was conducted for the association with clinical progression. Results Current standard treatments did not show significant improvement in patient outcomes. By univariate logistic regression analysis, 27 risk factors were significantly associated with clinical outcomes. Multivariate regression indicated age over 65 years (p<0.001), smoking (p=0.001), critical disease status (p=0.002), diabetes (p=0.025), high hypersensitive troponin I (>0.04 pg/mL, p=0.02), leukocytosis (>10 x 109/L, p<0.001) and neutrophilia (>75 x 109/L, p<0.001) predicted unfavorable clinical outcomes. By contrast, the administration of hypnotics was significantly associated with favorable outcomes (p<0.001), which was confirmed by survival analysis. Conclusions Hypnotics may be an effective ancillary treatment for COVID-19. We also found novel risk factors, such as higher hypersensitive troponin I, predicted poor clinical outcomes. Overall, our study provides useful data to guide early clinical decision making to reduce mortality and improve clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Ling Hu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.,Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.,Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Hui Long
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Wei Ren
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zuo
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jie Wang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Li
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qing-Bang Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Xiong Yu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jia Liu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chen Shao
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Jie Hao
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chuan-Zhen Wang
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yao Ma
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhanwei Wang
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
12
|
Friman T, Chernobrovkin A, Martinez Molina D, Arnold L. CETSA MS Profiling for a Comparative Assessment of FDA-Approved Antivirals Repurposed for COVID-19 Therapy Identifies TRIP13 as a Remdesivir Off-Target. SLAS DISCOVERY 2020; 26:336-344. [PMID: 33208020 PMCID: PMC7736708 DOI: 10.1177/2472555220973597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reuse of preexisting small molecules for a novel emerging disease threat is a rapid measure to discover unknown applications for previously validated therapies. A pertinent and recent example where such a strategy could be employed is in the fight against coronavirus disease 2019 (COVID-19). Therapies designed or discovered to target viral proteins also have off-target effects on the host proteome when employed in a complex physiological environment. This study aims to assess these host cell targets for a panel of FDA-approved antiviral compounds including remdesivir, using the cellular thermal shift assay (CETSA) coupled with mass spectrometry (CETSA MS) in noninfected cells. CETSA MS is a powerful method to delineate direct and indirect interactions between small molecules and protein targets in intact cells. Biologically active compounds can induce changes in thermal stability, in their primary binding partners, and in proteins that in turn interact with the direct targets. Such engagement of host targets by antiviral drugs may contribute to the clinical effect against the virus but can also constitute a liability. We present here a comparative study of CETSA molecular target engagement fingerprints of antiviral drugs to better understand the link between off-targets and efficacy.
Collapse
|
13
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Nevirapine Biotransformation Insights: An Integrated In Vitro Approach Unveils the Biocompetence and Glutathiolomic Profile of a Human Hepatocyte-Like Cell 3D Model. Int J Mol Sci 2020; 21:ijms21113998. [PMID: 32503263 PMCID: PMC7312429 DOI: 10.3390/ijms21113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.
Collapse
|
15
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Han W, Duan Z. Different drug metabolism behavior between species in drug-induced hepatotoxicity: limitations and novel resolutions. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1639060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weijia Han
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
18
|
Cole BK, Feaver RE, Wamhoff BR, Dash A. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov 2017; 13:193-205. [PMID: 29190166 DOI: 10.1080/17460441.2018.1410135] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The progressive disease spectrum of non-alcoholic fatty liver disease (NAFLD), which includes non-alcoholic steatohepatitis (NASH), is a rapidly emerging public health crisis with no approved therapy. The diversity of various therapies under development highlights the lack of consensus around the most effective target, underscoring the need for better translatable preclinical models to study the complex progressive disease and effective therapies. Areas covered: This article reviews published literature of various mouse models of NASH used in preclinical studies, as well as complex organotypic in vitro and ex vivo liver models being developed. It discusses translational challenges associated with both kinds of models, and describes some of the studies that validate their application in NAFLD. Expert opinion: Animal models offer advantages of understanding drug distribution and effects in a whole body context, but are limited by important species differences. Human organotypic in vitro and ex vivo models with physiological relevance and translatability need to be used in a tiered manner with simpler screens. Leveraging newer technologies, like metabolomics, proteomics, and transcriptomics, and the future development of validated disease biomarkers will allow us to fully utilize the value of these models to understand disease and evaluate novel drugs in isolation or combination.
Collapse
Affiliation(s)
| | | | | | - Ajit Dash
- b Early Development Safety , Genentech Inc , South San Francisco , CA , USA
| |
Collapse
|
19
|
Collado MS, Cole BK, Figler RA, Lawson M, Manka D, Simmers MB, Hoang S, Serrano F, Blackman BR, Sinha S, Wamhoff BR. Exposure of Induced Pluripotent Stem Cell-Derived Vascular Endothelial and Smooth Muscle Cells in Coculture to Hemodynamics Induces Primary Vascular Cell-Like Phenotypes. Stem Cells Transl Med 2017. [PMID: 28628273 PMCID: PMC5689791 DOI: 10.1002/sctm.17-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated into vascular endothelial (iEC) and smooth muscle (iSMC) cells. However, because iECs and iSMCs are not derived from an intact blood vessel, they represent an immature phenotype. Hemodynamics and heterotypic cell:cell communication play important roles in vascular cell phenotypic modulation. Here we tested the hypothesis that hemodynamic exposure of iECs in coculture with iSMCs induces an in vivo‐like phenotype. iECs and iSMCs were cocultured under vascular region‐specific blood flow hemodynamics, and compared to hemodynamic cocultures of blood vessel‐derived endothelial (pEC) and smooth muscle (pSMC) cells. Hemodynamic flow‐induced gene expression positively correlated between pECs and iECs as well as pSMCs and iSMCs. While endothelial nitric oxide synthase 3 protein was lower in iECs than pECs, iECs were functionally mature as seen by acetylated‐low‐density lipoprotein (LDL) uptake. SMC contractile protein markers were also positively correlated between pSMCs and iSMCs. Exposure of iECs and pECs to atheroprone hemodynamics with oxidized‐LDL induced an inflammatory response in both. Dysfunction of the transforming growth factor β (TGFβ) pathway is seen in several vascular diseases, and iECs and iSMCs exhibited a transcriptomic prolife similar to pECs and pSMCs, respectively, in their responses to LY2109761‐mediated transforming growth factor β receptor I/II (TGFβRI/II) inhibition. Although there are differences between ECs and SMCs derived from iPSCs versus blood vessels, hemodynamic coculture restores a high degree of similarity in their responses to pathological stimuli associated with vascular diseases. Thus, iPSC‐derived vascular cells exposed to hemodynamics may provide a viable system for modeling rare vascular diseases and testing new therapeutic approaches. Stem Cells Translational Medicine2017;6:1673–1683
Collapse
Affiliation(s)
| | | | | | - Mark Lawson
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - David Manka
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | | | - Steve Hoang
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - Felipe Serrano
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Sonderup MW, Wainwright HC. Human Immunodeficiency Virus Infection, Antiretroviral Therapy, and Liver Pathology. Gastroenterol Clin North Am 2017; 46:327-343. [PMID: 28506368 DOI: 10.1016/j.gtc.2017.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The improvement in antiretroviral therapy has significantly impacted the lives of people living with human immunodeficiency virus (HIV). In high-income countries, HIV deaths are predominated by liver disease consequent to viral hepatitis coinfection, alcohol, and nonalcoholic fatty liver disease. Published liver pathology findings have shifted from being predominated by opportunistic infections to the metabolic effects of HIV and antiretroviral therapy as well as drug-induced liver injuries. Differences remain between high-income and low-income countries, where opportunistic infections and immune reconstitution syndromes, dominate findings.
Collapse
Affiliation(s)
- Mark W Sonderup
- Division of Hepatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Observatory, Cape Town 7925, South Africa.
| | - Helen Cecilia Wainwright
- Department of Anatomical Pathology, National Health Laboratory Services, D7 Groote Schuur Hospital, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
21
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
22
|
Feaver RE, Cole BK, Lawson MJ, Hoang SA, Marukian S, Blackman BR, Figler RA, Sanyal AJ, Wamhoff BR, Dash A. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 2016; 1:e90954. [PMID: 27942596 DOI: 10.1172/jci.insight.90954] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A barrier to drug development for nonalcoholic steatohepatitis (NASH) is the absence of translational preclinical human-relevant systems. An in vitro liver model was engineered to incorporate hepatic sinusoidal flow, transport, and lipotoxic stress risk factors (glucose, insulin, free fatty acids) with cocultured primary human hepatocytes, hepatic stellate cells (HSCs), and macrophages. Transcriptomic, lipidomic, and functional endpoints were evaluated and compared with clinical data from NASH patient biopsies. The lipotoxic milieu promoted hepatocyte lipid accumulation (4-fold increase, P < 0.01) and a lipidomics signature similar to NASH biopsies. Hepatocyte glucose output increased with decreased insulin sensitivity. These changes were accompanied by increased inflammatory analyte secretion (e.g., IL-6, IL-8, alanine aminotransferase). Fibrogenic activation markers increased with lipotoxic conditions, including secreted TGF-β (>5-fold increase, P < 0.05), extracellular matrix gene expression, and HSC activation. Significant pathway correlation existed between this in vitro model and human biopsies. Consistent with clinical trial data, 0.5 μM obeticholic acid in this model promoted a healthy lipidomic signature, reduced inflammatory and fibrotic secreted factors, but also increased ApoB secretion, suggesting a potential adverse effect on lipoprotein metabolism. Lipotoxic stress activates similar biological signatures observed in NASH patients in this system, which may be relevant for interrogating novel therapeutic approaches to treat NASH.
Collapse
Affiliation(s)
- Ryan E Feaver
- HemoShear Therapeutics LLC, Charlottesville, Virginia, USA
| | | | - Mark J Lawson
- HemoShear Therapeutics LLC, Charlottesville, Virginia, USA
| | | | | | | | | | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virgina, USA
| | | | - Ajit Dash
- HemoShear Therapeutics LLC, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro 2016; 39:93-103. [PMID: 27939613 DOI: 10.1016/j.tiv.2016.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an emerging health crisis with no approved therapies. Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, shows promise in NASH trials. However, the precise mechanisms mediating OCA effects and impact on cholesterol metabolism are not fully understood. We explored the pharmaco-toxicological effects of OCA on patho-physiological pathways in hepatocytes using a previously described perfused organotypic liver system that allows culture in near-physiological insulin/glucose milieus, and exhibits drug responses at clinically-relevant concentrations. Primary hepatocytes experienced 48-hour exposure to OCA at concentrations approximating therapeutic (0.5μM) and supratherapeutic (10μM) levels. Global transcriptomics by RNAseq was complimented by cellular viability (MTT), CYP activity assays, and secreted FGF19 levels in the media. Dose-dependent, transcriptional effects suggested suppression of bile acid synthesis (↓CYP7A1, ↓CYP27A1) and increased bile efflux (↑ABCB4, ↑ABCB11, ↑OSTA, ↑OSTB). Pleiotropic effects included suppression of TGFβ and IL-6 signaling pathways, and signatures suggestive of HDL suppression (↑SCARB1, ↓ApoAI, ↓LCAT) and LDL elevation (↑ApoB, ↓CYP7A1). OCA exhibited direct FXR-mediated effects with increased FGF19 secretion. Transcriptomics revealed regulation of metabolic, anti-inflammatory, and anti-fibrotic pathways beneficial in NASH, and predicted cholesterol profiles consistent with clinical findings. Follow-up studies under lipotoxic/inflammatory conditions would corroborate these effects in a disease-relevant environment.
Collapse
|
24
|
Abstract
INTRODUCTION Drug induced steatohepatitis (DISH), a form of drug induced liver injury (DILI) is characterized by intracellular accumulation of lipids in hepatocytes and subsequent inflammatory events, in some ways similar to the pathology seen with other metabolic, viral and genetic causes of non alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH). Areas covered: This paper provides a comprehensive review of the main underlying mechanisms by which various drugs cause DISH, and outlines existing preclinical tools to predict it and study underlying pathways involved. The translational hurdles of these models are discussed, with the example of an organotypic liver system designed to address them. Finally, we describe the clinical assessment and management of DISH. Expert Opinion: The complexity of the interconnected mechanistic pathways underlying DISH makes it important that preclinical evaluation of drugs is done in a physiologically and metabolically relevant context. Advanced organotypic tissue models, coupled with translational functional biomarkers and next-generational pan-omic measurements, may offer the best shot at gathering mechanistic knowledge and potential of a drug causing steatohepatitis. Ultimately this information could also help predict, detect or guide the development of specific treatments for DISH, which is an unmet need as of today.
Collapse
Affiliation(s)
- Ajit Dash
- a HemoShear Therapeutics LLC , Charlottesville , VA , USA
| | | | - Arun J Sanyal
- b Department of Internal Medicine, School of Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | | |
Collapse
|
25
|
|
26
|
Chapman KA, Collado MS, Figler RA, Hoang SA, Armstrong AJ, Cui W, Purdy M, Simmers MB, Yazigi NA, Summar ML, Wamhoff BR, Dash A. Recapitulation of metabolic defects in a model of propionic acidemia using patient-derived primary hepatocytes. Mol Genet Metab 2016; 117:355-362. [PMID: 26740382 PMCID: PMC4852394 DOI: 10.1016/j.ymgme.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND Propionic acidemia (PA) is a disorder of intermediary metabolism with defects in the alpha or beta subunits of propionyl CoA carboxylase (PCCA and PCCB respectively) enzyme. We previously described a liver culture system that uses liver-derived hemodynamic blood flow and transport parameters to restore and maintain primary human hepatocyte biology and metabolism utilizing physiologically relevant milieu concentrations. METHODS In this study, primary hepatocytes isolated from the explanted liver of an 8-year-old PA patient were cultured in the liver system for 10 days and evaluated for retention of differentiated polarized morphology. The expression of PCCA and PCCB was assessed at a gene and protein level relative to healthy donor controls. Ammonia and urea levels were measured in the presence and absence of amino acid supplements to assess the metabolic consequences of branched-chain amino acid metabolism in this disease. RESULTS Primary hepatocytes from the PA patient maintained a differentiated polarized morphology (peripheral actin staining) over 10 days of culture in the system. We noted lower levels of PCCA and PCCB relative to normal healthy controls at the mRNA and protein level. Supplementation of branched-chain amino acids, isoleucine (5mM) and valine (5mM) in the medium, resulted in increased ammonia and decreased urea in the PA patient hepatocyte system, but no such response was seen in healthy hepatocytes or patient-derived fibroblasts. CONCLUSIONS We demonstrate for the first time the successful culture of PA patient-derived primary hepatocytes in a differentiated state, that stably retain the PCCA and PCCB enzyme defects at a gene and protein level. Phenotypic response of the system to an increased load of branched-chain amino acids, not possible with fibroblasts, underscores the utility of this system in the better understanding of the molecular pathophysiology of PA and examining the effectiveness of potential therapeutic agents in the most relevant tissue.
Collapse
Affiliation(s)
- Kimberly A. Chapman
- Children’s National Medical Center and George Washington University, Washington, DC, United States
| | | | | | | | | | - Wanxing Cui
- Georgetown University Hospital, Washington, DC, United States
| | - Michael Purdy
- University of Virginia, Charlottesville, VA, United States
| | | | - Nada A. Yazigi
- Georgetown University Hospital, Washington, DC, United States
| | - Marshall L. Summar
- Children’s National Medical Center and George Washington University, Washington, DC, United States
| | - Brian R. Wamhoff
- HemoShear Therapeutics, Charlottesville, VA, United States
- Corresponding author at: HemoShear Therapeutics, 501 Locust Avenue, Suite 301, Charlottesville, VA 22902, United States. (B.R. Wamhoff)
| | - Ajit Dash
- HemoShear Therapeutics, Charlottesville, VA, United States
| |
Collapse
|