1
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
2
|
Yang X, Li J, Xu C, Zhang G, Che X, Yang J. Potential mechanisms of rheumatoid arthritis therapy: Focus on macrophage polarization. Int Immunopharmacol 2024; 142:113058. [PMID: 39236455 DOI: 10.1016/j.intimp.2024.113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengchao Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinzhen Che
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Du Y, Zhang Y, Jiang Z, Xu L, Ru J, Wei S, Chen W, Dong R, Zhang S, Jia T. Triptolide alleviates acute gouty arthritis caused by monosodium urate crystals by modulating macrophage polarization and neutrophil activity. Immunol Lett 2024; 269:106907. [PMID: 39122094 DOI: 10.1016/j.imlet.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.
Collapse
Affiliation(s)
- Yan Du
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yurong Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhuxin Jiang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Lianjie Xu
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jing Ru
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Shanshan Wei
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wenhui Chen
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan 450500, , China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 450500, , China
| | - Renjie Dong
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Shan Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan 450500, , China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 450500, , China.
| | - Tao Jia
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650021, , China.
| |
Collapse
|
5
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
6
|
Jiang Z, Cai H, Lin Y, Lin R, Chen L, Huang H. T-cell exhaustion-related genes in Graves' disease: a comprehensive genome mapping analysis. Front Endocrinol (Lausanne) 2024; 15:1364782. [PMID: 39239096 PMCID: PMC11374593 DOI: 10.3389/fendo.2024.1364782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Background T-cell exhaustion (Tex) can be beneficial in autoimmune diseases, but its role in Graves' disease (GD), an autoimmune disorder of the thyroid, remains unknown. This study investigated Tex-related gene expression in GD patients to discern the potential contributions of these genes to GD pathogenesis and immune regulation. Methods Through gene landscape analysis, a protein-protein interaction network of 40 Tex-related genes was constructed. mRNA expression levels were compared between GD patients and healthy control (HCs). Unsupervised clustering categorized GD cases into subtypes, revealing distinctions in gene expression, immune cell infiltration, and immune responses. Weighted gene co-expression network analysis and differential gene expression profiling identified potential therapeutic targets. RT-qPCR validation of candidate gene expression was performed using blood samples from 112 GD patients. Correlations between Tex-related gene expression and clinical indicators were analyzed. Results Extensive Tex-related gene interactions were observed, with six genes displaying aberrant expression in GD patients. This was associated with atypical immune cell infiltration and regulation. Cluster analysis delineated two GD subtypes, revealing notable variations in gene expression and immune responses. Screening efforts identified diverse drug candidates for GD treatment. The Tex-related gene CBL was identified for further validation and showed reduced mRNA expression in GD patients, especially in cases of relapse. CBL mRNA expression was significantly lower in patients with moderate-to-severe thyroid enlargement than in those without such enlargement. Additionally, CBL mRNA expression was negatively correlated with the disease-specific indicator thyrotropin receptor antibodies. Conclusion Tex-related genes modulate GD pathogenesis, and their grouping aids subtype differentiation and exploration of therapeutic targets. CBL represents a potential marker for GD recurrence.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huiyao Cai
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yizhao Lin
- Department of Internal Medicine, Gutian County Hospital of Ningde City, Ningde, Fujian, China
| | - Ruhai Lin
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lijun Chen
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
7
|
Medkova YS, Tulina I, Yudina V, Abdullaev R, Shcherbakova V, Novikov I, Nikonov A, Tsarkov P. Efficacy of Micronized Purified Flavonoid Fraction in the Posthemorrhoidectomy Period Trial: Open-Label Randomized Controlled Trial. Dis Colon Rectum 2024; 67:826-833. [PMID: 38380823 DOI: 10.1097/dcr.0000000000003211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
BACKGROUND Frequent early postoperative complications of hemorrhoidectomy are thrombosis and edema of mucocutaneous "bridges." OBJECTIVE This study aimed to investigate the efficacy of micronized purified flavonoid fraction in preventing complications after elective hemorrhoidectomy. DESIGN Prospective unicentral open-label randomized controlled trial. SETTINGS 2021-2022 at the Clinic of Colorectal and Minimally Invasive Surgery at Sechenov University (Moscow, Russia). PATIENTS Patients who underwent hemorrhoidectomy for grade III and IV hemorrhoids. INTERVENTIONS After hemorrhoidectomy, patients were randomly assigned either to standard treatment (peroral nonsteroid anti-inflammatory drugs and local anesthetics, topical steroids, psyllium, warm sitz baths, and nifedipine gel), referred to as the control group, or to standard treatment with micronized purified flavonoid fraction, referred to as the study group, and followed up for 60 days. MAIN OUTCOME MEASURES Thrombosis or edema of mucocutaneous bridges and pain intensity on a visual analog scale оn postoperative days 1-7, 14, 21, and 30; quality of life and patient-assessed treatment effect оn postoperative days 1, 3, 7, 21, and 30; and perianal skin tags оn postoperative day 60. RESULTS The data from 50 patients were analyzed (25 in each group). The visual analog scale demonstrated no differences between groups in each follow-up point. Compared to the control group, the patients in the study group had a significantly higher patient-assessed treatment effect оn postoperative days 1, 3, 7, 21, and 30 and a significantly lower rate of thrombosis or edema of mucocutaneous bridges оn postoperative days 1-7 and 14. Patients in the study group had significantly lower rates of perianal skin tags. LIMITATIONS Unicenter open-label design. CONCLUSIONS Micronized purified flavonoid fraction in the posthemorrhoidectomy period is an effective adjunct to standard treatment that helps reduce the rate of thrombosis and edema of mucocutaneous bridges, improves patient-assessed treatment effect, and prevents postoperative perianal skin tags formation. Micronized purified flavonoid fraction in the posthemorrhoidectomy period is not associated with additional pain relief in comparison with nonmicronized purified flavonoid fraction standard treatment. See Video Abstract . EFICACIA DE LA FRACCIN DE FLAVONOIDES PURIFICADA MICRONIZADA EN EL PERODO POSTERIOR A LA HEMORROIDECTOMA ENSAYO MOST ENSAYO CONTROLADO, ALEATORIZADO, ABIERTO ANTECEDENTES:Una complicación postoperatoria temprana frecuente de la hemorroidectomía es la trombosis y el edema de los "puentes" mucocutáneos.OBJETIVO:Investigamos la eficacia de la fracción de flavonoides purificada micronizada en la prevención de complicaciones después de una hemorroidectomía electiva.DISEÑO:Ensayo controlado aleatorio, prospectivo, unicentral, abierto.AJUSTES:2021-2022 Clínica de Cirugía Colorrectal y Mínimamente Invasiva Universidad Sechenov (Moscú, Rusia).PACIENTES:Pacientes después de hemorroidectomía, que se realizó para hemorroides de grado III-IV.INTERVENCIONES:Después de la hemorroidectomía, los pacientes fueron asignados aleatoriamente al tratamiento estándar (antiinflamatorios no esteroides perorales y anestésicos locales, esteroides tópicos, psyllium, baños de asiento tibios, gel de nifedipina) - grupo de control, o al tratamiento estándar con flavonoide purificado micronizado. fracción (grupo de estudio) y seguido durante 60 días.RESULTADOS DE MEDIDAS PRINCIPALES:Trombosis o edema de puentes mucocutáneos e intensidad del dolor en una escala analógica visual entre el 1.º, 7.º, 14.º, 21.º y 30.º día postoperatorio; calidad de vida y efecto del tratamiento evaluado por el paciente el día 1, 3, 7, 21 y 30 del postoperatorio; Marcas cutáneas perianales en el día 60 del postoperatorio.RESULTADOS:Se analizaron los datos de 50 pacientes (25 en cada grupo). La escala analógica visual no demostró diferencias entre grupos en cada punto de seguimiento. En comparación con el grupo de control, los pacientes en el grupo de estudio tuvieron un efecto del tratamiento evaluado por el paciente significativamente mayor en los días 1, 3, 7, 21 y 30 después de la operación, una tasa significativamente menor de trombosis o edema de los puentes mucocutáneos en los días 1, 7 y 14.. Los pacientes del grupo de estudio tuvieron tasas significativamente más bajas de marcas en la piel perianal.LIMITACIONES:Diseño Unicenter de etiqueta abierta.CONCLUSIONES:La fracción de flavonoides purificada micronizada en el período posterior a la hemorroidectomía es un complemento eficaz del tratamiento estándar que ayuda a reducir la tasa de trombosis y edema de los puentes mucocutáneos, mejora el efecto del tratamiento evaluado por el paciente y previene la formación de marcas cutáneas perianales posoperatorias. La fracción de flavonoides purificados micronizados en el período posterior a la hemorroidectomía no se asocia con un alivio adicional del dolor en comparación con el tratamiento estándar con la fracción de flavonoides purificados no micronizados. (Traducción-Yesenia Rojas-Khalil ).
Collapse
Affiliation(s)
- Yuliya Sergeevna Medkova
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Inna Tulina
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valeriya Yudina
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ruslan Abdullaev
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vlada Shcherbakova
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ivan Novikov
- Department of Heart Rhythm Disorders, Federal State Budget Organization, National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Andrey Nikonov
- Department of Obstetrics and Gynecology, Snegirev Clinic of Obstetrics and Gynecology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Petr Tsarkov
- Department of Colorectal Surgery, Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Sun H, Yang Y, Jin Y, Chen H, Li A, Chen X, Yin J, Cai J, Zhang L, Feng X, Wang Y, Xiong W, Tang C, Wan B. Novel nanocomposites improve functional recovery of spinal cord injury by regulating NF-κB mediated microglia polarization. CHEMICAL ENGINEERING JOURNAL 2024; 487:150633. [DOI: 10.1016/j.cej.2024.150633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
10
|
Deng T, Xu J, Wang Q, Wang X, Jiao Y, Cao X, Geng Q, Zhang M, Zhao L, Xiao C. Immunomodulatory effects of curcumin on macrophage polarization in rheumatoid arthritis. Front Pharmacol 2024; 15:1369337. [PMID: 38487171 PMCID: PMC10938599 DOI: 10.3389/fphar.2024.1369337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation, cartilage destruction, pannus formation and bone erosion. Various immune cells, including macrophages, are involved in RA pathogenesis. The heterogeneity and plasticity of macrophages render them pivotal regulators of both the induction and resolution of the inflammatory response. Predominantly, two different phenotypes of macrophages have been identified: classically activated M1 macrophages exacerbate inflammation via the production of cytokines, chemokines and other inflammatory mediators, while alternatively activated M2 macrophages inhibit inflammation and facilitate tissue repair. An imbalance in the M1/M2 macrophage ratio is critical during the initiation and progression of RA. Macrophage polarization is modulated by various transcription factors, epigenetic elements and metabolic reprogramming. Curcumin, an active component of turmeric, exhibits potent immunomodulatory effects and is administered in the treatment of multiple autoimmune diseases, including RA. The regulation of macrophage polarization and subsequent cytokine production as well as macrophage migration is involved in the mechanisms underlying the therapeutic effect of curcumin on RA. In this review, we summarize the underlying mechanisms by which curcumin modulates macrophage function and polarization in the context of RA to provide evidence for the clinical application of curcumin in RA treatment.
Collapse
Affiliation(s)
- Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiahe Xu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol 2023; 957:176006. [PMID: 37611840 DOI: 10.1016/j.ejphar.2023.176006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Macrophages are the mature form of monocytes that have high plasticity and can shift from one phenotype to another by the process of macrophage polarization. Macrophage has several vital pharmacological tasks like eliminating microorganism invasion, clearing dead cells, causing inflammation, repairing damaged tissues, etc. The function of macrophages is based on their phenotype. M1 macrophages are mostly responsible for the body's immune responses and M2 macrophages have healing properties. Inappropriate activation of any one of the phenotypes often leads to ROS-induced tissue damage and affects wound healing and angiogenesis. Therefore, maintaining tissue macrophage homeostasis is necessary. Studies are being done to find techniques for macrophage polarization. But, the process of macrophage polarization is very complex as it involves multiple signalling pathways involving innate immunity. Thus, identifying the right pathways for macrophage polarization is essential to apply the polarizing technique for the treatment of various inflammatory diseases where macrophage physiology influences the disease pathology. In this review, we highlighted the various techniques so far used to change macrophage plasticity. We believe that soon macrophage targeting therapeutics will hit the market for the management of inflammatory disease. Hence this review will help macrophage researchers choose suitable methods and materials/agents to polarize macrophages artificially in various disease models.
Collapse
Affiliation(s)
- Oishani Chaterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India.
| |
Collapse
|
12
|
Lin YR, Zheng FT, Xiong BJ, Chen ZH, Chen ST, Fang CN, Yu CX, Yang J. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116474. [PMID: 37031823 DOI: 10.1016/j.jep.2023.116474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.
Collapse
Affiliation(s)
- Ya-Rong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Feng-Ting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ze-Hong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| | - Shi-Ting Chen
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chao-Nan Fang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
13
|
Wu P, Chang C, Zhu G, Zhai L, Zhang X, Huan Q, Gao Z, Deng H, Liang Y, Xiao H. Network Pharmacology Study of Bioactive Components and Molecular Mechanisms of the Glycoside Fraction from Picrorhiza scrophulariiflora Against Experimental Colitis. Drug Des Devel Ther 2023; 17:1531-1546. [PMID: 37249930 PMCID: PMC10224697 DOI: 10.2147/dddt.s407339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose To explore the potential mechanism of glycosidic fraction of Picrorhiza scrophulariiflora Pennell (GPS) extract for the treatment of colitis using UPLC-QTOF-MS analysis, network pharmacology and experimental research. Methods The active components of GPS extract were identified by UPLC-QTOF-MS analysis and extracted their targets from the databases, which was used for network pharmacology analysis. Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis was performed to discover potential therapeutic mechanisms, and the network pharmacology results were then validated by in vivo and in vitro experiments. Results The results showed that GPS extract significantly alleviated the clinical signs of colitis, including body weight, disease activity index, colon shortening, and colon tissue damage, and inhibited the transcription and production of colonic IL-1β and IL-6 in DSS-induced colitis mice. In vitro, GPS extract also significantly suppressed nitric oxide (NO) production, iNOS expression, IL-1β and IL-6 transcription of LPS-activated RAW 264.7 cells. Network pharmacology integrated with experimental validation identified that GPS extract significantly suppressed Akt, p38, ERK, and JNK phosphorylation in vivo and in vitro, and luteolin, apocynin, caffeic acid, caffeic acid methyl ester, luteoloside, picroside II, aucubin, cinnamic acid, vanillic acid, and sweroside were the main components responsible for the anti-inflammatory effect of GPS. These findings demonstrate that the potential anti-inflammatory effect of GPS extract against colitis is achieved through suppressing PI3K/Akt and MAPK pathways, and that the abovementioned active components mainly exerted its anti-inflammatory effect. Conclusion The therapeutic effect of GPS extract on colitis is related to PI3K/Akt and MAPK pathways, which is a promising remedy for colitis therapy.
Collapse
Affiliation(s)
- Peigen Wu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Churui Chang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Guanglin Zhu
- Traditional Chinese Medicine Hospital of Qijiang, Chongqing, People’s Republic of China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xu Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Qiuchan Huan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Zhengxian Gao
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| |
Collapse
|
14
|
Zhu J, Sun R, Yan C, Sun K, Gao L, Zheng B, Shi J. Hesperidin mitigates oxidative stress-induced ferroptosis in nucleus pulposus cells via Nrf2/NF-κB axis to protect intervertebral disc from degeneration. Cell Cycle 2023; 22:1196-1214. [PMID: 37055945 PMCID: PMC10193898 DOI: 10.1080/15384101.2023.2200291] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Intervertebral disc degeneration (IVDD), a widely known contributor to low back pain (LBP), has been proved to be a global health challenging conundrum. Hesperidin (hesperetin-7-O-rutinoside, HRD) is a flavanone glycoside that belongs to the subgroup of citrus flavonoids with therapeutic effect on various diseases due to its anti-inflammatory, antioxidant properties. However, the effect of HRD on IVDD remains elusive. The human nucleus pulposus tissues were harvested for isolating human nucleus pulposus (HNP) cells to verify the expression of Nrf2. The biological effect of HRD on HNP cells were assessed in vitro, and the in vivo therapeutic effects of HRD were assessed in mice. Firstly, we found that the expression of Nrf2 was decreased with the progression of degeneration in degenerated human nucleus pulposus tissue. Subsequently, we confirmed that HRD could mitigate oxidative stress-induced ferroptosis in nucleus pulposus cells via enhancing the expression of Nrf2 axis and suppressing the NF-κB pathway to protect intervertebral disc from degeneration in vitro. Finally, the therapeutic effects of HRD were confirmed in vivo. The current study proved for the first time that HRD may protect HNP cells from degeneration by suppressing ferroptosis in an oxidative stress-dependent via enhancing the expression of Nrf2 and suppressing the NF-κB pathway. The evidence will provide a possible basis for future targeted treatment for IVDD.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruping Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Yan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopaedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Department of Physiology, Naval Medical University, Shanghai, China
| | - Bing Zheng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Atta IS, Elnady MR, Alghamdi AG, Alghamdi AH, Aboulata AA, Shatla IM. Assessing the hepatoprotective effects of hesperidin on liver-associated disorders in albino rats with experimentally induced obesity and type II diabetes: A histological and biochemical study. Heliyon 2023; 9:e16031. [PMID: 37215885 PMCID: PMC10196525 DOI: 10.1016/j.heliyon.2023.e16031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Hesperidin (HSP) has multiple beneficial effects in verities of clinical situations including type 2 diabetes mellitus (T2DM). AIM Determination of curative effects of HSP on the liver in T2DM rats through biochemical and histopathological studies. METHODS Animals. Fifty rats were enrolled. 10 rats were fed a normal diet (control group), and the remaining 40 rats received a high-fat diet (HFD) for 8 weeks. The HFD-fed rats were grouped into Group II: 10 rats, and Group III: 10 rats received HSP 100 mg/kg. Group IV: 10 rats received a single dose of streptozotocin (STZ), 30 mg/kg, and Group V: 10 rats received STZ and HSP. Body weight, Blood glucose, insulin level, liver enzymes, lipid profile, oxidative stress, TNF-α, NF-κB, and liver biopsy were estimated. RESULTS there is improvement in the histological profile of the steatosis in HFD-fed rats treated with HSP either in group III or in group V (received STZ) along with amelioration in blood glucose, insulin, liver enzymes, lipid profile, oxidative profile, TNF-α, and NF-κB. CONCLUSION HSP in this STZ model revealed an improvement in steatosis, biochemical markers, and histologic findings. By studying these factors, we expected to identify the prospective targets for intervention that could help improve outcomes for individuals with obesity and diabetes-related liver diseases.
Collapse
Affiliation(s)
- Ihab Shafek Atta
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
- Pathology Department, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Mohamed R. Elnady
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Egypt
| | - Ali G. Alghamdi
- Surgery Department, Faculty of Medicine, Al Baha University, Saudi Arabia
| | | | - Alaa A. Aboulata
- Microbiology and Immunology Department, Faculty of Medicine, Al-Azhar University, Egypt
- Biomedical and Dental Sciences, Faculty of Dentistry, Al Baha University, Saudi Arabia
| | - Ibrahim M. Shatla
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Egypt
- Pathology Department, Faculty of Medicine, Al Baha University, Saudi Arabia
| |
Collapse
|
16
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
17
|
Ceria Nanoparticles Alleviated Osteoarthritis through Attenuating Senescence and Senescence-Associated Secretory Phenotype in Synoviocytes. Int J Mol Sci 2023; 24:ijms24055056. [PMID: 36902483 PMCID: PMC10003033 DOI: 10.3390/ijms24055056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Accumulation of senescent cells is the prominent risk factor for osteoarthritis (OA), accelerating the progression of OA through a senescence-associated secretory phenotype (SASP). Recent studies emphasized the existence of senescent synoviocytes in OA and the therapeutic effect of removing senescent synoviocytes. Ceria nanoparticles (CeNP) have exhibited therapeutic effects in multiple age-related diseases due to their unique capability of ROS scavenging. However, the role of CeNP in OA remains unknown. Our results revealed that CeNP could inhibit the expression of senescence and SASP biomarkers in multiple passaged and hydrogen-peroxide-treated synoviocytes by removing ROS. In vivo, the concentration of ROS in the synovial tissue was remarkably suppressed after the intra-articular injection of CeNP. Likewise, CeNP reduced the expression of senescence and SASP biomarkers as determined by immunohistochemistry analysis. The mechanistic study showed that CeNP inactivated the NFκB pathway in senescent synoviocytes. Finally, safranin O-fast green staining showed milder destruction of articular cartilage in the CeNP-treated group compared with the OA group. Overall, our study suggested that CeNP attenuated senescence and protected cartilage from degeneration via scavenging ROS and inactivating the NFκB signaling pathway. This study has potentially significant implications in the field of OA as it provides a novel strategy for OA treatment.
Collapse
|
18
|
Samarpita S, Rasool M. Majoon chobchini reinstates PDL-1 expression and blocks dendritic cell -T helper 17 pathogenic axis in rheumatoid arthritis animal model. Cytokine 2023; 163:156136. [PMID: 36716676 DOI: 10.1016/j.cyto.2023.156136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
Dendritic cells (DCs) are the critical players in the puzzle of rheumatoid arthritis (RA) disease pathogenesis. Blockade of DC activation has been shown to curtail Th17 cell differentiation and its aberrant function in RA. Recent studies have pointed to the role of the PI3K/AKT signaling axis in the maturation and activation of DCs. However, it is yet to be established how PI3K/AKT inhibition would lead to the abolishment of DC activation and Th17 cell plasticity in RA. Herein, our study decoded whether and how majoon chobchini, an unani compound, abated dendritic cell maturation and regulated the Th17/Treg paradigm in RA. Given our results, majoon chobchini conspicuously restrained MHC II, CD86 expression and, subsequently elevated PDL-1 levels in DCs in-vivo. Of note, inhibition of DC maturation by majoon chobchini, in turn, favoured suppression of the Th17 cell population while driving Treg cell development in adjuvant induced arthritic (AA) rats. Concurrently, majoon chobchini decreased the catabolic effects of IL-17 (Th17 associated cytokine) via a reciprocal increase in IL-10 (Treg associated cytokine) levels in AA rats. Mechanistically, majoon chobchini sustained FoxO1 nuclear localization signaled through dampened PI3K/AKT phosphorylation in-vitro. In concert, PDL-1 expression was heightened in majoon chobchini treated activated DCs that provides a framework for ablation of the DC-Th17 cell pathogenic axis in RA. Notwithstanding, the PI3K inhibitor LY294002 exhibited similar inhibitory effects. In essence, majoon chobchini enhanced PDL-1 expression that abolished DC maturation via regulation of the PI3K/AKT/FoxO1 axis, thereby hindering Th17 differentiation in an animal model of RA. This further warrants a clinical investigation that could validate majoon chobchini as a prospective therapeutic drug in the treatment of RA.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
19
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|
20
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
21
|
Qin W, Rong X, Yu C, Jia P, Yang J, Zhou G. Knockout of SLAMF8 attenuates collagen-induced rheumatoid arthritis in mice through inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2022; 107:108644. [DOI: 10.1016/j.intimp.2022.108644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
|
22
|
Mandal AK, Sahoo A, Dwivedi K, Singh R, Kumar V. Potential therapeutic application of biophenols - plants secondary metabolites in rheumatoid arthritis. Crit Rev Food Sci Nutr 2022; 63:8900-8918. [PMID: 35593234 DOI: 10.1080/10408398.2022.2062700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease showed that persistent inflammation in the joints, induces the cartilage destruction, bone erosion, and leukocyte infiltration in the synovium. RA mostly affects the joints of hands, feet, wrists, ankles, and knees. Each year, approximately 20-40 new cases are reported per lac population and the disease affects women more than men. The etiology of RA is still unknown, but many pathways have been identified as potential targets in its pathophysiology, including the PI3K/AKT signaling pathway, NF-κB signaling, Adenosine signaling, Wnt, SYK/BTK, and mTOR signaling pathways. Biophenol, plant secondary metabolite, is considered one of the most abundantly phytoconstituents to have potential anti-inflammatory effects associated with multiple pathways. These indicate that biophenols can be used for its protective effect on the development and symptoms of RA. The current review explores and discusses the role of different biophenols in the treatment of RA disease.
Collapse
Affiliation(s)
| | - Ankit Sahoo
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Richa Singh
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
23
|
Preparation of epigallocatechin gallate decorated Au-Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. Acta Biomater 2022; 144:168-182. [PMID: 35358735 DOI: 10.1016/j.actbio.2022.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), a widespread degenerative disease characterized by cartilage destruction, has emerged as a public health challenge in the current aging society. In addition to applied steroids and surgery, near-infrared (NIR) sensitive nano-enzyme for the treatment of osteoarthritis through mitochondrial repair and cartilage protection is attractive and promising. In this study, a NIR sensitive multifunctional heterostructure (EGCG (Epigallocatechin gallate) decorated Au-Ag nano-jars (E@Au-Ag)) was introduced as an enzyme-sensitive active nanoplatform for the treatment of osteoarthritis. Molecular biology results indicated that E@Au-Ag possesses intrinsic properties of anti-oxidative stress and was able to reduce the apoptosis rate of chondrocytes by 83.3%. The area of the intra-articular joint cavity injected with E@Au-Ag can be elevated to 46.6 °C under NIR to promote the release of EGCG further to induce cartilage regeneration. X-ray radiography and section staining showed that E@Au-Ag reduced cartilage damage and decreased OARSI scores by approximately 52% after 8 weeks of treatment in a surgically induced OA model. The results demonstrated that this multifunctional enzyme-like nanoplatform with a synergistic NIR sensitive property to facilitate cartilage migration and regeneration repair provides a promising OA treatment strategy. STATEMENT OF SIGNIFICANCE: 1. NIR-sensitive nano-enzyme is gaining much attention in the field of biomedical materials. 2. EGCG decorated Au-Ag nano-heterostructures were utilized as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. 3. The obtained multifunctional Au-Ag nano-heterostructures are promising for osteoarthritis treatment.
Collapse
|
24
|
Ma S, Gu S, Zhang J, Qi W, Lin Z, Zhai W, Zhan J, Li Q, Cai Y, Lu Y. Robust drug bioavailability and safety for rheumatoid arthritis therapy using D-amino acids-based supramolecular hydrogels. Mater Today Bio 2022; 15:100296. [PMID: 35665233 PMCID: PMC9157599 DOI: 10.1016/j.mtbio.2022.100296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Shaodan Ma
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shunan Gu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinwei Zhang
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weizhong Qi
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Lin
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weicheng Zhai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| | - Yanbin Cai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Corresponding author.
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou, 510010, China
- Corresponding author. Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
25
|
Jiang SQ, Pan T, Yu JL, Zhang Y, Wang T, Li P, Li F. Thermal and wine processing enhanced Clematidis Radix et Rhizoma ameliorate collagen Ⅱ induced rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114993. [PMID: 35032583 DOI: 10.1016/j.jep.2022.114993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematidis Radix et Rhizoma, a kind of traditional Chinese medicine, is derived from Clematis chinensis Osbeck, Clematis hexapetala Pall. and Clematis manshurica Rupr. This herb shows great effects on expelling wind and dispelling dampness in ancient and it has anti-inflammatory and analgesic activity in modern clinical application. AIM OF THE STUDY This experiment aimed to research anti-rheumatoid arthritis effect of crude and wine processed RC based on glycolysis metabolism to provide new ideas treating RA. MATERIALS AND METHODS Network pharmacology was applied to preliminarily forecast the potential pathways of common targets of RC and RA. RAW264.7 macrophages were induced by LPS, NO production, glucose uptake, lactate production, ROS and MMP were detected as instructions in vitro. ELISA was used to measure the content of HK2, PKM2 and LDHA involving in glycolysis process. Gut microbiota was analyzed by 16S rRNA gene amplicon sequencing in CIA rats. RESULTS Crude and wine processed RC had good anti-inflammatory effect by reducing NO in RAW264.7 macrophages and ameliorating inflammatory infiltration and cartilage surface erosion in CIA rats. Whether in LPS-induced macrophages or CIA rats, crude and wine processed RC could inhibit glycolysis by down-regulating the expression of PKM2, causing less glucose uptake and lactic acid, which lead to less ROS and higher MMP to normal. PI3K-AKT and HIF-1α pathways were deduced to possibly play a crucial part in controlling glycolysis metabolism by network pharmacology analysis. Besides, it was displayed that Firmicutes and Bacteroidetes were prominent gut microbiota in CIA rats feces. CC-H and PZ-H groups could both increase the relative abundance of Firmicutes and decrease Bacteroidetes. These microbiota also played a role in RA pathological process via involving in energy metabolism, carbohydrate metabolism and immune system. CONCLUSION Crude and wine processed RC have a good influence in ameliorating rheumatoid arthritis by inhibiting glycolysis and modulating gut microbiota together.
Collapse
Affiliation(s)
- Si-Qi Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Pan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jia-Lin Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fei Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China; School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| |
Collapse
|
26
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
27
|
Dorna MS, Barbosa EMS, Callegari MA, Tanni SE, Chiuso-Minicucci F, Felix TF, Seneda AL, Correa CR, Fernandes AAH, Azevedo PS, Polegato BF, Rogero MM, Paiva SAR, Zornoff LAM, Reis PP, Minicucci MF. Orange Juice Attenuates Circulating miR-150-5p, miR-25-3p, and miR-451a in Healthy Smokers: A Randomized Crossover Study. Front Nutr 2022; 8:775515. [PMID: 35004810 PMCID: PMC8740272 DOI: 10.3389/fnut.2021.775515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Tobacco smoke is associated with oxidative and inflammatory pathways, increasing the risk of chronic-degenerative diseases. Our goal was to evaluate the effects of acute “Pera” and “Moro” orange juice consumption on inflammatory processes and oxidative stress in microRNA (miRNA) expression in plasma from healthy smokers. Methods: This was a randomized crossover study that included healthy smokers over 18 years old. Blood samples were collected before and 11 h after beverage ingestion. Participants were instructed to drink 400 mL of Pera orange juice (Citrus sinensis), Moro orange juice (Citrus sinensis L. Osbeck), or water. Each subject drank the beverages in a 3-way crossover study design. Inflammatory and oxidative stress biomarkers and circulating miRNA expression profiles were determined. The subjects maintained their usual tobacco exposure during the experiment. Results: We included 18 individuals (12 men and 6 women), with 37.0 ± 12.0 years old. All subjects received the 3 interventions. Increased expression of circulating miRNAs (miR-150-5p, miR-25-3p, and miR-451a) was verified after cigarette smoking, which were attenuated after intake of both types of orange juice. There was no difference regarding serum levels of TNF-α, IL-6, MMP-9, and C-reactive protein. Despite the increased activity of serum superoxide dismutase and glutathione peroxidase after “Pera” or “Moro” orange juice intake, respectively, no changes in lipid hydroperoxide levels were detected. Conclusion: Tobaccos smokers showed increased expression of miR-150-5p, miR-25-3p, and miR-451a was noted, and attenuated by orange juice intake. miRNAs were predicted to regulate 244 target genes with roles in oxidative stress, PI3K-Akt, and MAPK signaling, which are pathways frequently involved in smoking-related cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Mariana S Dorna
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Elizabete M S Barbosa
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Matheus A Callegari
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Suzana E Tanni
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Fernanda Chiuso-Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Tainara F Felix
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil
| | - Ana L Seneda
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil
| | - Camila R Correa
- Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil
| | - Paula S Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Bertha F Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, USP - University of São Paulo, São Paulo, Brazil
| | - Sergio A R Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Patricia P Reis
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil.,Department of Surgery and Orthopedics, São Paulo State University, UNESP, Botucatu, Brazil
| | - Marcos F Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
28
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
29
|
Patidar V, Shah S, Kumar R, Singh PK, Singh SB, Khatri DK. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 2021; 49:2375-2391. [PMID: 34817776 DOI: 10.1007/s11033-021-06986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Collapse
Affiliation(s)
- Vaibhav Patidar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shruti Shah
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
30
|
Xu J, Zhang MY, Jiao W, Hu CQ, Wu DB, Yu JH, Chen GX. Identification of Candidate Genes Related to Synovial Macrophages in Rheumatoid Arthritis by Bioinformatics Analysis. Int J Gen Med 2021; 14:7687-7697. [PMID: 34764682 PMCID: PMC8575484 DOI: 10.2147/ijgm.s333512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is one of the most prevalent inflammatory arthritis worldwide. However, the genes and pathways associated with macrophages from synovial fluids in RA patients still remain unclear. This study aims to screen and verify differentially expressed genes (DEGs) related to identifying candidate genes related to synovial macrophages in rheumatoid arthritis by bioinformatics analysis. Methods We searched the Gene Expression Omnibus (GEO) database, and GSE97779 and GSE10500 with synovial macrophages expression profiling from multiple RA microarray dataset were selected to conduct a systematic analysis. GSE97779 included nine macrophage samples from synovial fluids of RA patients and five macrophage samples from primary human blood of HC. GSE10500 included five macrophage samples from synovial fluids of RA patients and three macrophage samples from primary human blood of HC. Functional annotation of DEGs was performed, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein–protein interaction (PPI) network of DEGs was established using the STRING database. CytoHubba was used to identify hub genes. MCODE was used to determine gene clusters in the interactive network. Results There were 2638 DEGs (1425 upregulated genes and 1213 downregulated ones) and 889 DEGs (438 upregulated genes and 451 downregulated ones) selected from GSE97779 and GSE10500, respectively. Venn diagrams showed that 173 genes were upregulated and 106 downregulated in both two datasets. The top 10 hub genes, including FN1, VEGFA, HGF, SERPINA1, MMP9, PPBP, CD44, FPR2, IGF1, and ITGAM, were identified using the PPI network. Conclusion This study provides new insights for the potential biomarkers and the relevant molecular mechanisms in RA patients. Our findings suggest that the 10 candidate genes might be used in diagnosis, prognosis, and therapy of RA in the future. However, further studies are required to confirm the expression of these genes in synovial macrophages in RA and control specimen.
Collapse
Affiliation(s)
- Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ming-Ying Zhang
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Wei Jiao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Cong-Qi Hu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan-Bin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jia-Hui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Guang-Xing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, Guangdong, People's Republic of China
| |
Collapse
|
31
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Wang Y, Chen S, Du K, Liang C, Wang S, Owusu Boadi E, Li J, Pang X, He J, Chang YX. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114368. [PMID: 34197960 DOI: 10.1016/j.jep.2021.114368] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by diverse endogenous and exogenous factors. It is characterized by cartilage and bone destruction. The current conventional allopathic therapy is expensive and carries adverse side effects. Recently, there were some ethnopharmacological studies on RA including anti-RA effects and therapeutic targets of distinct dosage forms of traditional herbal medicines (THMs). AIM OF THE REVIEW This review provides a brief overview of the current understanding of the potential pharmacological mechanisms of THMs (active constituents, extracts and prescriptions) in RA. This study is intended to provide comprehensive information and reference for exploring new therapeutic strategies of THMs in the RA treatment. MATERIALS AND METHODS This review captured scientific literatures invivo and vitro experiments on effects of anti-RA THMs published between 2016 and 2021 from journals and electronic databases (e.g. PubMed, Elsevier, Science Direct, Web of Science and Google Scholar). Relevant literatures were searched and analyzed by using keywords such as 'rheumatoid arthritis AND traditional herbal medicines', 'rheumatoid arthritis AND immune cells', 'rheumatoid arthritis AND inflammation', 'rheumatoid arthritis AND miRNA', 'rheumatoid arthritis AND Angiogenesis', 'rheumatoid arthritis AND oxidative stress', 'rheumatoid arthritis AND osteoclasts', 'rheumatoid arthritis AND CIA model', 'rheumatoid arthritis AND AA model' AND 'rheumatoid arthritis herbal prescription'. RESULTS Experiments in vitro and in vivo jointly demonstrated the potential of THMs in the RA treatment. There are plentiful therapeutic targets in RA. THMs and active ingredients could alleviate RA symptoms through different therapeutic targets, such as immunoregulation, inflammation, fibroblast-like synoviocytes (FLSs), microRNAs (miRNAs), angiogenesis, oxidative stress, osteoclasts and multiple targets interaction. Anti-RA THMs, active ingredients and prescriptions through corresponding therapeutic targets were summarized and classified. CONCLUSIONS Flavonoids, phenolic acids, alkaloids and triterpenes of THMs are identified as the main components to ameliorate RA. Regulation of different and multiple related therapeutic targets by THMs and their active ingredients were associated with greater therapeutic benefits, among which inflammation is the main therapeutic target. Nonetheless, further studies are required to unravel the complexities and in-depth mechanisms of THMs in alleviating RA.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
33
|
Kemble S, Croft AP. Critical Role of Synovial Tissue-Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front Immunol 2021; 12:715894. [PMID: 34539648 PMCID: PMC8446662 DOI: 10.3389/fimmu.2021.715894] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.
Collapse
Affiliation(s)
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
34
|
Caglayan C, Kandemir FM, Darendelioğlu E, Küçükler S, Ayna A. Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sci 2021; 281:119730. [PMID: 34147482 DOI: 10.1016/j.lfs.2021.119730] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
AIM High dose of fluoride intake is associated with toxic effects on liver and kidney tissues. One approach to tackle these toxicities is using natural antioxidants as supplements. This study evaluated the ameliorative effects of hesperidin (HSP) against sodium fluoride (NaF)-induced hepatotoxicity and nephrotoxicity in wistar albino rats. MATERIALS AND METHODS In the present study, the rats were randomly allocated into five groups of seven male rats each group: control, NaF (600 ppm), HSP-200, NaF + HSP-100 and NaF + HSP 200. KEY FINDINGS Hepatic and renal injuries induced by NaF were confirmed by the alteration in kidney function parameters in the serum (urea and creatinine), levels of liver enzymes (ALT, ALP and AST), activities of the antioxidant enzymes (SOD, CAT and GPx) and levels of inflammatory markers (NF-κB, IL-1β and TNF-α). NaF also inhibited PI3K/Akt/mTOR pathway, increased levels of autophagic markers (Beclin-1, LC3A and LC3B) and expression levels of apoptotic and anti-apoptotic proteins (Bax, Bcl-2, cytochrome c, p53 and procaspase-3) in the liver and kidney tissues. Administration of HSP concurrently with NaF significantly ameliorated the deviation in the above-studied parameters. SIGNIFICANCE The results of the current study revealed that HSP could be used as a beneficial adjuvant that confers protection against NaF-induced liver and kidney damage through antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagic mechanisms.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, 12000-Bingol University, Bingol, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, 12000-Bingol University, Bingol, Turkey
| |
Collapse
|
35
|
Wang L, Pu X, Nie X, Wang D, Jiang H, Chen Y, Pang L, Wang S, Wang X, Xu Z, Fu C, Lin D, Zhang J. Integrated serum pharmacochemistry and network pharmacological analysis used to explore possible anti-rheumatoid arthritis mechanisms of the Shentong-Zhuyu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113988. [PMID: 33667569 DOI: 10.1016/j.jep.2021.113988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong-Zhuyu decoction (STZYD) has been recognized by the Chinese National Administration of Traditional Chinese Medicine (TCM) as a classic TCM formula. Use of STZYD has shown a satisfactory clinical therapeutic outcome for rheumatoid arthritis (RA); despite this, its bioactive chemical composition and relevant mechanism(s) of this action have not been clearly elucidated. AIM OF THE STUDY To explore the bioactive chemical composition of STZYD used for RA treatment and its possible mechanism(s) of action. MATERIALS AND METHODS Serum pharmacochemistry mediated by the UPLC-Q-Exactive MS/MS method was employed to identify the absorbed phytochemical compounds in serum derived from STZYD, which were commonly considered as the potential bioactive compounds. And then, these components were used to construct a compound-target network for RA using a network pharmacology approach, to predict the possible biological targets of STZYD along with potential signaling pathways. Afterwards, we established a Complete Freund's adjuvant (CFA)-induced RA rat model, and observed the anti-RA effect of STZYD by a series of indexes, including foot swelling, ankle diameter, arthritis score, morphological and radiographic analysis, serum inflammatory factors, and histopathological analysis of synovial tissues. Particularly, the predicted pathway by the combination of serum pharmacochemistry and network pharmacology was further validated using RT-qPCR, Western blot, and immunohistochemical analyses in animal experiment. RESULTS Totally, 38 compounds derived from STZYD have been identified by serum sample analysis. Based on it, 387 genes related to these identified compounds in STZYD and 3807 genes related to RA were collected by network pharmacology. Critically, KEGG analysis indicated that the PI3K/AKT signaling pathway was recommended as one of the main pathway related to anti-RA effect of STZYD. Experimentally, STZYD significantly alleviated CFA-induced arthritis without any visible side-effects. Compared to the RA model group without any treatment, the treatment of STZYD significantly reduced the expression of both mRNA and protein targets in the PI3K/AKT signaling pathway. Furthermore, this result was also corroborated by immunohistochemistry analysis. All these studies could effectively corroborate the predicted result as above, suggested that the feasibility of this integrated strategy. CONCLUSION This study provided a useful strategy to identify bioactive compounds and the potential mechanisms for TCM formula by integrating serum pharmacochemistry and network pharmacology.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiulan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shengju Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhiyi Xu
- Chengdu Huasun Technology Group Inc., Ltd., Chengdu, 611731, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dasheng Lin
- Chengdu Huasun Technology Group Inc., Ltd., Chengdu, 611731, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
36
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
37
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
38
|
Chakraborty D, Gupta K, Biswas S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed Pharmacother 2020; 133:111039. [PMID: 33254019 DOI: 10.1016/j.biopha.2020.111039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Assessment of the potential therapeutic benefits offered by naturally occurring phytoestrogens necessitate inspection of their potency and sites of action in impeding the chronic, systemic, autoimmune, joint destructing disorder Rheumatoid arthritis (RA). Possessing structural and functional similarity with human estrogen, phytoestrogen promisingly replaces the use of hormone therapy in eradicating RA symptoms with their anti-inflammatory, anti-oxidative, anti-proliferative, anti-angiogenesis, immunomodulatory, joint protection properties abolishing the harmful side effects of synthetic drugs. Scientific evidences revealed that use of phytoestrogens from different chemical categories including flavonoids, alkaloids, stilbenoids derived from different plant species manifest beneficial effects on RA through various cellular mechanisms including suppression of pro-inflammatory cytokines in particular tumor necrosis factor (TNF-α), interleukin(IL-6) and nuclear factor kappa B (NF-κB) and destructive metalloproteinases, inhibition of oxidative stress, suppressing inflammatory signalling pathways, attenuating osteoclastogenesis ameliorating cartilage degradation and bone erosion. This review summarizes the evidences of different phytoestrogen treatment and their pharmacological mechanisms in both in vitro and in vivo studies along with discussing clinical evaluations in RA patients showing phytoestrogen as a promising agent for RA therapy. Further investigations and more clinical trials are mandatory to clarify the utility of these plant derived compounds in RA prevention and in managing oestrogen deficient diseases in patients.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kriti Gupta
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Bañuls-Mirete M, Ogdie A, Guma M. Micronutrients: Essential Treatment for Inflammatory Arthritis? Curr Rheumatol Rep 2020; 22:87. [PMID: 33104882 PMCID: PMC8078476 DOI: 10.1007/s11926-020-00962-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Synovial inflammation is characteristic of inflammatory chronic arthropathies and can cause progressive articular damage, chronic pain, and functional loss. Scientific research has increasingly focused on investigating anti-inflammatory micronutrients present in fruits, vegetables, spices, seeds, tea, and wine. This review aims to examine the anti-inflammatory effect of polyphenols (phytonutrients present in plants) and other micronutrients described in randomized clinical trials conducted in patients with chronic inflammatory arthropathies. RECENT FINDINGS There is an increasing evidence that differences in micronutrient intake might play an essential role in pathogenesis, therapeutic response, and remission of synovitis. Randomized clinical trials with specific micronutrient- or nutrient-enriched food intake show improvement of symptoms and modulation of both pro- and anti-inflammatory mediators. We found convincing evidence of the anti-inflammatory effect of several micronutrients in arthritis symptoms and inflammation. Although in clinical practice nutritional recommendations to patients with chronic joint inflammation are not consistently prescribed, the addition of these nutrients to day-to-day eating habits could potentially change the natural history of inflammatory arthritis. Future research is needed for a consensus on the specific nutritional recommendations for patients with chronic synovial inflammation.
Collapse
Affiliation(s)
- Marina Bañuls-Mirete
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA
| | - Alexis Ogdie
- Division of Rheumatology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA.
- Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Zhu J, Shang L. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep 2020; 22:4519-4530. [PMID: 33174025 PMCID: PMC7646746 DOI: 10.3892/mmr.2020.11561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Hesperidin (HDN) is a bioflavonoid that serves a role as an antioxidant in biological systems. However, although HDN has hydrogen radical- and hydrogen peroxide-removal activities, the role of HDN in liver ischemia/reperfusion (I/R) injury remains unknown. This study aimed to determine the role of HDN in liver I/R injury. Male C57BL/6J wild-type (WT) mice were subjected to warm partial liver I/R injury. Liver damage was evaluated by measuring serum alanine aminotransferase (ALT) levels, cytokine production, oxidative stress indicators, tissue hematoxylin-eosin staining and cell death. The Akt signaling pathway was examined to elucidate the underlying mechanisms. HDN had no effect on ALT levels and tissue damage in WT mice without liver I/R injury. However, HDN significantly ameliorated liver I/R injury as measured by serum ALT levels and necrotic tissue areas. HDN decreased malondialdehyde content, but increased the levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione. In addition, HDN significantly attenuated the mRNA expression levels of TNF-α, IL-6 and IL-1β after liver I/R injury. Furthermore, HDN protected the liver against apoptosis in liver I/R injury by increasing the levels of Bcl-2 and decreasing the levels of cleaved-caspase 3. Mechanistically, the levels of phosphorylated Akt were elevated by HDN during liver I/R injury. In addition, HDN could induce Akt activation in hepatocytes in vitro. Most importantly, treatment with the Akt inhibitor LY294002 in WT mice blocked the hepatoprotective effects of HDN in liver I/R injury. In summary, the results of the present study suggested that HDN may protect against liver I/R injury through activating the Akt pathway by ameliorating liver oxidative stress, suppressing inflammation and preventing hepatocyte apoptosis. HDN may be a useful factor for liver injury protection and a potential therapeutic treatment for liver I/R injury in the future.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| |
Collapse
|
41
|
Tang Y, Liu Q, Feng Y, Zhang Y, Xu Z, Wen C, Zhang Y. Tripterygium Ingredients for Pathogenicity Cells in Rheumatoid Arthritis. Front Pharmacol 2020; 11:583171. [PMID: 33123015 PMCID: PMC7567162 DOI: 10.3389/fphar.2020.583171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease mainly characterized by chronic polyarthritis. Many types of cells play pivotal roles in the pathogenicity of RA, such as T cells, B cells, macrophages, dendritic cells (DCs), osteoclasts (OCs), and fibroblast-like synoviocytes (FLS). Tripterygium wilfordii Hook f. (TwHf) and its ingredients are able to control disease activity by regulating the functions of cells mentioned above, and the clinical studies have highlighted the importance of TwHf ingredients in RA treatment. They have been demonstrated to improve the RA symptoms of animal models and patients. In this review, we discussed the effect of TwHf ingredients on pathogenicity cells, including disease/cell phenotypes and molecular mechanisms. Here, we constructed a cell-cell interaction network to visualize the effect of TwHf ingredients. We found that TwHf ingredients could inhibit the differentiation and proliferation of the pathogenicity cells. Besides, the components could decrease the levels of pathogenicity cytokines [i.e., interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α)]. Many signaling pathways are involved in the underlying mechanisms, such as PI3K, NF-κB, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yujun Tang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuping Liu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxiang Feng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenghao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother 2020; 129:110471. [PMID: 32768958 DOI: 10.1016/j.biopha.2020.110471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Huoxuezhitong capsule (HXZT, activating blood circulation and relieving pain capsule), has been applied for osteoarthritis since 1974. It consists of Angelica sinensis (Oliv.) Diels, Panax notoginseng (Burkill) F. H. Chen ex C. H., Boswellia sacra, Borneol, Eupolyphaga sinensis Walker, Pyritum. However, the direct effects of HXZT on osteoarthritis and the underlying mechanisms were poorly understood. In this study, we aimed to explore the analgesia effect of HXZT on MIA-induced osteoarthritis rat and the underlying mechanisms. The analgesia and anti-inflammatory effect of HXZT on osteoarthritis in vivo were tested by the arthritis model rats induced by monosodium iodoacetate (MIA).. Mechanistic studies confirmed that HXZT could inhibit the activation of NF-κB and down-regulate the mRNA expression of related inflammatory factors in LPS-induced RAW264.7 and ATDC5 cells. Furtherly, in LPS-induced RAW264.7 cells, HXZT could suppress NF-κB via inhibiting PI3K/Akt pathway. Taken together, HXZT capsule could ameliorate MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway.
Collapse
|
43
|
Li D, Lv B, Wang D, Xu D, Qin S, Zhang Y, Chen J, Zhang W, Zhang Z, Xu F. Network Pharmacology and Bioactive Equivalence Assessment Integrated Strategy Driven Q-markers Discovery for Da-Cheng-Qi Decoction to Attenuate Intestinal Obstruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 72:153236. [PMID: 32464544 DOI: 10.1016/j.phymed.2020.153236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Intestinal obstruction (IO) is a kind of acute abdomen with high morbidity and mortality. Patients suffer from poor quality of life and tremendous financial pressure. Da-Cheng-Qi decoction (DCQD), a classical purgation prescription, has clinically been proven to be an effective treatment for IO. PURPOSE Network pharmacology integrated with bioactive equivalence assessment was used to discover the quality marker (Q-marker) of DCQD against IO. METHODS As there is hardly any targets recorded in database, thus the collection of IO targets was conducted by searching those of alternative diseases which have similar pathological symptoms with IO. In order to improve the reliability of the obtained targets, IO metabolomics data was introduced. Active compounds combination (ACC) was focused as potential Q-markers via component-target network analysis and function query from the identified components corresponding to the common targets. Bioequivalence between ACC and DCQD was assessed from the aspects of intestine motility (somatostatin secretion), inflammation (IL-6 secretion) and injury (wound healing assay) in vitro and was further validated in ileus rat model. PPI network analysis of core targets followed by gene pedigree classification and experimental validation confirmed the potential intervention pathway. RESULTS A combination of 11 ingredients, including emodin, physcion, aloe-emodin, rhein, chrysophanol, gallic acid, magnolol, honokiol, naringenin, tangeretin, and nobiletin was finally confirmed bioequivalence with DQCD to some extent and could serve as Q-markers for DCQD to attenuate IO. PI3K/AKT was verified as a possible affected pathway that DCQD exerted the effectiveness against IO. CONCLUSION For the disease with few recorded targets, searching those of alternative diseases which have similar pathological symptoms could be a feasible and effective approach. The proposed network pharmacology integrated bioactive equivalence evaluation paradigm is efficient to discover Q-marker of herbal formulae.
Collapse
Affiliation(s)
- Danting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Doudou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
44
|
Fang G, Fu Y, Li S, Qiu J, Kuang M, Lin S, Li C, Ding Y. The USP14-NLRC5 pathway inhibits titanium particle-induced osteolysis in mice by suppressing NF-κB and PI3K/AKT activities. J Biol Chem 2020; 295:7018-7032. [PMID: 32273344 DOI: 10.1074/jbc.ra119.012495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Total hip arthroplasty (THA) is a widely-used surgical intervention for treating patients with end-stage degenerative and inflammatory osteoarthropathy. However, wear particles from the artificial titanium joint can induce osteolysis, limiting the long-term survivorship of THA. Monocyte/macrophage lineage cells are the key players in the response to wear particles, and the proinflammatory NF-κB and phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-signaling pathways have been shown to be the most important contributors to wear particle-induced osteolysis. In contrast, ubiquitin-specific protease 14 (USP14) specifically removes the polyubiquitin chains from the nucleotide-binding and oligomerization domain (NOD)-like receptor family Caspase recruitment domain (CARD)-containing 5 (NLRC5) and thereby enhances the NLRC5-mediated inhibition of NF-κB signaling. In this study, we aimed to clarify the role of the USP14-NLRC5 pathway in wear particle-induced osteolysis in vitro and in vivo We found that NLRC5 or USP14 overexpression inhibits titanium particle-induced proinflammatory tumor necrosis factor α (TNFα) production and NF-κB pathway activation, and it also decreases M1 macrophage polarization and PI3K/AKT pathway activation. Of note, NLRC5 and USP14 overexpression attenuated titanium particle-induced cranial osteolysis in mice. In conclusion, the findings of our study indicate that the USP14-NLRC5 pathway inhibits titanium particle-induced osteolysis by suppressing the NF-κB and PI3K/AKT pathways both in vitro and in vivo.
Collapse
Affiliation(s)
- Guibin Fang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuan Fu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Junxiong Qiu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Manyuan Kuang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
45
|
Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020; 25:E762. [PMID: 32050623 PMCID: PMC7037709 DOI: 10.3390/molecules25030762] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Pathological pain can be initiated after inflammation and/or peripheral nerve injury. It is a consequence of the pathological functioning of the nervous system rather than only a symptom. In fact, pain is a significant social, health, and economic burden worldwide. Flavonoids are plant derivative compounds easily found in several fruits and vegetables and consumed in the daily food intake. Flavonoids vary in terms of classes, and while structurally unique, they share a basic structure formed by three rings, known as the flavan nucleus. Structural differences can be found in the pattern of substitution in one of these rings. The hydroxyl group (-OH) position in one of the rings determines the mechanisms of action of the flavonoids and reveals a complex multifunctional activity. Flavonoids have been widely used for their antioxidant, analgesic, and anti-inflammatory effects along with safe preclinical and clinical profiles. In this review, we discuss the preclinical and clinical evidence on the analgesic and anti-inflammatory proprieties of flavonoids. We also focus on how the development of formulations containing flavonoids, along with the understanding of their structure-activity relationship, can be harnessed to identify novel flavonoid-based therapies to treat pathological pain and inflammation.
Collapse
Affiliation(s)
- Camila R. Ferraz
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Thacyana T. Carvalho
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Marília F. Manchope
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Nayara A. Artero
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Fernanda S. Rasquel-Oliveira
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Victor Fattori
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil
| | - Waldiceu A. Verri
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| |
Collapse
|
46
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
47
|
Rezaee R, Sheidary A, Jangjoo S, Ekhtiary S, Bagheri S, Kohkan Z, Dadres M, Oana Docea A, Tsarouhas K, Sarigiannis DA, Karakitsios S, Tsatsakis A, Kovatsi L, Hashemzaei M. Cardioprotective effects of hesperidin on carbon monoxide poisoned in rats. Drug Chem Toxicol 2019; 44:668-673. [DOI: 10.1080/01480545.2019.1650753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sheidary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Saeedeh Jangjoo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Sarvenaz Ekhtiary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayeh Bagheri
- Department of Biostatistics, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Zahra Kohkan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Madjid Dadres
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Dimosthenis A. Sarigiannis
- Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Spyros Karakitsios
- Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
48
|
Wu M, Hu R, Wang J, An Y, Lu L, Long C, Yan L. Salidroside Suppresses IL-1β-Induced Apoptosis in Chondrocytes via Phosphatidylinositol 3-Kinases (PI3K)/Akt Signaling Inhibition. Med Sci Monit 2019; 25:5833-5840. [PMID: 31381554 PMCID: PMC6691749 DOI: 10.12659/msm.917851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Salidroside, a natural dietary isothiocyanate, has been widely studied for its multiple effects, including promoting proliferation, anti-inflammation, and anti-apoptosis. In the present study, these effects of Salidroside were explored to assess whether it could prevent osteoarthritis (OA) in vitro. Material/Methods The cytotoxic and proliferating effects of Salidroside on chondrocytes were detected by use of the Cell Counting Kit 8 assay. The expression levels of proteins were detected by Western blot. The cell apoptosis level was assessed by flow cytometry, and the levels of ROS, NO, caspase 3, and caspase 9 were assessed to evaluate the level of apoptosis. The expression level of pro-inflammatory factors was detected by ELISA. Results Our results demonstrated that Salidroside promotes chondrocytes proliferation, inhibits IL-1β-induced apoptosis and inflammation, and scavenges reactive oxygen species (ROS) and NO of chondrocytes. Salidroside upregulates the level of Bcl-2 and downregulates the level of Bax. Salidroside also inhibits the production of caspase 3/9 and suppresses the phosphorylation of PI3K and AKT. Conclusions Our results suggest that Salidroside prevents OA by its powerful pro-proliferating, anti-phlogistic, and anti-apoptotic effects by inhibiting PI3K/AKT.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Rui Hu
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Junwen Wang
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Ying An
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Lin Lu
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chao Long
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Li Yan
- Department of Orthopedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|