1
|
Ranjan H, Senthil Kumar S, Priscilla S, Swaminathan S, Umezawa M, Sheik Mohideen S. Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484827 DOI: 10.1039/d4em00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using Drosophila melanogaster, fruit flies, as a model organism. Drosophila were exposed to PE MPs orally at concentrations of 1 mg ml-1 and 10 mg ml-1 agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activity. The expression levels of key genes (Hsp70Bc, rpr, and p53) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of rpr, p53, and Hsp70Bc genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on Drosophila, including behavioural impairment, oxidative stress, and activation of stress response pathways.
Collapse
Affiliation(s)
- Himanshu Ranjan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Swetha Senthil Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Sharine Priscilla
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Subhashini Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| |
Collapse
|
2
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35434-9. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Cheng Y, Yang Y, Bai L, Cui J. Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med 2024; 22:959. [PMID: 39438955 PMCID: PMC11494930 DOI: 10.1186/s12967-024-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of microplastics within the human body has raised significant concerns about their potential health implications. Numerous studies have supported the hypothesis that the accumulation of microplastics can trigger inflammatory responses, disrupt the microbiome, and provoke immune reactions due to their physicochemical properties. Chronic inflammation, characterized by tissue damage, angiogenesis, and fibrosis, plays a crucial role in cancer development. It influences cancer progression by altering the tumor microenvironment and impairing immune surveillance, thus promoting tumorigenesis and metastasis. This review explores the fundamental properties and bioaccumulation of microplastics, as well as their potential role in the transition from chronic inflammation to carcinogenesis. Additionally, it provides a comprehensive overview of the associated alterations in signaling pathways, microbiota disturbances, and immune responses. Despite this, the current understanding of the toxicity and biological impacts of microplastics remains limited. To mitigate their harmful effects on human health, there is an urgent need to improve the detection and removal methods for microplastics, necessitating further research and elucidation.
Collapse
Affiliation(s)
- Yicong Cheng
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Ling Bai
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| |
Collapse
|
4
|
Park JK, Lee JE, Do Y. Life on both environment in semi-aquatic frogs: Impact of aquatic microplastic (MP) from MP enrichment to growth, immune function and physiological stress. CHEMOSPHERE 2024; 366:143547. [PMID: 39419331 DOI: 10.1016/j.chemosphere.2024.143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
The pervasive distribution of microplastics (MPs) in aquatic ecosystems presents a significant threat to wildlife, with amphibians being particularly vulnerable due to their complex life cycles and ecological roles. This study investigates physiological and ecological impacts of aquatic MP exposure on juvenile black-spotted pond frogs (Pelophylax nigromaculatus), focusing on juvenile frog stage, history of life after metamorphosis. MP examinations in the intestine and body revealed accumulation primarily in the gastrointestinal tracts without evidence of systemic distribution. Experimental exposure to different concentrations of MPs demonstrated adverse effects on growth, physiological stress, and immune function. Notably, higher MP concentrations led to significant reductions in growth and innate immunity, indicative of compromised health. High concentrations of MPs were associated with elevated levels of corticosterone and antioxidant enzymes, indicating physiological stress. However, there was no evidence of extreme hormonal surges or imbalances in antioxidant enzyme activity, suggesting that amphibians were able to effectively cope with the levels of MPs used in the study. Changes in gastrointestinal morphology and fecal microbiota composition were observed, reflecting response of metabolic adaptation to MP exposure. At low concentrations of MPs, adaptive changes in digestive tract morphology and the maintenance of gut microbiota balance were observed, indicating that the frogs were able to manage the exposure below a certain threshold. In contrast, high concentrations of MPs had clear negative effects on amphibians, which could impact biodiversity and ecosystem stability. These findings also suggest that MPs may trigger adaptive responses at lower concentrations, while still posing significant environmental risks at higher levels.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
5
|
Zeng J, Dong S, Chen C, Zheng Y, Zuo Y, Liu Y, Ding T, Liu F, Shen Q, Du Y, Wang X, Xie W, Zhou C, Lu H. Benzalkonium chloride induces hematopoietic stem cell reduction and immunotoxicity in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116902. [PMID: 39173224 DOI: 10.1016/j.ecoenv.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Benzalkonium chloride (BAC) is a broad-spectrum antibacterial agent that possesses cleaning and bactericidal properties, but impact of BAC on wellbeing of aquatic organisms remains uncertain. Consequently, in this current study, we have examined the immunotoxic potential of BAC in zebrafish embryos, thus marking it as the pioneering effort in this field. According to the findings, zebrafish embryos exposed to BAC exhibited a decline in yolk area that varied with the concentration, along with a significant decrease in the count of neutrophils, macrophages, red blood cells, and thymus T-cells. We observed significantly up-regulated expression of immune-related signaling genes such as cxcl-c1c, il-8, tir4 and inf-γ, but expression of nf-κb was downregulated. In addition, we observed a marked reduction in the number of hematopoietic stem cells in zebrafish larvae after BAC exposure, which could be the result of oxidative stress-mediated apoptosis. We found that compared with the control group, the number of red blood cells in juvenile zebrafish in BAC-exposure group was significantly down-regulated, which could be attributed to hematopoietic stem cell defect. Astaxanthin restored immune cells and hematopoietic stem cells after BAC exposure, whereas Inhibitor of Wnt Response-1(IWR-1) restored neutrophils after BAC exposure. The research findings demonstrated that exposure to BAC displayed harmful effects on the development and immune system of zebrafish embryos. These effects might be associated with alterations in reactive oxygen species(ROS) levels and activation of the Wnt signaling pathway caused by BAC.
Collapse
Affiliation(s)
- Junquan Zeng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Si Dong
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China; First Affiliated Hospital Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Chao Chen
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yongliang Zheng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yuhua Zuo
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuxin Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Ting Ding
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinyuan Shen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yunyun Du
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Xiaoping Wang
- Comprehensive Teaching and Research Office, Ji'an College, Ji'an, Jiangxi 343000, China
| | - Wenguo Xie
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chenjun Zhou
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Huiqiang Lu
- First Affiliated Hospital Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
6
|
Liang J, Abdullah ALB, Li Y, Wang H, Xiong S, Han M. Long-term PS micro/nano-plastic exposure: Particle size effects on hepatopancreas injury in Parasesarma pictum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176530. [PMID: 39332714 DOI: 10.1016/j.scitotenv.2024.176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
With the widespread use of plastic products, microplastics and nanoplastics have emerged as prevalent pollutants in coastal aquatic ecosystems. Parasesarma pictum, a common estuarine crab species, was selected as a model organism. P. pictum was exposed to polystyrene (PS) particles of sizes 80 nm (80PS), 500 nm (500PS), and 1000 nm (1000PS), as well as to clean seawater (CK) for 21 days. Histological and fluorescent staining results showed that PS particles of all three sizes induced hepatopancreatic nuclear pyknosis, cell junction damage, and necrosis. The degree of damage was observed as 1000PS > 80PS > 500PS. Transcriptomic analysis revealed that major differentially expressed genes (DEGs) were associated with cellular processes, membrane components, and catalytic activity. The respiratory chain disruptions and immune exhaustion induced by 1000PS were notably stronger than those by 80PS and 500PS. Additionally, necrosis caused hepatopancreas injury in P. pictum rather than apoptosis or autophagy after long-term PS particle exposure. Furthermore, PS particles of all three sizes inhibited innate immunity, while the complement pathway was not significantly affected in the 80PS group. This study elucidated potential distinctions in how plastic particles of varying sizes (nanoplastics, microplastics, and micro/nanoplastics) impact P. pictum, providing a reference for toxicological mechanism research on microplastics and nanoplastics in aquatic organisms. Future research should focus on exploring long-term effects and potential mitigation strategies for microplastics and nanoplastics of more types and a wider range of particle size pollution in aquatic environments.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Hong Wang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Sen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
7
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
8
|
Ding P, Xiang C, Yao Q, Li X, Zhang J, Yin R, Zhang L, Li AJ, Hu G. Aged polystyrene microplastics exposure affects apoptosis via inducing mitochondrial dysfunction and oxidative stress in early life of zebrafish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121995. [PMID: 39083943 DOI: 10.1016/j.jenvman.2024.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In recent years, the toxic effects of microplastics (MPs) on aquatic organisms have been increasingly recognized. However, the developmental toxicity and underlying mechanisms of photoaged MPs at environmental concentrations remain unclear. Therefore, the photodegradation of pristine polystyrene (P-PS) under UV irradiation was used to investigate, as well as the developmental toxicity and underlying mechanisms of zebrafish (Danio rerio) exposed to P-PS and aged polystyrene (A-PS) at environmentally relevant concentrations (0.1-100 μg/L). Mortality, heart rate, body length, and tail coiling frequency of zebrafish larvae were the developmental toxicity endpoints. A-PS had increased crystallinity, the introduction of new functional groups, and higher oxygen content after UV-photoaging. The toxicity results showed that exposure to A-PS resulted in more adverse developmental toxicity than exposure to P-PS. Exposure to A-PS induced oxidative damage, as evidenced by elevated production of reactive oxygen species (ROS) and DNA damage, and led to decreased mitochondrial membrane potential (MMP) and causes the release of cytochrome c (cyt c) from the mitochondria. The caspase-3/-9 activation signaling pathways may cause developmental toxicity via mitochondrial apoptosis. Significant changes in the expression of genes were further explored linking with oxidative stress, mitochondria dysfunctions and apoptosis pathways following A-PS exposure. These findings underscore the importance of addressing the environmental applications of aged MPs and call for further research to mitigate their potential risks on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Ping Ding
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Qian Yao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
9
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
10
|
Sanchez-Aceves LM, Pérez-Alvarez I, Onofre-Camarena DB, Gutiérrez-Noya VM, Rosales-Pérez KE, Orozco-Hernández JM, Hernández-Navarro MD, Flores HI, Gómez-Olivan LM. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Daniorerio. CHEMOSPHERE 2024; 364:143012. [PMID: 39103101 DOI: 10.1016/j.chemosphere.2024.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to its extensive use as a painkiller, anti-inflammatory, and immune modulatory agent, as well as its effectiveness in treating severe COVID-19, dexamethasone, a synthetic glucocorticoid, has gained attention not only for its impact on public health but also for its environmental implications. Various studies have reported its presence in aquatic environments, including urban waters, surface samples, sediments, drinking water, and wastewater effluents. However, limited information is available regarding its toxic effects on nontarget aquatic organisms. Therefore, this study aimed to investigate the mechanism of toxicity underlying dexamethasone-induced brain damage in the bioindicator Danio rerio following long-term exposure. Adult zebrafish were treated with environmentally relevant concentrations of dexamethasone (20, 40, and 60 ng L-1) for 28 days. To elucidate the possible mechanisms involved in the toxicity of the pharmaceutical compound, we conducted a behavioral test battery (Novel Tank and Light and Dark tests), oxidative stress biomarkers, acetylcholinesterase enzyme activity quantification, histopathological analysis, and gene expression analysis using qRT-PCR (p53, bcl-2, bax, caspase-3, nrf1, and nrf2).The results revealed that the pharmaceutical compound could produce anxiety-like symptoms, increase the oxidative-induced stress response, decrease the activity of acetylcholinesterase enzyme, and cause histopathological alterations, including perineuronal vacuolization, granular and molecular layers deterioration, cell swallowing and intracellular spaces. The expression of genes involved in the apoptotic process (p53, bax, and casp-3) and antioxidant defense (nrf1 and nrf2) was upregulated in response to oxidative damage, while the expression of the anti-apoptotic gene bcl-2 was down-regulated indicating that the environmental presence of dexamethasone may pose a threat to wildlife and human health.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México. Paseo Tollocan /Jesús Carranza s/n. Toluca, 50120, Toluca, Estado de México, Mexico
| | - Diana Belén Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
11
|
Lin J, Liu H, Huang X, Deng Y. Toxicological effects of Honokiol on zebrafish and its underlying mechanism. J Biochem Mol Toxicol 2024; 38:e23789. [PMID: 39097765 DOI: 10.1002/jbt.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
The compound Honokiol, derived from the bark of Magnolia officinalis, possesses the ability to induce apoptosis and inhibit cellular damage caused by reactive oxygen species. The objective of this study was to investigate the toxicological and histopathological effects of Honokiol on zebrafish (Danio rerio) through conducting a semistatic acute toxicity test involving immersion in an Honokiol-containing solution. The results showed that the toxic effects of Honokiol on zebrafish were primarily manifested in the liver and gills. When exposed to 0.6 mg/L of Honokiol, it could lead to liver hemorrhage as well as swelling and necrosis of gill tissues, and high concentrations of Honokiol could trigger inflammatory responses. Additionally, research found that Honokiol could induce apoptosis in liver and gill tissues through the P53 pathway and possessed the ability to enhance antioxidation. The present findings significantly contribute to a more profound understanding of the toxic impact of Honokiol and its underlying mechanism, thereby providing a valuable reference for the future safe utilization of Honokiol and related pharmaceutical advancements.
Collapse
Affiliation(s)
- Jue Lin
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhang Q, Li S, Fang J, Hao Y, Lu J, Zhang L, Zhang M, Zhang L, Wang Y, Zhang Y, Du H, Gao Y, Yang Z, Sun W, Yan L, Pan G. The combined effects of polystyrene of different sizes and cadmium in mouse kidney tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116660. [PMID: 38944012 DOI: 10.1016/j.ecoenv.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Environmental accumulation of nano- and microplastics pose serious risks to human health. Polystyrene (PS) is a polymer commonly used in the production of plastics. However, PS can adsorb cadmium (Cd), thereby influencing bioavailability and toxicity in vivo. Moreover, PS and Cd can accumulate in the mammalian kidney. Therefore, the aim of the present study was to assess the effects of combined exposure to PS and Cd in the kidney. Kidney damage was evaluated in male mice gavaged with PS (diameter, 100 nm and/or 1 μm) and Cd for 25 days.The results showed that PS at 100 nm caused more severe oxidative damage and cell apoptosis than PS at 1 μm. Combined exposure to PS at both 100 nm and 1 μm caused more severe kidney damage than the single administration groups. The extent of kidney toxicity caused by Cd differed with the combination of PS particles at 100 nm vs. 1 μm. The degree of damage to kidney function, pathological changes, and cell apoptosis induced by Cd+100 nm PS+1μm PS was the most severe. An increase in the Bax/Bcl2 ratio and overexpression of p53 and caspase-3 revealed that renal cell apoptosis might be induced via the mitochondrial pathway. Collectively, these findings demonstrate that the size of PS particles dictates the combined effects of PS and Cd in kidney tissues. Kidney damage caused by the combination of different sizes of PS particle and Cd is more complicated under actual environmental conditions.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Shuting Li
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Jing Fang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yue Hao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Junge Lu
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Lu Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Minmin Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Li Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yihe Wang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yu Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Hongying Du
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yuan Gao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Zuosen Yang
- Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Chronic Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Wei Sun
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China.
| | - Lingjun Yan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China.
| | - Guowei Pan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
13
|
Vineetha VP, Suresh K, Pillai D. Impact of sub-chronic polystyrene nanoplastics exposure on hematology, histology, and endoplasmic reticulum stress-related protein expression in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110982. [PMID: 38688406 DOI: 10.1016/j.cbpb.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics (NPs) are one of the most hazardous marine litters, having the potential to cause far-reaching impacts on the environment and humankind. The effect of NPs on fish health has been studied, but their impact on the subcellular organelles remains unexplored. The present investigation studied the possible implications of polystyrene-nanoplastics (PS-NPs) on the hematology, tissue organization, and endoplasmic reticulum (ER) stress-related proteins in Nile tilapia (Oreochromis niloticus). Fish were exposed to ∼100 nm PS-NPs at environmentally relevant (0.1 mg/L), and sublethal (1, 10 mg/L) concentrations for 14 days through water exposure. The growth performance and hematological parameters such as erythrocytes, hemoglobin, hematocrit, and leucocytes decreased, while thrombocytes increased with PS-NPs dose-dependently. The gills, liver, kidney, and heart tissues displayed increasing degrees of pathology with increased concentrations of PS-NPs. The gills showed severe epithelial hyperplasia and lamellar fusion. The liver had an abstruse cellular framework, membrane breakage, and vacuolation. While glomerular and tubular atrophy was the most prominent pathology in the kidney tissue, the heart displayed extensive myofibrillar loss and disorderly arranged cardiac cells. The ER-stress-related genes such as bip, atf6, ire1, xbp1, pkr, and apoptotic genes such as casp3a, and bax were over-expressed, while, the anti-apoptotic bcl2 was under-expressed with increasing concentrations of PS-NPs. Immunohistochemistry and blotting results of GRP78, CHOP, EIF2S, and ATF6 in gills, liver, kidney, and heart tissues affirmed the translation to ER stress proteins. The results revealed the sub-lethal adverse effects and the activation of the ER-stress pathway in fish with sub-chronic exposure to PS-NPs.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| | - Kummari Suresh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| |
Collapse
|
14
|
Zhang Q, Zhou X, Sun Y, Deng Q, Wu Q, Wen Z, Chen H. Harmful effects of microplastics on respiratory system of aquatic animals: A systematic review and meta-analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107003. [PMID: 38901219 DOI: 10.1016/j.aquatox.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The presence of microplastics in the aquatic environment has attracted widespread attention. A large number of studies have assessed the effects of microplastics on the respiratory system of aquatic animals, but the results are not directly comparable across studies due to inconsistent evaluation criteria. Therefore, we adopted an integrated research approach that can integrate and parse complex data to improve reliability, conducted a systematic review and meta-analysis of 35 published studies, and elucidated the mechanisms of microplastic damage to cells. The results showed that PE had the greatest impact on aquatic animals, and fish were the most sensitive to the effects caused by microplastics, with oxidative stress induced by exposure concentrations exceeding 1000 µg/L or exposure times exceeding 28 days, leading to depletion of antioxidant defenses, cellular damage, inflammatory responses, and behavioral abnormalities. As this review is based on existing studies, there may be limitations in terms of literature quality, data availability and timeliness. In conclusion, we suggest to combat microplastic pollution by limiting plastic use, promoting plastic substitution and recycling, and enhancing microplastic capture degradation technologies.
Collapse
Affiliation(s)
- Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Zhirui Wen
- College of Life Sciences, Guizhou Normal University, Guiyang 550001, China; Qiannan Normal College for Nationalities, No.5, Middle Jianjiang Avenue, Duyun 558000, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
15
|
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis. Int J Mol Sci 2024; 25:7827. [PMID: 39063068 PMCID: PMC11276820 DOI: 10.3390/ijms25147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
16
|
Saraceni PR, Miccoli A, Bada A, Taddei AR, Mazzonna M, Fausto AM, Scapigliati G, Picchietti S. Polystyrene nanoplastics as an ecotoxicological hazard: cellular and transcriptomic evidences on marine and freshwater in vitro teleost models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173159. [PMID: 38761939 DOI: 10.1016/j.scitotenv.2024.173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The contamination of marine and freshwater environments by nanoplastics is considered a global threat for aquatic biota. Taking into account the most recent concentration range estimates reported globally and recognizing a knowledge gap in polystyrene nanoplastics (PS-NPs) ecotoxicology, the present work investigated the harmful effects of 20 nm and 80 nm PS-NPs, at increasing biological complexity, on the rainbow trout Oncorhynchus mykiss RTG-2 and gilthead seabream Sparus aurata SAF-1 cell lines. Twenty nm PS-NPs exerted a greater cytotoxicity than 80 nm ones and SAF-1 were approximately 4-fold more vulnerable to PS-NPs than RTG-2. The engagement of PS-NPs with plasma membranes was accompanied by discernible uptake patterns and morphological alterations along with a nuclear translocation already within a 30-min exposure. Cells were structurally damaged only by the 20 nm PS-NPs in a time-dependent manner as indicated by distinctive features of the execution phase of the apoptotic cell death mechanism such as cell shrinkage, plasma membrane blebbing, translocation of phosphatidylserine to the outer leaflet of the cell membrane and DNA fragmentation. At last, functional analyses unveiled marked transcriptional impairment at both sublethal and lethal doses of 20 nm PS-NPs, with the latter impacting the "Steroid biosynthesis", "TGF-beta signaling pathway", "ECM-receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton" and "Protein processing in endoplasmic reticulum" pathways. Overall, a distinct ecotoxicological hazard of PS-NPs at environmentally relevant concentrations was thoroughly characterized on two piscine cell lines. The effects were demonstrated to depend on size, exposure time and model, emphasizing the need for a comparative evaluation of endpoints between freshwater and marine ecosystems.
Collapse
Affiliation(s)
- P R Saraceni
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Department of Sustainability, 00123 Rome, Italy
| | - A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125 Ancona, Italy
| | - A Bada
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100 Viterbo, Italy
| | - M Mazzonna
- National Research Council, Institute for Biological Systems (ISB), 00015 Monterotondo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
17
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
18
|
Rojoni SA, Ahmed MT, Rahman M, Hossain MMM, Ali MS, Haq M. Advances of microplastics ingestion on the morphological and behavioral conditions of model zebrafish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106977. [PMID: 38820743 DOI: 10.1016/j.aquatox.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.
Collapse
Affiliation(s)
- Suraiya Alam Rojoni
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tanvir Ahmed
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mostafizur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
19
|
Yang H, Ju J, Wang Y, Zhu Z, Lu W, Zhang Y. Micro-and nano-plastics induce kidney damage and suppression of innate immune function in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172952. [PMID: 38703841 DOI: 10.1016/j.scitotenv.2024.172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Aquatic environments serve as critical repositories for pollutants and have significantly accumulated micro- and nanoplastics (MNPs) due to the extensive production and application of plastic products. While the disease resistance and immunity of fish are closely linked to the condition of their aquatic habitats, the specific effects of nanoplastics (NPs) and microplastics (MPs) within these environments on fish immune functions are still not fully understood. The present study utilized zebrafish (Danio rerio) embryos and larvae as model organisms to examine the impacts of polystyrene NPs (100 nm) and MPs (5 μm) on fish immune responses. Our findings reveal that NPs and MPs tend to accumulate on the surfaces of embryos and within the intestines of larvae, triggering oxidative stress and significantly increasing susceptibility to Edwardsiella piscicida infection in zebrafish larvae. Transmission electron microscopy examined that both NPs and MPs inflicted damage to the kidney, an essential immune organ, with NPs predominantly inducing endoplasmic reticulum stress and MPs causing lipid accumulation. Transcriptomic analysis further demonstrated that both NPs and MPs significantly suppress the expression of key innate immune pathways, notably the C-type lectin receptor signaling pathway and the cytosolic DNA-sensing pathway. Within these pathways, the immune factor interleukin-1 beta (il1b) was consistently downregulated in both exposure groups. Furthermore, exposure to E. piscicida resulted in restricted upregulation of il1b mRNA and protein levels, likely contributing to diminished disease resistance in zebrafish larvae exposed to MNPs. Our findings suggest that NPs and MPs similarly impair the innate immune function of zebrafish larvae and weaken their disease resistance, highlighting the significant environmental threat posed by these pollutants.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Xiong G, Zhang H, Shi H, Peng Y, Han M, Hu T, Liao X, Liu Y, Zhang J, Xu G. Enhanced hepatotoxicity in zebrafish due to co-exposure of microplastics and sulfamethoxazole: Insights into ROS-mediated MAPK signaling pathway regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116415. [PMID: 38703406 DOI: 10.1016/j.ecoenv.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The combined pollution of microplastics (MPs) and sulfamethoxazole (SMZ) often occurs in aquatic ecosystems, posing a serious threat to animal and human health. However, little is known about the liver damage caused by the single or co-exposure of MPs and SMZ, and its specific mechanisms are still poorly understood. In this study, we investigated the effects of co-exposure to 20 μm or 80 nm MPs and SMZ in both larval and adult zebrafish models. Firstly, we observed a significant decrease in the number of hepatocytes and the liver damage in larval zebrafish worsened following co-exposure to SMZ and MPs. Additionally, the number of macrophages and neutrophils decreased, while the expression of inflammatory cytokines and antioxidant enzyme activities increased after co-exposure in larval zebrafish. Transcriptome analysis revealed significant changes in gene expression in the co-exposed groups, particularly in processes related to oxidation-reduction, inflammatory response, and the MAPK signaling pathway in the liver of adult zebrafish. Co-exposure of SMZ and MPs also promoted hepatocyte apoptosis and inhibited proliferation levels, which was associated with the translocation of Nrf2 from the cytoplasm to the nucleus and an increase in protein levels of Nrf2 and NF-kB p65 in the adult zebrafish. Furthermore, our pharmacological experiments demonstrated that inhibiting ROS and blocking the MAPK signaling pathway partially rescued the liver injury induced by co-exposure both in larval and adult zebrafish. In conclusion, our findings suggest that co-exposure to SMZ and MPs induces hepatic dysfunction through the ROS-mediated MAPK signaling pathway in zebrafish. This information provides novel insights into the potential environmental risk of MPs and hazardous pollutants co-existence in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China; College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Haiyan Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Yulin Peng
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Meiling Han
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Tianle Hu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yong Liu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Key Laboratory of Environmental Hormone and Reproduction of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236041, China.
| |
Collapse
|
21
|
Martínez-Álvarez I, Le Menach K, Cajaraville MP, Budzinski H, Orbea A. Effects of polystyrene nano- and microplastics and of microplastics with sorbed polycyclic aromatic hydrocarbons in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172380. [PMID: 38604358 DOI: 10.1016/j.scitotenv.2024.172380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 μm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 μg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.
Collapse
Affiliation(s)
- Ignacio Martínez-Álvarez
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain; University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Karyn Le Menach
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Hélène Budzinski
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| |
Collapse
|
22
|
Liu Y, Cao Y, Li H, Liu H, Bi L, Chen Q, Peng R. A systematic review of microplastics emissions in kitchens: Understanding the links with diseases in daily life. ENVIRONMENT INTERNATIONAL 2024; 188:108740. [PMID: 38749117 DOI: 10.1016/j.envint.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
The intensification of microplastics (MPs) pollution has emerged as a formidable environmental challenge, with profound global implications. The pervasive presence of MPs across a multitude of environmental mediums, such as the atmosphere, soil, and oceans, extends to commonplace items, culminating in widespread human ingestion and accumulation via channels like food, water, and air. In the domestic realm, kitchens have become significant epicenters for MPs pollution. A plethora of kitchen utensils, encompassing coated non-stick pans, plastic cutting boards, and disposable utensils, are known to release substantial quantities of MPs particles in everyday use, which can then be ingested alongside food. This paper conducts a thorough examination of contemporary research addressing the release of MPs from kitchen utensils during usage and focuses on the health risks associated with MPs ingestion, as well as the myriad factors influencing the release of MPs in kitchen utensils. Leveraging the insights derived from this analysis, this paper proposes a series of strategic recommendations and measures targeted at mitigating the production of MPs in kitchen settings. These initiatives are designed not solely to diminish the release of MPs but also to enhance public awareness regarding this pressing environmental concern. By adopting more informed practices in kitchens, we can significantly contribute to the reduction of the environmental burden of MPs pollution, thus safeguarding both human health and the ecological system.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Yang R, Ouyang J, Jiang J, Zhao Y, Wu D, Chen D, Xi B. Discussion on the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e38224. [PMID: 39259113 PMCID: PMC11142837 DOI: 10.1097/md.0000000000038224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 09/12/2024] Open
Abstract
To explore the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis by network pharmacology and molecular docking. The main active components and targets of Tiaoqi Xiaowei decoction were obtained from TCMSP database. The databases of Disgenet, GeneCards, and OMIM were used to obtain chronic atrophic gastritis-related targets. The component-target-disease network was constructed by Cytoscape 3.7.1 software, and the protein-protein interaction network was constructed by String database. The core targets were screened by CytoNCA plug-in. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis were performed using the Metascape database. The core components and targets were subjected to molecular docking verification using AutoDock Tools 1.5.6 software, and the binding score was obtained. A total of 48 active components were identified, involving 82 action targets. Core active components such as quercetin, beta-sitosterol, kaempferol, luteolin, and naringenin, and core targets such as AKT1, TP53, VEGFA, TNF, IL6, and PTGS2 were obtained. A total of 188 signaling pathways were screened out, including cancer pathway, PI3K-Akt, IL-17, and TNF signaling pathway. Molecular docking results showed that the key components of Tiaoqi Xiaowei decoction had a favorable binding affinity with key targets. Tiaoqi Xiaowei decoction acts on multiple targets such as AKT1, TP53, VEGFA, TNF, IL6, PTGS2, and synergistically treats chronic atrophic gastritis by regulating inflammatory responses and tumor-related signaling pathways.
Collapse
Affiliation(s)
- Ruwen Yang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jun Ouyang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jiawei Jiang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Yuanpei Zhao
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Defeng Wu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Dongmei Chen
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Biao Xi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Rangaswamy B, An J, Kwak IS. Different recovery patterns of the surviving bivalve Mytilus galloprovincialis based on transcriptome profiling exposed to spherical or fibrous polyethylene microplastics. Heliyon 2024; 10:e30858. [PMID: 38813215 PMCID: PMC11133752 DOI: 10.1016/j.heliyon.2024.e30858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Microplastics (MPs) are pervasive pollutants exuded from anthropogenic activities and ingested by animals in different ecosystems. This transcriptomic profiling study aimed to explore the impact of polyethylene MPs on Mytilus galloprovincialis, an ecologically significant bivalve species. The toxicity of two MPs types was found to result in increased cellular stress when exposed up to 14 days. Moreover, recovery mechanisms were also observed in progress. Mussels exhibited different gene expression patterns and molecular regulation in response to cellular reactive oxygen species (ROS) stress. The transcriptome analysis demonstrated a notable hindrance in cilia movement as MPs ingested through gills. Subsequent entry resulted in a significant disruption in the cytoskeletal organization, cellular projection, and cilia beat frequency. On day 4 (D4), signal transduction and activation of apoptosis evidenced the signs of toxic consequences. Mussels exposed to spherical MPs shown significant recovery on day 14 (D14), characterized by the upregulation of anti-apoptotic genes and antioxidant genes. The expression of P53 and BCL2 genes was pivotal in controlling the apoptotic process and promoting cell survival. Mussels exposed to fibrous MPs displayed a delayed cell survival effect. However, the elevated physiological stress due to fibrous MPs resulted in energy transfer by compensatory regulation of metabolic processes to expedite cellular recovery. These observations highlighted the intricate and varied reaction of cell survival mechanisms in mussels to recover toxicity. This study provides critical evidence of the ecotoxicological impacts of two different MPs and emphasizes the environmental risks they pose to aquatic ecosystems. Our conclusion highlights the detrimental effects of MPs on M. galloprovincialis and the need for more stringent regulations to protect marine ecosystems.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Jinsung An
- Department of Civil and Environmental Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| |
Collapse
|
25
|
König Kardgar A, Doyle D, Warwas N, Hjelleset T, Sundh H, Carney Almroth B. Microplastics in aquaculture - Potential impacts on inflammatory processes in Nile tilapia. Heliyon 2024; 10:e30403. [PMID: 38726173 PMCID: PMC11079099 DOI: 10.1016/j.heliyon.2024.e30403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Darragh Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Warwas
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Terese Hjelleset
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
27
|
Cui J, Zhu M, Sun X, Yang J, Guo M. Microplastics induced endoplasmic reticulum stress to format an inflammation and cell death in hepatocytes of carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106870. [PMID: 38395010 DOI: 10.1016/j.aquatox.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) are a serious threat to the living environment of aquatic organisms. However, there are fewer studies on the toxicity of microplastics to freshwater organisms. This study aimed to establish a polystyrene microplastics (PS-MPs) model by feeding carp (Cyprinus carpio) PS-MP (1000 ng/L) particles 8 μm in size. HE staining revealed a mass of inflammatory cells infiltrated in the carp hepatopancreas. The activities of alkaline phosphatase (AKP), aspartate transaminase (AST), lactate dehydrogenase (LDH), and alanine transaminase (ALT) were strengthened considerably, suggesting that PS-MPs cause injury to the hepatopancreas of carp. Real-Time polymerase chain reaction and western blotting results indicated increased levels of glucose-regulated protein 78 (GRP78), (PKR)-like ER kinase (PERK), eukaryotic translation initiation Factor 2α (EIF2α) and activating transcription Factor 4 (ATF4) genes and increased levels of inflammatory factors downstream of endoplasmic reticulum stress (ERs) thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), interleukin-18 (IL-18), interleukin-1β (IL-1β), and caspase 1. Increased expression of microtubule-associated protein-2 (LC3II), autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) genes revealed that PS-MPs promoted autophagy in carp hepatocytes. The enhanced expression of the Caspase 12, Caspase 3, and Bax genes suggested that PS-MPs led to the apoptosis of carp hepatocytes. These results suggest that PS-MPs result in serious injury to the hepatopancreas of carp. The present study of PS-MPs in freshwater fish from the aspect of endoplasmic reticulum stress was conducted to provide references and suggestions for toxicological studies of PS-MPs in freshwater environments.
Collapse
Affiliation(s)
- Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengran Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Du Y, Teng J, Zhao J, Ren J, Ma H, Zhang T, Xia B, Sun S, Wang Q. Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: An integrated biomarker and metabolomic approach. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106434. [PMID: 38460223 DOI: 10.1016/j.marenvres.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50-60 μm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.
Collapse
Affiliation(s)
- Yunchao Du
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jingying Ren
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hengyuan Ma
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209 16, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Shan Sun
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
29
|
Wen J, Sun H, Yang B, Song E, Song Y. Long-term polystyrene nanoplastic exposure disrupt hepatic lipid metabolism and cause atherosclerosis in ApoE -/- mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133583. [PMID: 38306833 DOI: 10.1016/j.jhazmat.2024.133583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Nanoplastics (NPs) exposure is usually linked with abnormal inflammation and oxidative stress, which are high-risk triggers of atherosclerosis; however, whether this exposure causes the development of atherosclerosis is vague. Here, we found that PS NPs co-exposure with ox-LDL induces significant accumulation of lipid, as well as oxidative stress and inflammation in RAW264.7 macrophages. Using an ultrasound biomicroscope (UBM), we observed the emergence of atherosclerotic plaques at the aortic arch of apolipoprotein knockout (ApoE-/-) mice after being exposed to PS NPs for three months. Oil-red O and hematoxylin-eosin (H&E) staining at the mice's aortic root also observed the deposition of lipids with plaque formation. Moreover, the development of atherosclerotic disease is associated with disturbances in lipid metabolism and oxidative stress damage in the mice liver. In conclusion, this study provides additional evidence to further understand the possible cardiovascular damage caused by NPs exposure.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
30
|
Suman A, Mahapatra A, Gupta P, Ray SS, Singh RK. Polystyrene microplastics induced disturbances in neuronal arborization and dendritic spine density in mice prefrontal cortex. CHEMOSPHERE 2024; 351:141165. [PMID: 38224746 DOI: 10.1016/j.chemosphere.2024.141165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
An increasing use of plastics in daily life leads to the accumulation of microplastics (MPs) in the environment, posing a serious threat to the ecosystem, including humans. It has been reported that MPs cause neurotoxicity, but the deleterious effect of polystyrene (PS) MPs on neuronal cytoarchitectural morphology in the prefrontal cortex (PFC) region of mice brain remains to be established. In the present study, Swiss albino male mice were orally exposed to 0.1, 1, and 10 ppm PS-MPs for 28 days. After exposure, we found a significant accumulation of PS-MPs with a decreased number of Nissl bodies in the PFC region of the entire treated group compared to the control. Morphometric analysis in the PFC neurons using Golgi-Cox staining accompanied by Sholl analysis showed a significant reduction in basal dendritic length, dendritic intersections, nodes, and number of intersections at seventh branch order in PFC neurons of 1 ppm treated PS-MPs. In neurons of 0.1 ppm treated mice, we found only decrease in the number of intersections at the seventh branch order. While 10 ppm treated neurons decreased in basal dendritic length, dendritic intersections, followed by the number of intersections at the third and seventh branch order were observed. As well, spine density on the apical secondary branches along with mRNA level of BDNF was significantly reduced in all the PS-MPs treated PFC neurons, mainly at 1 ppm versus control. These results suggest that PS-MPs exposure affects overall basal neuronal arborization, with the highest levels at 1 and 10 ppm, followed by 0.1 ppm treated neurons, which may be related to the down-regulation of BDNF expression in PFC.
Collapse
Affiliation(s)
- Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Marcellus KA, Bugiel S, Nunnikhoven A, Curran I, Gill SS. Polystyrene Nano- and Microplastic Particles Induce an Inflammatory Gene Expression Profile in Rat Neural Stem Cell-Derived Astrocytes In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:429. [PMID: 38470760 DOI: 10.3390/nano14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Microplastics are considered an emerging environmental pollutant due to their ubiquitous presence in the environment. However, the potential impact of microplastics on human health warrants further research. Recent studies have reported neurobehavioral and neurotoxic effects in marine and rodent models; however, their impact on the underlying cellular physiology in mammals remains unclear. Herein, we exposed neural stem cells and neural stem cell-derived astrocytes, oligodendrocytes, and neurons to various sizes and concentrations of polystyrene nano- and microplastics. We investigated their cellular uptake, impact on cytotoxicity, and alteration of gene expression through transcriptome profiling. The cell type most affected by decreased viability were astrocytes after 7 days of repeated exposure. Transcriptional analysis showed that 1274 genes were differentially expressed in astrocytes exposed to 500 nm microplastics, but only 531 genes were altered in astrocytes exposed to 50 nm nanoplastics. Both canonical pathway and Kyoto Encyclopedia of Genes and Genomes analysis showed that upregulated pathways were involved in neuroinflammation, innate and adaptive immunity, cell migration, proliferation, extracellular matrix remodeling, and cytoskeleton structures. The downregulated pathways were involved in lipid metabolism, specifically fatty acid oxidation and cholesterol metabolism. Our results show that neural stem cell-derived astrocytes repeatedly exposed to nano- and microplastics for 7 days undergo changes that are hallmarks of astrogliosis.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Steven Bugiel
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Andrée Nunnikhoven
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Ivan Curran
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Santokh S Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
32
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
34
|
Naidu G, Nagar N, Poluri KM. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305094. [PMID: 37786309 DOI: 10.1002/smll.202305094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
35
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
36
|
Kim JA, Park YS, Kim JH, Choi CY. Toxic effects of polystyrene microbeads and benzo[α]pyrene on bioaccumulation, antioxidant response, and cell damage in goldfish Carassius auratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115825. [PMID: 38101975 DOI: 10.1016/j.ecoenv.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
37
|
Hu W, Chen G, Yuan W, Guo C, Liu F, Zhang S, Cao Z. Iprodione induces hepatotoxicity in zebrafish by mediating ROS generation and upregulating p53 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115911. [PMID: 38181604 DOI: 10.1016/j.ecoenv.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.
Collapse
Affiliation(s)
- Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Wenbin Yuan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Shouhua Zhang
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
38
|
Martin-Folgar R, González-Caballero MC, Torres-Ruiz M, Cañas-Portilla AI, de Alba González M, Liste I, Morales M. Molecular effects of polystyrene nanoplastics on human neural stem cells. PLoS One 2024; 19:e0295816. [PMID: 38170698 PMCID: PMC10763972 DOI: 10.1371/journal.pone.0295816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial, air). Currently, there is great concern about the exposition and impact on animal health, including humans, because of the effects of ingestion and accumulation of these nanomaterials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mechanisms of action on humans are currently unknown. In this study, we evaluated the altered molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to 30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 μg/mL). Our results showed that NPs can induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response, and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Ana I. Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Isabel Liste
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| |
Collapse
|
39
|
Xu J, Yang W, Wang D, Wang Z, Liu C, Li J. Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress. TOXICS 2023; 12:9. [PMID: 38250965 PMCID: PMC10819112 DOI: 10.3390/toxics12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L-1) and combined with METH (250 and 500 μg L-1) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10-20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51-74%) and lower velocity (0.09-0.55 cm s-1) compared with the control (1.07 cm s-1). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish's intestinal tract, triggering inflammatory responses (histological scores: 1.6-2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments.
Collapse
Affiliation(s)
- Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Wenqi Yang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Dongyi Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Chuang Liu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Jiana Li
- Ningbo Academy of Ecological and Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
40
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
41
|
Zhang Y, Chen C, Chen K. Combined exposure to microplastics and amitriptyline induced abnormal behavioral responses and oxidative stress in the eyes of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109717. [PMID: 37586580 DOI: 10.1016/j.cbpc.2023.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Many studies have demonstrated that microplastics (MPs) can combine with various coexisting chemical pollutants, increasing their bioavailability and changing the combined toxicity to organisms. However, information on the combined effects of MPs and amitriptyline (AMI, a widely used tricyclic antidepressant) on aquatic species is still limited. In this study, we exposed zebrafish to MPs (2-μm polystyrene beads, 0.44 mg/L), AMI (2.5 μg/L), and their mixture for 7 days and investigated the alternation in their behaviors and ocular oxidative stress. As a result, combined exposure to MPs and AMI could significantly elevate locomotor activity, increase the frequency and duration of shoaling behavior in zebrafish, and alter their post-stimulation behaviors. Although combined exposure to MPs and AMI exhibited stronger behavioral toxicity than individual exposure, no significant interactive effects on the behavioral traits were detected, suggesting that the combined behavioral toxicity appeared to be an additive effect. However, their combined exposure to MPs or AMI significantly decreased the ocular levels of SOD, CAT, and GSH in zebrafish, with significant interaction effects on the CAT activity and GSH content. Significant correlations between some post-stimulation behavioral traits and ocular levels of SOD, CAT, and GSH in zebrafish were detected, suggesting that ocular oxidative stress induced by combined exposure to MPs and AMI may play an important role in their behavioral toxicity.
Collapse
Affiliation(s)
- Yi Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
42
|
Silva MG, Oliveira MM, Peixoto F. Assessing micro and nanoplastics toxicity using rodent models: Investigating potential mitochondrial implications. Toxicology 2023; 499:153656. [PMID: 37879514 DOI: 10.1016/j.tox.2023.153656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.
Collapse
Affiliation(s)
- Mónica G Silva
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Maria Manuel Oliveira
- Chemistry Research Centre (CQ-VR), Chemistry Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Chemistry Research Centre (CQ-VR), Biology and Environment Department University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
43
|
Chen Q, Cao Y, Li H, Liu H, Liu Y, Bi L, Zhao H, Jin L, Peng R. Sodium nitroprusside alleviates nanoplastics-induced developmental toxicity by suppressing apoptosis, ferroptosis and inflammation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118702. [PMID: 37536135 DOI: 10.1016/j.jenvman.2023.118702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The health damage caused by nanoplastics (NPs) pollution has become one of the global scientific problems to be solved urgently. However, the toxicological mechanism of NPs is complex, and the research progress of anti-toxicity is limited. Thus, it has potential application value to explore or develop drugs that can effectively alleviate or remove NPs with biological toxicity. In this research, 8 μM sodium nitroprusside (SNP) solution was used to treat zebrafish larvae with 20 mg/L NPs for up to 12 days, and the results showed that SNP treatments were effective in alleviating NPs-caused developmental toxicity in zebrafish larvae. Further examination of its signaling pathway revealed that NPs-induced oxidative stress was mitigated by activating the NO-sGC-cGMP signaling pathway and reduced most of the reactive oxygen species (ROS). Subsequently, we detected the key substances and the key enzymes involved in apoptosis and ferroptosis, and found that oxidative stress-induced mitochondria-dependent apoptosis and lipid peroxidation-caused ferroptosis were alleviated. Finally, observed the accumulation of NPs and ROS in the liver of zebrafish larvae, which is the target organ of immunotoxicity, and we found that SNP could alleviate NPs-caused inflammation by analyzing the fluorescence intensity of neutrophils and macrophages in transgenic zebrafish and detecting the expression of key immune genes. In conclusion, this research has shown for the first time that SNP treatment can significantly inhibit NPs-induced developmental toxicity, resulting from oxidative stress-induced apoptosis, ferroptosis and inflammation in zebrafish larvae.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
44
|
Mohan M, Gaonkar AA, Pandyanda Nanjappa D, K K, Vittal R, Chakraborty A, Chakraborty G. Screening for microplastics in drinking water and its toxicity profiling in zebrafish. CHEMOSPHERE 2023; 341:139882. [PMID: 37640218 DOI: 10.1016/j.chemosphere.2023.139882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) have emerged as a major environmental problem in freshwater and marine environments. The effects of these polymers on aquatic life are well studied; however, there is limited knowledge of MP-associated health hazards in humans. We estimated the presence of MPs in different brands of bottled water available in India using the Nile red (NR) staining method. The FTIR examination revealed the presence of polystyrene (PS), polyethylene (PE), and polyamide (PA) in the bottled water samples with PE being the most prevalent one. Zebrafish embryos exposed to different concentrations of fluorescent-tagged polyethylene microplastics (PE-MPs) (10-150 μm) showed accumulation patterns at different time points in various organs. The exposure to PE MPs induced a concentration-dependent ROS activity. The expression of first-line antioxidative defense marker genes were significantly downregulated in embryos exposed to varying concentrations of PE-MPs, suggesting concentration and time-dependent effects on zebrafish. The results of this study suggest that the potential negative consequences on human health could be due to the oxidative stress and time-dependent toxicity of MPs.
Collapse
Affiliation(s)
- Masmarika Mohan
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Anjali Arun Gaonkar
- Department of Food Safety & Nutrition, Nitte Centre for Science Education and Research, Nitte (Deemed to Be University), Mangalore, 575018, India.
| | - Dechamma Pandyanda Nanjappa
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Krithika K
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Rajeshwari Vittal
- Department of Food Safety & Nutrition, Nitte Centre for Science Education and Research, Nitte (Deemed to Be University), Mangalore, 575018, India.
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
45
|
Das A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165076. [PMID: 37391150 DOI: 10.1016/j.scitotenv.2023.165076] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Plastic pollution is one of the most pressing environmental threats the world is facing currently. The degradation of macroplastics into smaller forms viz. microplastics (MPs) or Nanoplastics (NPs) is a potential threat to both terrestrial and marine ecosystems and also to human health by directly affecting the organs and activating a plethora of intracellular signaling, that may lead to cell death. There is accumulating evidence that supports the serious toxicity caused by MP/NPs at all levels of biological complexities (biomolecules, organelles, cells, tissues, organs, and organ systems) and the involvement of the reactive oxygen species (ROS) in this process. Studies indicate that MPs or NPs can accumulate in mitochondria and further disrupt the mitochondrial electron transport chain, cause mitochondrial membrane damage, and perturb the mitochondrial membrane potential or depolarization of the mitochondria. These events eventually lead to the generation of different types of reactive free radicals, which can induce DNA damage, protein oxidation, lipid peroxidation, and compromization of the antioxidant defense pool. Furthermore, MP-induced ROS was found to trigger a plethora of signaling cascades, such as the p53 signaling pathway, Mitogen-activated protein kinases (MAPKs) signaling pathway including the c-Jun N-terminal kinases (JNK), p38 kinase, and extracellular signal related kinases (ERK1/2) signaling cascades, Nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway, Phosphatidylinositol-3-kinases (PI3Ks)/Akt signaling pathway, and Transforming growth factor-beta (TGF-β) pathways, to name a few. As a consequence of oxidative stress caused by the MPs/NPs, different types of organ damage are observed in living species, including humans, such as pulmonary toxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity, reproductive toxicity, hepatotoxicity, etc. Although presently, a good amount of research is going on to access the detrimental effects of MPs/NPs on human health, there is a lack of proper model systems, multi-omics approaches, interdisciplinary research, and mitigation strategies.
Collapse
Affiliation(s)
- Amlan Das
- Department of Biochemistry, School of Biosciences, The Assam Royal Global University, NH-37, opp. Tirupati Balaji Temple, Betkuchi, Guwahati, Assam 781035, India.
| |
Collapse
|
46
|
Chen J, Lei Y, Wen J, Zheng Y, Gan X, Liang Q, Huang C, Song Y. The neurodevelopmental toxicity induced by combined exposure of nanoplastics and penicillin in embryonic zebrafish: The role of aging processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122281. [PMID: 37516295 DOI: 10.1016/j.envpol.2023.122281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
As ubiquitous contaminants, nanoplastics and antibiotics are frequently co-presence and widely detected in the freshwater environment and biota, posing a high co-exposure risk to aquatic organisms and even humans. More importantly, how the aging process of nanoplastics affects the joint toxic potential of nanoplastics and antibiotics has not been explored. Here, we generated two aged polystyrene nanoplastics (PS) by UV radiation (UV-PS) and ozonation (O3-PS). Non-teratogenic concentrations of pristine PS (80 nm) and antibiotics penicillin (PNC) co-exposure synergistically suppressed the embryo heart beating and behaviors of spontaneous movement, touch response, and larval swimming behavioral response. Pristine PS and aged UV-PS, but not aged O3-PS, showed similar effects on zebrafish embryo/larval neurodevelopment. However, when co-exposure with PNC, both aged PS, but not pristine PS, showed antagonistic effects. In late-stage juvenile social behavior testing, we found that PS decreased the exploration in light/dark preference assay. The synergistic effect of aged PS with PNC was further explored, including cellular apoptosis, ROS formation, and neurotransmitter metabolite regulation. Mechanistically, aged UV-PS but not O3-PS significantly increased the adsorption rate of PNC compared to pristine PS, which may account for the toxicity difference between the two aged PS. In conclusion, our results confirmed that PS served as a carrier for PNC, and the environmental aging process changed their neurobehavioral toxicity pattern in vivo.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Yi Zheng
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
47
|
Priya PS, Murugan R, Almutairi BO, Arokiyaraj S, Shanjeev P, Arockiaraj J. Delineating the protective action of cordycepin against cadmium induced oxidative stress and gut inflammation through downregulation of NF-κB pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104246. [PMID: 37595934 DOI: 10.1016/j.etap.2023.104246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Cadmium (Cd) exposure is known to cause gut inflammation. In this study, we investigated the protective effects of cordycepin, a natural compound with pharmacological properties, against gut inflammation induced by Cd exposure. Using zebrafish larvae and colon cell line models, we examined the impact of cordycepin on Cd-induced toxicity and inflammation. Zebrafish larvae were exposed to Cd (2 µg/mL) and treated with different concentrations of cordycepin (12.5, 25 and 50 µg/mL). Cordycepin treatment significantly reduced Cd-induced embryotoxicity in zebrafish larvae. It also alleviated Cd-induced oxidative stress by reducing reactive oxygen species (ROS), lipid peroxidation and apoptosis. Furthermore, cordycepin treatment normalized the levels of liver-related biomarkers affected due to Cd exposure. Additionally, cordycepin (50 µg/mL) demonstrated a significant reduction in Cd bioaccumulation and downregulated the expression of inflammatory genes in both zebrafish larval gut and colon cell lines. These findings suggest that cordycepin could be an effective agent against Cd-induced gut inflammation.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - P Shanjeev
- SG's Supreme Organics, Plot 148, Sri Valli Nagar, Nandhivaram Village, Guduvancherry, Chennai 603202, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India.
| |
Collapse
|
48
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
49
|
Gao D, Kong C, Liao H, Junaid M, Pan T, Chen X, Wang Q, Wang X, Wang J. Interactive effects of polystyrene nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonates on the histomorphology, oxidative stress and gut microbiota in Hainan Medaka (Oryzias curvinotus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163307. [PMID: 37030384 DOI: 10.1016/j.scitotenv.2023.163307] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Nanoplastics adsorb surrounding organic contaminants in the environment, which alters the physicochemical properties of contaminants and affects associated ecotoxicological effects on aquatic life. The current work aims to explore the individual and combined toxicological implications of polystyrene nanoplastics (80 nm) and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES, trade name: F-53B) in an emerging freshwater fish model Hainan Medaka (Oryzias curvinotus). Therefore, O. curvinotus were exposed to 200 μg/L of PS-NPs or 500 μg/L of F-53B in the single or mixture exposure for 7 days to investigate the effects on fluorescence accumulation, tissue damage, antioxidant capacity and intestinal flora. The PS-NPs fluorescence intensity was significantly higher in the single exposure treatment than it in combined exposure treatment (p < 0.01). Histopathological results showed that exposure to PS-NPs or F-53B inflicted varying degree of damages to the gill, liver, and intestine, and these damage were also present in the corresponding tissues of the combined treatment group, illustrating a stronger extent of destruction of these tissues by the combined treatment. Compared to the control group, combined exposure group elevated the malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activities except in the gill. In addition, the adverse contribution of PS-NPs and F-53B on the enteric flora in the single and combined exposure groups was mainly characterised in the form of reductions in the number of probiotic bacteria (Firmicutes) and this reduction was aggravated by the combined exposure group. Collectively, our results indicated that the toxicological effects of PS-NPs and F-53B on pathology, antioxidant capacity and microbiomics of medaka may be modulated by the interaction of two contaminants with mutually interactive effects. And our work offers fresh information on the combined toxicity of PS-NPs and F-53B to aquatic creatures along with a molecular foundation for the environmental toxicological mechanism.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
50
|
Subaramaniyam U, Allimuthu RS, Vappu S, Ramalingam D, Balan R, Paital B, Panda N, Rath PK, Ramalingam N, Sahoo DK. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front Physiol 2023; 14:1217666. [PMID: 37435307 PMCID: PMC10331820 DOI: 10.3389/fphys.2023.1217666] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Microplastics and pesticides are emerging contaminants in the marine biota, which cause many harmful effects on aquatic organisms, especially on fish. Fish is a staple and affordable food source, rich in animal protein, along with various vitamins, essential amino acids, and minerals. Exposure of fish to microplastics, pesticides, and various nanoparticles generates ROS and induces oxidative stress, inflammation, immunotoxicity, genotoxicity, and DNA damage and alters gut microbiota, thus reducing the growth and quality of fish. Changes in fish behavioral patterns, swimming, and feeding habits were also observed under exposures to the above contaminants. These contaminants also affect the Nrf-2, JNK, ERK, NF-κB, and MAPK signaling pathways. And Nrf2-KEAP1 signalling modulates redox status marinating enzymes in fish. Effects of pesticides, microplastics, and nanoparticles found to modulate many antioxidant enzymes, including superoxide dismutase, catalase, and glutathione system. So, to protect fish health from stress, the contribution of nano-technology or nano-formulations was researched. A decrease in fish nutritional quality and population significantly impacts on the human diet, influencing traditions and economics worldwide. On the other hand, traces of microplastics and pesticides in the habitat water can enter humans by consuming contaminated fish which may result in serious health hazards. This review summarizes the oxidative stress caused due to microplastics, pesticides and nano-particle contamination or exposure in fish habitat water and their impact on human health. As a rescue mechanism, the use of nano-technology in the management of fish health and disease was discussed.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Rethi Saliya Allimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Shanu Vappu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Niranjan Panda
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|