1
|
Guo XC, Lu SY, Zhang SN, Xie P, Li GY, Shi ZQ, Zhou YT, Wang YM. Combined inhibitory effects of microcystin-LR and microcystin-RR on growth and development in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109824. [PMID: 38154657 DOI: 10.1016/j.cbpc.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.
Collapse
Affiliation(s)
- Xiao-Chun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Yong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guang-Yu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zu-Qin Shi
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
2
|
Wang G, Wan D, Wang T, Gong H, Tao Y, Zhang S, Lan H, Li S, Wu M, Zheng X, Sun P. Effects of β-carotene supplementation in the diet of laying breeder hens on the growth performance and liver development of offspring chicks. Anim Biotechnol 2023; 34:4978-4988. [PMID: 37300519 DOI: 10.1080/10495398.2023.2218416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This experiment was conducted to evaluate the growth performance, growth regulating factors, and liver morphology of chicks hatched from egg-laying breeding hens dietary supplemented with additives (β-carotene). Hy-line breeding hens were allocated into three groups with three replicates/group. The dietary treatments were as follows: basal diet as a control (Con), basal diet supplemented with 120 (βc-L) or 240 (βc-H) mg/kg of β-carotene diet. After 6 weeks, the eggs were collected and incubated. The hatched chicks were fed the same diet. The results showed that chicks in the βc-L group increased in body weight at 21 days (p < 0.01). At 42 days, chicks in the βc-H group showed a significant increase in tibia length (p < 0.05). The liver index increased in the βc-L and βc-H groups at 7 days (p < 0.05). Serum HGF (7, 14, 21, and 42 days) and leptin (14 days) were significantly increased in the group supplemented with βc. Hepatic GHR (14 days), IGF-1R (14 days), and LEPR (21 days) mRNA expression were significantly increased. In addition, there was an increase in PCNA-positive cells in the liver of chicks in the βc group. In conclusion, the addition of β-carotene to the diet of laying breeder hens was more advantageous in terms of growth performance and liver development of the offspring.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Da Wan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Ye Tao
- Suzhou Free Trade Pilot Zone, Suzhou, Jiangsu, China
| | - Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ming Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Meng SL, Li MX, Lu Y, Chen X, Wang WP, Song C, Fan LM, Qiu LP, Li DD, Xu HM, Xu P. Effect of environmental level of methomyl on hatching, morphology, immunity and development related genes expression in zebrafish (Danio rerio) embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115684. [PMID: 37976935 DOI: 10.1016/j.ecoenv.2023.115684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 μg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 μg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1β, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 μg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 μg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.
Collapse
Affiliation(s)
- Shun Long Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| | - Ming Xiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yan Lu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Wei Ping Wang
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nangchang 330029, China
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Min Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Ping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Dan Dan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Hui Min Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| |
Collapse
|
4
|
Wang X, Liu BL, Zhang XH, Cao SQ, Gao XQ, Zhao KF, Zhang CX. Environmentally relevant concentrations of Mn 2+ disrupts the endocrine regulation of growth in juvenile Yunlong groupers (Epinephelus moara♀×Epinephelus lanceolatus♂). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106714. [PMID: 37862731 DOI: 10.1016/j.aquatox.2023.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
Even though manganese is a bioelement essential for metabolism, excessive manganese levels in water can be detrimental to fish development and growth. Therefore, the aim of this study was to evaluate the effects of Mn2+ (0, 0.5,1, 2, and 4 mg·L-1) exposure for 30 d on the growth performance, growth hormone/insulin-like growth factor (GH/IGF) axis, hypothalamic-pituitary-thyroid (HPT) axis, and monoaminergic neurotransmitters of Epinephelus moara♀×Epinephelus lanceolatus♂(Yunlong grouper). Compared with the control and low Mn2+concentration groups of (0.5 and 1 mg·L-1), the high concentration of Mn2+ (4 mg·L-1) significantly reduced body weight (BW), body length (BL), weight gain rate (WGR), and specific growth rate (SGR), increased the feed coefficient rate (FCR) and mortality of Yunlong groupers (P < 0.05). Further, the levels of GH and IGF, along with the expression of ghra and ghrb were significantly reduced after exposure to 2 and 4 mg·L-1 Mn2+for 30 d, whereas the expression of sst5 was significantly up-regulated after exposure to 2 and 4 mg·L-1 Mn2+for 20 and 30 days. Moreover, Mn2+exposure increased thyroid hormone (T3) and thyroid stimulating hormone (TSH) contents, accompanied by increased mRNA levels of dio1 and dio2, however, the T4 level was decreased. Finally, dopamine (DA) and serotonin (5-HT) levels significantly decreased after long-term exposure to higher concentrations of Mn2+, and the levels their metabolites changed as well, suggesting that the synthesis and metabolism of DA and 5-HT were affected. Accordingly, changes in the GH/IGF and HPT axes-related parameters may be the cause of growth inhibition in juvenile groupers under Mn2+ exposure, indicating that the relationship between endocrine disorder and growth inhibition should not be ignored.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Bao-Liang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China.
| | - Xian-Hong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Shu-Quan Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Xiao-Qiang Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Kui-Feng Zhao
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, PR China
| | | |
Collapse
|
5
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
6
|
Cheng R, Zhang J, He Y, Liao C, Wang L, Zhang X. Parental exposure to waterborne selenite induces transgenerational development toxicity in zebrafish offspring. CHEMOSPHERE 2022; 303:134838. [PMID: 35561769 DOI: 10.1016/j.chemosphere.2022.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Excessive selenium (Se), especially selenite form exerts great toxicity to fish. Most studies have attached considerable attention to the adverse effects of Se on parental fish. However, the transgenerational toxicity of Se on fish has been rarely reported. In the present study, zebrafish embryos were exposed to environmentally relevant concentrations of Na₂SeO₃ (0, 12.5, 25, 50, and 100 μg/L) for 120 days. And the exposed zebrafish (F0) were allowed to spawn with normal zebrafish after sexual maturity. Subsequently, the offspring (F1) were cultured in clean water for 5 days. In the F0 generation, exposure to 100 μg/L Na₂SeO₃ significantly increased the Se content in the tissues (liver, brain and gonad) and decreased the body length and weight. After parental exposure to 100 μg/L Na₂SeO₃, the increased mortality, elevated malformation rate and reduced body length were measured in F1 zebrafish. The Se content was only significantly increased in F1 larvae derived from exposed females in the 100 μg/L exposure group. The contents of thyroid hormones (THs), growth hormone (GH) and insulin-like growth factor (IGF) significantly decreased in F0 and F1 zebrafish. The transcriptional levels of genes along the hypothalamic-pituitary-thyroid (HPT) axis and growth hormone/insulin-like growth factor (GH/IGF) axis were detected to further explore the possible mechanisms of Se-induced thyroid and growth hormone disruption. The results suggest that the toxicity of Se in zebrafish can be markedly transmitted to offspring. And the transgenerational development toxicity might be different due to the differences in gender of exposed parents.
Collapse
Affiliation(s)
- Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Chenlei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, People's Republic of China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Zhong L, Peng W, Liu C, Gao L, Chen D, Duan X. IPPD-induced growth inhibition and its mechanism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113614. [PMID: 35567929 DOI: 10.1016/j.ecoenv.2022.113614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
N-isopropyl-N-phenyl-1,4-phenylenediamine (IPPD) is used as a ubiquitous antioxidant worldwide, it is an additive in tire rubber easily discharged into the surrounding environment. At present, there is no study concerning the subacute toxicity of IPPD on fish. We used zebrafish embryos (2 h post-fertilization) exposed to IPPD for 5 days at concentrations of 0, 0.0012, 0.0120 and 0.1200 mg/L to investigate its toxic effects of embryonic development, disruption of growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axis. The results showed that IPPD exposure decreased hatchability, weakened movement ability, reduced body length, and caused multiple types of deformities in zebrafish embryos. The expression of genes involved to GH/IGF and HPT axis were altered after exposure to IPPD in zebrafish larvae. Meanwhile, exposure to IPPD significantly decreased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) contents in larvae, which indicated that HPT axis was in a disturbed state. Moreover, treatment of IPPD decreased the enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as levels of glutathione (GSH). While the contents of malondialdehyde (MDA) were elevated after exposure to IPPD. The present study thus demonstrated that IPPD induced oxidative stress, caused developmental toxicity and disrupted the GH/IGF and HPT axis of zebrafish, which could be responsible for developmental impairment and growth inhibition.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weijuan Peng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Gao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Daqing Chen
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
8
|
Falahatkar B, Poursaeid S, Sheridan MA. Repeated intraperitoneal injection of ovine growth hormone accelerates growth in sub-yearling Siberian sturgeon Acipenser baerii. Heliyon 2022; 8:e09667. [PMID: 35785232 PMCID: PMC9244760 DOI: 10.1016/j.heliyon.2022.e09667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The role of growth hormone (GH) in chondrosteans is poorly understood, particularly with regard to its effects on growth. In this study, we examined the influence of exogenous GH on growth performance and body composition in juvenile Siberian sturgeon (Acipenser baerii). Fish with initial weight of 80.2 ± 0.1 g (mean ± S.E) were injected once every 10 days with either purified ovine GH (oGH) at 1, 2, 4, and 8 μg oGH/g body weight (BW) or with saline over a 50-day period. Treatment with the highest dose of oGH significantly enhanced growth performance (final body weight and length, body weight increase and specific growth rate, SGR). Notably, 8 μg oGH/g BW increased body weight by 33% and SGRw by 141% compared to control fish. GH-stimulated (8 μg oGH/g BW) growth was accompanied by increased crude protein content; however, oGH treatment did not affect levels of total protein, total lipid, cholesterol, triglyceride, or glucose in plasma. oGH decreased plasma levels of thyroxine (at 4 μg oGH/g BW), but had no significant effect on plasma levels of triiodothyronine or cortisol compared to controls. These findings indicate that 8 μg oGH/g BW enhances somatic growth and synthesis of body protein in juvenile Siberian sturgeon and demonstrate the feasibility of exogenous oGH treatment in conservation and aquaculture programs for this ancient species.
Collapse
Affiliation(s)
- Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran.,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran
| | - Samaneh Poursaeid
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Pu Y, Guo J, Yang H, Zhong L, Tian H, Deng H, Duan X, Liu S, Chen D. Environmentally relevant concentrations of mercury inhibit the growth of juvenile silver carp (Hypophthalmichthys molitrix): Oxidative stress and GH/IGF axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113484. [PMID: 35421826 DOI: 10.1016/j.ecoenv.2022.113484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a global environmental contaminant, and excessive mercury levels in water can adversely affect the growth of fish. Silver carp (Hypophthalmichthys molitrix) is one of the important freshwater aquaculture fish in China, and its natural resources have been critically declining. However, the effects of Hg2+ exposure on the growth hormone/insulin-like growth factor (GH/IGF) axis and its toxic mechanism are still unclear. In this study, we systematically evaluated the bioaccumulation, histomorphology, antioxidant status, hormone levels, and GH/IGF axis toxicity of juvenile silver carp after exposure to environmental-related concentrations of Hg2+ (0, 0.05, 0.5, 5, and 50 µg/L) for 28 days. Results showed that the Hg2+ bioaccumulation in the liver increased with a rise in Hg2+ concentration and time of exposure. The body length (BL), body weight (BW), weight growth rate (WGR) and specific growth rate (SGR) all decreased after Hg2+ exposure. The serum levels of growth hormones (GH and IGF) and thyroid hormones (T3 and T4) were significantly decreased, and the expressions of GH/IGF axis-related genes were significantly downregulated after 7, 14, and 28 days of Hg2+ exposure. Correlations between the growth parameters and growth hormones or expression of genes in GH/IGF axis further suggested that environmentally relevant concentrations of Hg2+ could have adverse effects on growth. In addition, with increasing Hg2+ exposure, superoxide activities of dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were significantly increased, whereas the activity of glutathione peroxidase (GPx) significantly decreased and oxidative stress-related gene significantly changed. Liver lesions were mainly characterized by inflammatory cell infiltration, hepatocyte necrosis and fat vacuolation after exposure to Hg2+. Taken together, the results indicate that Hg2+ exposure leads to growth inhibition and oxidative stress in juvenile silver.
Collapse
Affiliation(s)
- Yan Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Jie Guo
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hao Yang
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huiwu Tian
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huatang Deng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| |
Collapse
|
10
|
Wu L, Zhong L, Ru H, Yao F, Ni Z, Li Y. Thyroid disruption and growth inhibition of zebrafish embryos/larvae by phenanthrene treatment at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106053. [PMID: 34933138 DOI: 10.1016/j.aquatox.2021.106053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phenanthrene induces reproductive and developmental toxicity in fish, but whether it can disrupt the thyroid hormone balance and inhibit growth had not been determined to date. In this study, zebrafish embryos were exposed to phenanthrene (0, 0.1, 1, 10 and 100 μg/L) for 7 days. The results of this experiment demonstrated that phenanthrene induced thyroid disruption and growth inhibition in zebrafish larvae. Phenanthrene significantly decreased the concentration of l-thyroxine (T4) but increased that of 3,5,3'-l-triiodothyronine (T3). The expression of genes related to the hypothalamic-pituitary-thyroid (HPT) axis was altered in zebrafish larvae exposed to phenanthrene. Moreover, phenanthrene exposure significantly increased the malformation rate and significantly reduced the survival rate and the body length of zebrafish larvae. Furthermore, phenanthrene significantly decreased the concentrations of growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Changes observed in gene expression patterns further support the hypothesis that these effects may be related to alterations along the GH/IGF-1 axis. In conclusion, our study indicated that exposure to phenanthrene at concentrations as low as 0.1 μg/L resulted in thyroid disruption and growth inhibition in zebrafish larvae. Therefore, the estimation of phenanthrene levels in the aquatic environment needs to be revisited.
Collapse
Affiliation(s)
- Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
11
|
Feed Supplementation with the GHRP-6 Peptide, a Ghrelin Analog, Improves Feed Intake, Growth Performance and Aerobic Metabolism in the Gilthead Sea Bream Sparus aurata. FISHES 2022. [DOI: 10.3390/fishes7010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aquaculture sector has experienced rapid and important growth with the subsequent increase of feeding and nutritional issues for sustaining this activity, mainly related to the use of high quality, safe and environmentally friendly feed ingredients. The use of additives in aquafeeds has proven to be a suitable option to improve different productive indicators in farmed fish. In the present study, the effect of adding the GHRP-6 peptide, a ghrelin analog, to a commercial diet of gilthead sea bream (Sparus aurata) was studied at two proportions (100 or 500 μg/kg of feed). Both experimental diets show an increase in growth performance, as well as in feed efficiency after 97 days of experiment. The lower inclusion of GHRP-6 (100 μg/kg) results in a better aerobic metabolism, while the higher inclusion significantly increased plasma GH levels in agreement with the GH secretagogue effects of ghrelin. Similar growth outcome and differences between GHRP-6 levels in aerobic metabolism and GH stimulation suggest that improvements in culture performance by this peptide may occur through different mechanisms. Taken together, this compound can be considered as a viable dietary supplement for increasing production efficiency of sea bream aquaculture, although a better understanding of its dose-specific effects is still required.
Collapse
|
12
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Chen L. Probiotics inhibit the stunted growth defect of perfluorobutanesulfonate via stress and thyroid axes in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118013. [PMID: 34428700 DOI: 10.1016/j.envpol.2021.118013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant in aquatic environments and potently disrupts the early developmental trajectory of teleosts. Considering the persistent and toxic nature of PFBS, it is necessary to develop in situ protective measures to ameliorate the toxic damage of PFBS. Probiotic supplements are able to mitigate the growth retardation defects of PFBS. However, the interactive mechanisms remain elusive. To this end, this study acutely exposed zebrafish larvae to a concentration gradient of PFBS (0, 1, 3.3 and 10 mg/L) for 4 days, during which probiotic bacteria Lactobacillus rhamnosus were added in the rearing water. After exposure, alterations in gene transcriptions and key hormones along the hypothalamus-pituitary-interrenal (HPI), growth hormone/insulin-like growth factor (GH/IGF) and hypothalamus-pituitary-thyroid (HPT) axes were examined. The results showed that PFBS single exposure significantly increased the cortisol concentrations, suggesting the induction of stress response, while probiotic supplementation effectively decreased the cortisol levels in coexposed larvae in an attempt to relieve the stress of PFBS toxicant. It was unexpected that probiotic additive significantly decreased the larval GH concentrations independent of PFBS, thereby eliminating the contribution of GH/IGF axis to the growth improvement of probiotics. In contrast, probiotic bacteria remarkably increased the concentration of thyroid hormones, particularly the thyroxine (T4), in zebrafish larvae. The pronounced down-regulation of uridinediphosphate glucoronosyltransferases (UDPGT) gene pointed to the blocked elimination process of T4 by probiotics. Furthermore, proteomic fingerprinting found that probiotics were potent to shape the protein expression pattern in PFBS-exposed zebrafish larvae and modulated multiple biological processes that are essential for the growth. In summary, the present findings suggest that HPI and HPT axes may cooperate to enhance the growth of fish larvae under PFBS and probiotic coexposures.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
13
|
Yu J, Wang Y, Xiao Y, Li X, Zhou L, Wang Y, Du T, Ma X, Li J. Investigating the effect of nitrate on juvenile turbot (Scophthalmus maximus) growth performance, health status, and endocrine function in marine recirculation aquaculture systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111617. [PMID: 33396137 DOI: 10.1016/j.ecoenv.2020.111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Nitrate (NO3-), a potential toxic nitrogenous compound to aquatic animals, is distributed in aquatic ecosystems worldwide. The aim of this study was to investigate the effects of different NO3- levels on growth performance, health status, and endocrine function of juvenile turbot (Scophthalmus maximus) in recirculating aquaculture systems (RAS). Fish were exposed to 0 mg/L (control, CK), 50 mg/L (low nitrate, LN), 200 mg/L (medium nitrate, MN), and 400 mg/L (high nitrate, HN) NO3-N for 60 d in experimental RAS. Cumulative survival (CS) was significantly decreased with increasing NO3- levels in LN, MN, and HN. The lowest CS was 35% in the HN group. Growth parameters, including absolute growth rate, specific growth rate, and feed conversion rate, were significantly different in HN compared with that in the CK. Histological survey of gills and liver revealed dose-dependent histopathological damage induced by NO3- exposure and significant differences in glutamate pyruvate transaminase and glutamate oxalate transaminase in MN and HN compared with that in the CK. The hepatosomatic index in HN was significantly higher than that in the CK. Additionally, NO3- significantly increased bioaccumulation in plasma in LN, MN, and HN compared to that in the CK. Significant decreases in hemoglobin and increases in methemoglobin levels indicated reduced oxygen-carrying capacity in HN. Additionally, qRT-PCR and enzyme-linked immunosorbent assay (ELISA) were developed to investigate key biomarkers involved in the GH/IGF-1, HPT, and HPI axes. Compared with that in the CK, the abundance of GH, GHRb, and IGF-1 was significantly lower in HN, whereas GHRa did not differ between treatments. The plasma T3 level significantly decreased in LN, MN, and HN and T4 significantly decreased in HN. The CRH, ACTH, and plasma cortisol levels were significantly upregulated in HN compared with that in the CK. We conclude that elevated NO3- exposure leads to growth retardation, impaired health status, and endocrine disorders in turbot and the NO3- level for juvenile turbot culture should not exceed 50 mg/L NO3-N in RAS. Our findings indicate that endocrine dysfunction of the GH/IGF-1, HPT, and HPI axes might be responsible for growth inhibition induced by NO3- exposure.
Collapse
Affiliation(s)
- Jiachen Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yanfeng Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Xian Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Li Zhou
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Tengfei Du
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaona Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| |
Collapse
|
14
|
Faheem M, Bhandari RK. Detrimental Effects of Bisphenol Compounds on Physiology and Reproduction in Fish: A Literature Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103497. [PMID: 32950715 PMCID: PMC11491272 DOI: 10.1016/j.etap.2020.103497] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.
Collapse
|
15
|
Wang L, Yan R, Yang Q, Li H, Zhang J, Shimoda Y, Kato K, Yamanaka K, An Y. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110820. [PMID: 32531574 DOI: 10.1016/j.ecoenv.2020.110820] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 05/25/2023]
Abstract
Growth hormone (GH)/insulin-like growth factor (IGF) axis plays a critical role in fetal development. However, the effect of arsenite exposure on the GH/IGF axis and its toxic mechanism are still unclear. Zebrafish embryos were exposed to a range of NaAsO2 concentrations (0.0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Development indexes of survival, malformation, hatching rate, heart rate, body length and locomotor behavior were measured. Hormone levels, GH/IGF axis-related genes, and nerve-related genes were also tested. The results showed that survival rate, hatching rate, heart rate, body length and locomotor behavior all decreased, while deformity increased. At 120 hpf, the survival rate of zebrafish in 1.5 mM NaAsO2 group was about 70%, the deformity rate exceeded 20%, and the body length shortened to 3.35 mm, the movement distance of zebrafish decreased approximately 63.6% under light condition and about 52.4% under dark condition. The level of GH increased and those of IGF did not change significantly, while the expression of GH/IGF axis related genes (ghra, ghrb, igf2r, igfbp3, igfbp2a, igfbp5b) and nerve related genes (dlx2, shha, ngn1, elavl3, gfap) decreased. In 1.5 mM NaAsO2 group, the decrease of igfbp3 and igfbp5b was almost obvious, about 78.2% and 72.2%. The expression of nerve genes in 1.5 mM NaAsO2 group all have declined by more than 50%. These findings suggested that arsenite exerted disruptive effects on the endocrine system by interfering with the GH/IGF axis, leading to zebrafish embryonic developmental toxicity.
Collapse
Affiliation(s)
- Luna Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Heran Li
- Microwants International LTD, Hong Kong, China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
17
|
Dar SA, Srivastava PP, Rather MA, Varghese T, Rasool SI, Gupta S. Molecular and computational analysis of Ghrelin, growth hormone Secretagogues receptor and mRNA expression of Growth-related genes after exogenous administered ghrelin peptide in Labeo rohita. Int J Biol Macromol 2020; 142:756-768. [DOI: 10.1016/j.ijbiomac.2019.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023]
|
18
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
19
|
Navarro-Guillén C, Dias J, Rocha F, Castanheira M, Martins CI, Laizé V, Gavaia PJ, Engrola S. Does a ghrelin stimulus during zebrafish embryonic stage modulate its performance on the long-term? Comp Biochem Physiol A Mol Integr Physiol 2019; 228:1-8. [DOI: 10.1016/j.cbpa.2018.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
|
20
|
Zeng X, Sun H, Huang Y, Liu J, Yu L, Liu C, Wang J. Effects of environmentally relevant concentrations of tris (2-butoxyethyl) phosphate on growth and transcription of genes involved in the GH/IGF and HPT axes in zebrafish (Danio rerio). CHEMOSPHERE 2018; 212:376-384. [PMID: 30149310 DOI: 10.1016/j.chemosphere.2018.08.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 05/12/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP), as one of the most widely used organophosphate flame retardants (OPFRs), is applied in nearly all manufactured items and materials. It has been reported that TBOEP could cause developmental impairments and disrupt the endocrine regulation of fish growth during acute toxic experiments. However, concentrations to which fish were exposed in these studies were greater than environmentally relevant concentrations ever reported. This study examined effects on growth associated with exposure of zebrafish to 0, 0.1, 1 and 10 μg/L TBOEP during 20-90 days post fertilization (dpf). The changes in growth indicators and bioaccumulation of TBOEP were examined along with the transcription of related genes in the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. The average body contents of TBOEP were higher in females than in males in all the exposure groups. Exposure to environmentally relevant concentrations of TBOEP significantly decreased body length and body mass and down-regulated expression of several genes involved in the GH/IGF and HPT axes. Exposure to TBOEP decreased plasma thyroxine (T4) content accompanied by decreased mRNA level of thyrotropin β-subunit (tshβ) in females at 60 dpf, but no effects were observed at 90 dpf. These results suggested that bioaccumulation of TBOEP and down-regulation of genes involved in the GH/IGF axis might be responsible for the observed growth inhibition in zebrafish exposed to TBOEP.
Collapse
Affiliation(s)
- Xinyue Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Ogawa S, Liu X, Shepherd BS, Parhar IS. Ghrelin stimulates growth hormone release from the pituitary via hypothalamic growth hormone-releasing hormone neurons in the cichlid, Oreochromis niloticus. Cell Tissue Res 2018; 374:349-365. [PMID: 29934855 DOI: 10.1007/s00441-018-2870-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Ghrelin, a gut-brain peptide hormone, is implicated in a multiplicity of biological functions, including energy homeostasis and reproduction. Neuronal systems that are involved in energy homeostasis as well as reproduction traverse the hypothalamus; however, the mechanism by which they control energy homeostasis is not fully understood. The present study analyzes the anatomical relationship of neurons expressing gonadotropin-releasing hormone (GnRH), neuropeptide Y (NPY) and growth hormone-releasing hormone (GHRH) in a cichlid, tilapia (Oreochromis niloticus). Additionally, we examine in vivo effects of ghrelin on these hypothalamic neurons and plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels. Double-immunofluorescence showed neuronal fiber associations between GnRH, NPY and GHRH in the brain and pituitary. Intracerebroventricular injection of ghrelin had no effect on numbers, soma size, or optical density of GnRH and NPY neurons, whereas the number of GHRH neurons was significantly decreased in the animals injected with ghrelin when compared to controls, which may indicate administered ghrelin promoted GHRH release. Plasma GH and pituitary GH mRNA levels were significantly increased in the animals injected with ghrelin. These results suggest that central administration of ghrelin primarily act on hypothalamic GHRH neurons to stimulate GH release from the pituitary in the tilapia.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Xiaochun Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
22
|
Garcia de la Serrana D, Macqueen DJ. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front Endocrinol (Lausanne) 2018; 9:80. [PMID: 29593649 PMCID: PMC5857546 DOI: 10.3389/fendo.2018.00080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation-with six core Igfbps expanded into a family of over twenty genes in some lineages. In addition to briefly summarizing the current state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, we highlight gaps in our understanding and promising areas for future work.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Daniel Garcia de la Serrana,
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
23
|
Navarro-Guillén C, Yúfera M, Engrola S. Ghrelin in Senegalese sole (Solea senegalensis) post-larvae: Paracrine effects on food intake. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:85-92. [DOI: 10.1016/j.cbpa.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023]
|
24
|
Yu L, Jia Y, Su G, Sun Y, Letcher RJ, Giesy JP, Yu H, Han Z, Liu C. Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:196-203. [PMID: 27646168 DOI: 10.1016/j.envpol.2016.09.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a re-emerging environmental contaminant that has been frequently detected at sub-ppb (<μg/L) concentrations in natural waters. The objective of this study was to evaluate effects of TDCIPP on growth in initial generation (F0) zebrafish after chronic exposure to environmentally relevant concentrations, and to examine possible parental transfer of TDCIPP and transgenerational effects on growth of first generation (F1) larvae. When zebrafish (1-month old) were exposed to 580 or 7500 ng TDCIPP/L for 240 days, bioconcentration resulted in significantly less growth as measured by body length, body mass, brain-somatic index (BSI) and hepatic-somatic index (HSI) in F0 females but not F0 males. These effects were possibly due to down-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, residues of TDCIPP were detected in F1 eggs after exposure of parents, which resulted in less survival, body length and heart rate in F1 individuals. Down-regulation of genes in the GH/IGF axis (e.g., gh, igf1) might be responsible for transgenerational toxicity. This study provides the first known evidence that exposure of zebrafish to environmentally relevant concentrations of TDCIPP during development can inhibit growth of offspring, which were not exposed directly to TDCIPP.
Collapse
Affiliation(s)
- Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yali Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyong Su
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Yongkai Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210089, China
| | - Hongxia Yu
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China.
| |
Collapse
|
25
|
|
26
|
Hatef A, Yufa R, Unniappan S. Ghrelin O-Acyl Transferase in Zebrafish Is an Evolutionarily Conserved Peptide Upregulated During Calorie Restriction. Zebrafish 2015; 12:327-38. [PMID: 26226634 DOI: 10.1089/zeb.2014.1062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a multifunctional orexigenic hormone with a unique acyl modification enabled by ghrelin O-acyl transferase (GOAT). Ghrelin is well-characterized in nonmammals, and GOAT sequences of several fishes are available in the GenBank. However, endogenous GOAT in non-mammals remains poorly understood. In this research, GOAT sequence comparison, tissue-specific GOAT expression, and its regulation by nutrient status and exogenous ghrelin were studied. It was found that the bioactive core of zebrafish GOAT amino acid sequence share high identity with that of mammals. GOAT mRNA was most abundant in the gut. GOAT-like immunoreactivity (i.r.) was found colocalized with ghrelin in the gastric mucosa. Food deprivation increased, and feeding decreased GOAT and preproghrelin mRNA expression in the brain and gut. GOAT and ghrelin peptides in the gut and brain showed corresponding decrease in food-deprived state. Intraperitoneal injection of acylated fish ghrelin caused a significant decrease in GOAT mRNA expression, suggesting a feedback mechanism regulating its abundance. Together, these results provide the first in-depth characterization of GOAT in a non-mammal. Our results demonstrate that endogenous GOAT expression is responsive to metabolic status and availability of acylated ghrelin, providing further evidences for GOAT in the regulation of feeding in teleosts.
Collapse
Affiliation(s)
- Azadeh Hatef
- 1 Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | - Roman Yufa
- 2 Department of Biology, York University , Toronto, Ontario, Canada
| | - Suraj Unniappan
- 1 Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Birceanu O, Servos MR, Vijayan MM. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:51-60. [PMID: 25667994 DOI: 10.1016/j.aquatox.2015.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml(-1) BPA for 3h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout.
Collapse
Affiliation(s)
- Oana Birceanu
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
28
|
Kaiya H, Konno N, Kangawa K, Uchiyama M, Miyazato M. Identification, tissue distribution and functional characterization of the ghrelin receptor in West African lungfish, Protopterus annectens. Gen Comp Endocrinol 2014; 209:106-17. [PMID: 25093625 DOI: 10.1016/j.ygcen.2014.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Minoru Uchiyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
29
|
Cleveland BM, Weber GM. Ploidy effects on genes regulating growth mechanisms during fasting and refeeding in juvenile rainbow trout (Oncorhynchus mykiss). Mol Cell Endocrinol 2014; 382:139-149. [PMID: 24076188 DOI: 10.1016/j.mce.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
Diploid and triploid rainbow trout weighing approximately 3g were either fed for five weeks, or feed deprived for one week, followed by refeeding. During feed deprivation gastrointestinal somatic index decreased in diploids, but not triploids, and during refeeding, carcass growth rate recovered more quickly in triploids. Although not affected by ploidy, liver ghr2 and igfbp2b expression increased and igfbp1b decreased in fasted fish. Effects of ploidy on gene expression indicate potential mechanisms associated with improved recovery growth in triploids, which include decreased hepatic igfbp expression, which could influence IGF-I bioavailability, differences in tissue sensitivity to TGFbeta ligands due to altered tgfbr and smad expression, and differences in expression of muscle regulatory genes (myf5, mstn1a, and mstn1b). These data suggest that polyploidy influences the expression of genes critical to muscle development and general growth regulation, which may explain why triploid fish recover from nutritional insult better than diploid fish.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States
| |
Collapse
|
30
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
31
|
Tinoco AB, Näslund J, Delgado MJ, de Pedro N, Johnsson JI, Jönsson E. Ghrelin increases food intake, swimming activity and growth in juvenile brown trout (Salmo trutta). Physiol Behav 2014; 124:15-22. [DOI: 10.1016/j.physbeh.2013.10.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023]
|
32
|
Zhou C, Zhang X, Liu T, Wei R, Yuan D, Wang T, Lin F, Wu H, Chen F, Yang S, Chen D, Wang Y, Li Z. Schizothorax davidi ghrelin: cDNA cloning, tissue distribution and indication for its stimulatory character in food intake. Gene 2013; 534:72-7. [PMID: 24129070 DOI: 10.1016/j.gene.2013.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 01/31/2023]
Abstract
Ghrelin is a gut/brain hormone with a unique acyl modification and various biological functions in fish and mammals. The objectives of this project were to identify ghrelin gene organization, study tissue specific ghrelin mRNA expression and investigate the short- (0, 0.5, 1.5, 3, 6, 9, 12h post-fasting) and long- (1, 3, 5, 7 days) term fasting as well as refeeding after a 7 day fasting induced changes in the expression of ghrelin mRNA in Schizothorax davidi. Our reverse transcription polymerase chain reaction analysis confirmed the predicted ghrelin sequence available in the GenBank and identified ghrelin mRNA expression in several tissues including the gut, liver, brain, heart, spleen, head kidney, gill and muscle. Quantitative PCR studies indicated that the expression level of ghrelin mRNA presented ascendant trend in short-term fasting group compared to the fed group, but it did not reach the significant level on statistics, while there is a significant increase in ghrelin mRNA expression in the gut of Schizothorax davidi fasted for 3, 5 and 7 days when compared to the expression in ad libitum fed fish. Refeeding after a 7 day fasting caused a significant and dramatic decrease in ghrelin mRNA expression in the gut of Schizothorax davidi. An increase in the expression of ghrelin mRNA during fasting, and its decrease following refeeding suggests an orexigenic role for ghrelin in Schizothorax davidi. Overall, our results provide evidence for a highly conserved structure and biological actions of ghrelin during evolution.
Collapse
Affiliation(s)
- Chaowei Zhou
- Department of aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schiller V, Wichmann A, Kriehuber R, Schäfers C, Fischer R, Fenske M. Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod Toxicol 2013; 42:210-23. [PMID: 24051129 DOI: 10.1016/j.reprotox.2013.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/13/2013] [Accepted: 09/07/2013] [Indexed: 12/16/2022]
Abstract
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos.
Collapse
Affiliation(s)
- Viktoria Schiller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Riley LG. Different forms of ghrelin exhibit distinct biological roles in tilapia. Front Endocrinol (Lausanne) 2013; 4:118. [PMID: 24027561 PMCID: PMC3759782 DOI: 10.3389/fendo.2013.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 11/13/2022] Open
Abstract
Ghrelin has been identified in all vertebrate classes, including sharks. Each species possesses multiple forms of ghrelin that vary in peptide length and acyl modifications (e.g., n-hexanoic, n-non-anoic, n-octanoic, and n-decanoic acids) including des-acyl ghrelin. Octanoylated ghrelin has been shown to be a potent GH secretagogue, orexigenic factor, and plays a role in overall metabolism in vertebrates. In the tilapia model, octanoylated ghrelin (ghrelin-C8) and decanoylated ghrelin (ghrelin-C10) exhibit different biological actions. This mini review highlights the current knowledge of the differential actions of ghrelin-C8 and ghrelin-C10 from studies in the tilapia model. These findings suggest that the multiple forms of ghrelin may exhibit distinct yet complimentary actions directed toward maintaining overall energy balance in other vertebrates.
Collapse
Affiliation(s)
- Larry G. Riley
- Department of Biology, California State University Fresno, Fresno, CA, USA
- *Correspondence: Larry G. Riley, Department of Biology, California State University Fresno, 2555 East San Ramon, Fresno, CA 93740, USA e-mail:
| |
Collapse
|
35
|
Wei R, Liu T, Zhou C, Zhang X, Yuan D, Wang T, Lin F, Chen H, Wu H, Li Z. Identification, tissue distribution and regulation of preproghrelin in the brain and gut of Schizothorax prenanti. ACTA ACUST UNITED AC 2013; 186:18-25. [PMID: 23850798 DOI: 10.1016/j.regpep.2013.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Ghrelin is an important gastrointestinal hormone involved in the regulation of feeding in both mammals and fish. In this study, the preproghrelin cDNA sequence was cloning in the gut of Schizothorax prenanti (S. prenanti). The preproghrelin gene, encoding 103-amino acids, was strongly expressed in the gut and brain using real-time quantitative RT-PCR (qPCR). The S. prenanti preproghrelin was detected in embryonic developmental stages. Further, it was detectable in unfertilized eggs, suggesting that ghrelin could be classified as maternal mRNA. An experiment was conducted to determine the expression profile of ghrelin during post-feeding and fasting status of the brain and gut. The results revealed a significant postprandial decrease in ghrelin mRNA expression in the gut 6h post-feeding (hpf) and brain (1.5 and 9hpf) compared to an unfed control group, indicating that food intake and processing affect the regulation of expression of ghrelin in S. prenanti. The constructed recombinant plasmid pMD-19T-ghrelin was transformed to Escherichia coli BL21 and induced with IPTG, and the expressed product was identified by SDS-PAGE. The prokaryotic expression vector for ghrelin was constructed successfully, and fusion protein was expressed in E. coli BL21, which laid the foundation for the further study on the function of this protein and its mechanism. Overall, our results provide evidence for a highly conserved structure and biological actions of ghrelin in S. prenanti. Further studies are required to identify the tissue specific functions of ghrelin in S. prenanti.
Collapse
Affiliation(s)
- RongBin Wei
- Department of Aquaculture, Sichuan Agricultural University, Ya'an 625014, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Won ET, Borski RJ. Endocrine regulation of compensatory growth in fish. Front Endocrinol (Lausanne) 2013; 4:74. [PMID: 23847591 PMCID: PMC3696842 DOI: 10.3389/fendo.2013.00074] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/06/2013] [Indexed: 01/06/2023] Open
Abstract
Compensatory growth (CG) is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. CG is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production, and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting) that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding) when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin, and leptin.
Collapse
Affiliation(s)
- Eugene T. Won
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
37
|
Jönsson E. The role of ghrelin in energy balance regulation in fish. Gen Comp Endocrinol 2013; 187:79-85. [PMID: 23557643 DOI: 10.1016/j.ygcen.2013.03.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
Knowledge about the endocrine regulation of energy balance in fish is of interest for basic as well as aquaculture research. Ghrelin is a peptide hormone that was first identified in fish 10 years ago and has important roles in the control of food intake and metabolism. Both ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), have been found in numerous fish species. Their tissue distributions support the idea that ghrelin has an integrative role in the regulation of energy balance at both the central nervous system level and systemic level. In tilapia and goldfish, ghrelin treatment appears to increase food intake and to stimulate lipogenesis and tissue fat deposition to promote a more positive energy status. In rainbow trout, on the other hand, ghrelin decreases food intake. Goldfish and rainbow trout are the fish species in which the mode of action of ghrelin on food intake has been most thoroughly investigated. The results from these studies indicate that ghrelin alters food intake by acting on well-known appetite signals, such as CRH, NPY and orexin, in the hypothalamus in a species-specific manner. In goldfish, sensory fibres of the vagus nerve convey the signal from gut-derived ghrelin to modulate appetite. The data also indicate that ghrelin may modulate foraging/swimming activity and the perception of food in fish. Results related to the effects of energy status, temperature, and stressors on plasma ghrelin/tissue ghrelin mRNA levels are occasionally inconsistent between short- and long-term studies, between the protein and mRNA, and between species. Recent data also imply a role of ghrelin in carbohydrate metabolism. More functional studies are required to understand the role of ghrelin and its mechanisms of action in the regulation of energy balance among fish.
Collapse
Affiliation(s)
- Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden.
| |
Collapse
|
38
|
Kaiya H, Kangawa K, Miyazato M. What is the general action of ghrelin for vertebrates? - comparisons of ghrelin's effects across vertebrates. Gen Comp Endocrinol 2013. [PMID: 23178701 DOI: 10.1016/j.ygcen.2012.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ten years and more passed since ghrelin was discovered. Various physiological actions of ghrelin have been documented in both mammalian and nonmammalian vertebrates. Do these actions have any commonality? In this review, we focused on several effects of ghrelin, and compared the effect across vertebrates. We would like to discuss possible general function of ghrelin in vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | |
Collapse
|
39
|
Koven W, Schulte P. The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1565-1575. [PMID: 22565667 DOI: 10.1007/s10695-012-9649-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
In vertebrates, a significant part of ingested protein is absorbed as di- and tripeptides through a brush border membrane proton/oligopeptide transporter protein called PepT1. The aim of the present study was to determine the effect of short-term food deprivation and refeeding in adult zebrafish (Danio rerio) on gastrointestinal mRNA expression of PepT1 as well as on the satiety hormones cholecystokinin (CCK), gastrin-releasing peptide (GRP) and ghrelin (GHR) in order to elucidate a potential mechanism driving compensatory growth. Sixty adult zebrafish were stocked in a 40-L aquarium and fed daily a commercial flake diet to satiation for 10 days where the digestive tracts (DT) of sampled fish (n = 5) were dissected out. Samplings were repeated following 1, 2 and 5 days of food deprivation and after 1, 2 and 5 days of refeeding. The RNA was extracted from all sampled DTs and analyzed by quantitative real-time PCR for the mRNA expression of PepT1, rRNA 18S, CCK, GRP and GHR. PepT1 mRNA expression increased with successive refeedings reaching a level approximately 8 times higher than pre-fast levels. CCK, GRP and GHR mRNA levels also decreased during fasting, but increased only to pre-fasting levels with refeeding. Overall, the results suggest that PepT1 may be a contributing mechanism to compensatory growth that could influence CCK secretion and GRP and GHR activity.
Collapse
Affiliation(s)
- William Koven
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O.B. 1212, 88112, Eilat, Israel.
| | - Patricia Schulte
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
40
|
Martinez R, Ubieta K, Herrera F, Forellat A, Morales R, de la Nuez A, Rodriguez R, Reyes O, Oliva A, Estrada MP. A novel GH secretagogue, A233, exhibits enhanced growth activity and innate immune system stimulation in teleosts fish. J Endocrinol 2012; 214:409-19. [PMID: 22707376 DOI: 10.1530/joe-11-0373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In teleosts fish, secretion of GH is regulated by several hypothalamic factors that are influenced by the physiological state of the animal. There is an interaction between immune and endocrine systems through hormones and cytokines. GH in fish is involved in many physiological processes that are not overtly growth related, such as saltwater osmoregulation, antifreeze synthesis, and the regulation of sexual maturation and immune functions. This study was conducted to characterize a decapeptide compound A233 (GKFDLSPEHQ) designed by molecular modeling to evaluate its function as a GH secretagogue (GHS). In pituitary cell culture, the peptide A233 induces GH secretion and it is also able to increase superoxide production in tilapia head-kidney leukocyte cultures. This effect is blocked by preincubation with the GHS receptor antagonist [d-Lys(3)]-GHRP6. Immunoneutralization of GH by addition of anti-tilapia GH monoclonal antibody blocked the stimulatory effect of A233 on superoxide production. These experiments propose a GH-mediated mechanism for the action of A233. The in vivo biological action of the decapeptide was also demonstrated for growth stimulation in goldfish and tilapia larvae (P<0.001). Superoxide dismutase levels, antiprotease activity, and lectin titer were enhanced in tilapia larvae treated with this novel molecule. The decapeptide A233 designed by molecular modeling is able to function as a GHS in teleosts and enhance parameters of the innate immune system in the fish larvae.
Collapse
Affiliation(s)
- Rebeca Martinez
- Biotechnology Animal Division, Aquatic Biotechnology Department, CIGB, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Suda A, Kaiya H, Nikaido H, Shiozawa S, Mishiro K, Ando H. Identification and gene expression analyses of ghrelin in the stomach of Pacific bluefin tuna (Thunnus orientalis). Gen Comp Endocrinol 2012; 178:89-97. [PMID: 22569173 DOI: 10.1016/j.ygcen.2012.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/07/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Full length cDNA and gene encoding ghrelin precursor and mature ghrelin peptide were identified from the stomach of Pacific bluefin tuna, Thunnus orientalis, which has unique metabolic physiology and high commercial value at fishery markets. Quantitative expression analysis was conducted for the gastric ghrelin and pepsinogen 2 genes during the early stage of somatic growth from the underyearling to yearling fish. The full length cDNA of bluefin tuna ghrelin precursor has a length of 470bp and the deduced precursor is composed of 107 amino acids. The ghrelin gene is 1.9kbp in length and has a 4 exon-3 intron structure. The major form of mature ghrelin in the stomach was an octanoylated 20-amino acid peptide with C-terminal amidation, while overall 12 different forms of ghrelin peptides, including short form of 18-amino acid peptide and seven kinds of acyl modifications were identified. The expression profiles of the gastric ghrelin and pepsinogen 2 genes showed no significant changes related to the early growth stages. The present results suggest that digestive physiology has already been functional in this growth stage of the juvenile bluefin tuna and ghrelin may have a role in the sustained digestive and metabolic activities.
Collapse
Affiliation(s)
- Atsushi Suda
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Pérez Sirkin DI, Cánepa MM, Fossati M, Fernandino JI, Delgadin T, Canosa LF, Somoza GM, Vissio PG. Melanin concentrating hormone (MCH) is involved in the regulation of growth hormone in Cichlasoma dimerus (Cichlidae, Teleostei). Gen Comp Endocrinol 2012; 176:102-11. [PMID: 22266076 DOI: 10.1016/j.ygcen.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 01/05/2023]
Abstract
Growth hormone (GH) is the main pituitary hormone involved in somatic growth. In fish, the neuroendocrine control of GH is multifactorial due to the interaction of multiple inhibitors and stimulators. Melanin-concentrating hormone (MCH) is a cyclic peptide involved in skin color regulation of fish. In addition, MCH has been related to the regulation of food intake in both mammals and fish. There is only one report presenting evidences on the GH release stimulation by MCH in mammals in experiments in vitro, but there are no data on non-mammals. In the present work, we report for the first time the sequence of MCH and GH cDNA in Cichlasoma dimerus, a freshwater South American cichlid fish. We detected contacts between MCH fibers and GH cells in the proximal pars distalis region of the pituitary gland by double label confocal immunofluorescence indicating a possible functional relationship. Besides, we found that MCH increased GH transcript levels and stimulated GH release in pituitary cultures. Additionally, C. dimerus exposed to a white background had a greater number of MCH neurons with a larger nuclear area and higher levels of MCH transcript than those fish exposed to a black background. Furthermore, fish reared for 3 months in a white background showed a greater body weight and total length compared to those from black background suggesting that MCH might be related to somatic growth in C. dimerus. Our results report for the first time, that MCH is involved in the regulation of the synthesis and release of GH in vitro in C. dimerus, and probably in the fish growth rate.
Collapse
Affiliation(s)
- D I Pérez Sirkin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kaiya H, Miyazato M, Kangawa K. Recent advances in the phylogenetic study of ghrelin. Peptides 2011; 32:2155-74. [PMID: 21600258 DOI: 10.1016/j.peptides.2011.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/04/2011] [Accepted: 04/29/2011] [Indexed: 01/03/2023]
Abstract
To understand fully the biology of ghrelin, it is important to know the evolutionary history of ghrelin and its receptor. Phylogenetic and comparative genomic studies of mammalian and non-mammalian vertebrates are a useful approach to that end. Ghrelin is a hormone that has apparently evaded natural selection during a long evolutionary history. Surely ghrelin plays crucial physiological roles in living animals. Phylogenetic studies reveal the nature and evolutionary history of this important signaling system.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | |
Collapse
|
44
|
Shepherd BS, Aluru N, Vijayan MM. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 2011; 40:129-38. [PMID: 21185680 DOI: 10.1016/j.domaniend.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 12/30/2022]
Abstract
The effects of acute stressor exposure on proximal (growth hormone [GH]) and distal (insulin-like growth factor-I [IFG-I] and insulin-like growth factor-binding proteins [IFGBPs]) components of the somatotropic axis are poorly understood in finfish. Rainbow trout (Oncorhynchus mykiss) were exposed to a 5-min handling disturbance to mimic an acute stressor episode, and levels of plasma GH, IGF-I, and IGFBPs at 0, 1, 4, and 24 h post-stressor exposure were measured. An unstressed group was also sampled at the same clock times (09:00, 10:00, 13:00, and 08:00 [the following day]) as acute stress sampling to determine temporal changes in the above somatotropic axis components. The acute stressor transiently elevated plasma cortisol and glucose levels at 1 and 4 h post-stressor exposure, whereas no changes were seen in the unstressed group. Plasma GH levels were not affected by handling stress or sampling time in the unstressed animals. Plasma IGF-I levels were significantly depressed at 1 and 4 h post-stressor exposure, but no discernible temporal pattern was seen in the unstressed animals. Using a western ligand blotting technique, we detected plasma IGFBPs of 21, 32, 42, and 50 kDa in size. The plasma levels of the lower-molecular-weight IGFBPs (21 and 32 kDa) were unaffected by handling stressor, nor were there any discernible temporal patterns in the unstressed animals. By contrast, the higher-molecular-weight IGFBPs (42 and 50 kDa) were affected by stress or time of sampling. Levels of the 42-kDa IGFBP levels significantly decreased over the sampling period in unstressed control animals, but this temporal drop was eliminated in stressed animals. Levels of the 50-kDa IGFBPs also decreased significantly over the sampling time in unstressed trout, whereas handling disturbance transiently increased levels of this IGFBP at 1 h but not at 4 and 24 h post-stressor exposure compared with the control group. Overall, our results suggest that acute stress adaptation involves modulation of plasma IGF-1 and high-molecular-mass IGFBP levels (42 and 50 kDa) in rainbow trout.
Collapse
Affiliation(s)
- B S Shepherd
- USDA/ARS/Great Lakes WATER Institute, Milwaukee, WI 53204, USA.
| | | | | |
Collapse
|
45
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
46
|
Ojima D, Iwata M. Central administration of growth hormone-releasing hormone and corticotropin-releasing hormone stimulate downstream movement and thyroxine secretion in fall-smolting coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 2010; 168:82-7. [PMID: 20403356 DOI: 10.1016/j.ygcen.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/25/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
The ultimate signal triggering downstream migration in anadromous salmonids is unknown. A plasma surge of T(4) (T(4) surge) occurs during downstream migration in salmonids; however, the causal relationship between migratory behavior and the T(4) surge is not well known. We first examined the progression of smolt indicators (skin silvering, condition factor (CF), gill Na(+), K(+)-ATPase (NKA) activity and plasma T(4) levels) in underyearling, fall-smolting coho salmon (Oncorhynchus kisutch) from August to December. In November, the fish showed the characteristics of fully developed smolts, i.e. the skin completely covered with silvery scales, CF at a nadir, and peak NKA activity and plasma T(4) levels. Based on these results, we examined the effects of four neuropeptides, thyrotropin-releasing hormone (TRH), corticotropin-releasing hormone (CRH), growth hormone-releasing hormone (GHRH), and gonadotropin-releasing hormone (GnRH), on the downstream movement (negative rheotaxis) and T(4) surge in fully smoltified underyearling coho salmon. The experiment was run in circular-shaped channel tanks and the neuropeptide treatment was performed as intracerebroventricular (ICV) injections. ICV injection of GHRH and CRH stimulated both downstream movement and plasma T(4) level. TRH injection stimulated plasma T(4) level but suppressed downstream movement. GnRH injection had no effect. It is hypothesized that GHRH and CRH play key roles in triggering downstream migration of anadromous salmonids, and that the accompanying T(4) surge is a consequence of the neuroendocrine processes that trigger migration.
Collapse
Affiliation(s)
- Daisuke Ojima
- Laboratory of Ecophysiology, School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan.
| | | |
Collapse
|
47
|
Jönsson E, Kaiya H, Björnsson BT. Ghrelin decreases food intake in juvenile rainbow trout (Oncorhynchus mykiss) through the central anorexigenic corticotropin-releasing factor system. Gen Comp Endocrinol 2010; 166:39-46. [PMID: 19896947 DOI: 10.1016/j.ygcen.2009.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/11/2009] [Accepted: 11/02/2009] [Indexed: 01/25/2023]
Abstract
Ghrelin stimulates pituitary growth hormone (GH) release, and has a key role in the regulation of food intake and adiposity in vertebrates. To investigate the central effect of native rainbow trout ghrelin (rtghrelin) on food intake in rainbow trout, as well as its possible mode of action, four groups of fish received a single injection into the third brain ventricle (i.c.v. injection): (1) control group (physiological saline) (2) ghrelin-treated group (2.0 ng rtghrelin g bwt(-1)), (3) group given the corticotropin-releasing hormone receptor antagonist alpha-helical CRF 9-41 (ahCRF) (4.0 ng g bwt(-1)) and (4) group receiving the same dose of both ghrelin and ahCRF. Food intake was assessed 1h after treatment. In addition, the presence of the GHS-R (the ghrelin receptor) in the rainbow trout CNS was examined with Western blot. To investigate peripheral effects of ghrelin, rainbow trout received an intraperitoneal cholesterol-based implant with or without rtghrelin, and daily food intake was measured during 14 days. Weight and length were measured at the start and termination of the experiment and specific growth rates were calculated. Mesenteric fat stores, muscle and liver lipid content were analysed after the treatment period. Central ghrelin injections decreased food intake compared with controls, and treatment with ahCRF abolished the ghrelin-effect. Western blot analysis of the GHS-R revealed a single band at around 60 kDa in pituitary, hypothalamus, brain and stomach. Long-term peripheral ghrelin treatment decreased daily food intake compared with controls. This was reflected in a ghrelin-induced decrease in weight growth rate (p<0.06). There was no effect of ghrelin on plasma GH levels or tissue fat stores. The conclusion from this study is that the GHS-R is indicated in the CNS in rainbow trout and that ghrelin may act there as an anorexigenic hormone, through a CRF-mediated pathway. Elevated peripheral ghrelin levels also seem to lead to decreased feed intake in the longer term.
Collapse
Affiliation(s)
- Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, S-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
48
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
49
|
Kaiya H, Kodama S, Ishiguro K, Matsuda K, Uchiyama M, Miyazato M, Kangawa K. Ghrelin-like peptide with fatty acid modification and O-glycosylation in the red stingray, Dasyatis akajei. BMC BIOCHEMISTRY 2009; 10:30. [PMID: 20003394 PMCID: PMC2803784 DOI: 10.1186/1471-2091-10-30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022]
Abstract
Background Ghrelin (GRLN) is now known to be an appetite-stimulating and growth hormone (GH)-releasing peptide that is predominantly synthesized and secreted from the stomachs of various vertebrate species from fish to mammals. Here, we report a GRLN-like peptide (GRLN-LP) in a cartilaginous fish, the red stingray, Dasyatis akajei. Results The purified peptide contains 16 amino acids (GVSFHPQPRS10TSKPSA), and the serine residue at position 3 is modified by n-octanoic acid. The modification is the characteristic of GRLN. The six N-terminal amino acid residues (GVSFHP) were identical to another elasmobranch shark GRLN-LP that was recently identified although it had low identity with other GRLN peptides. Therefore, we designated this peptide stingray GRLN-LP. Uniquely, stingray GRLN-LP was O-glycosylated with mucin-type glycan chains [N-acetyl hexosamine (HexNAc)3 hexose(Hex)2] at threonine at position 11 (Thr-11) or both serine at position 10 (Ser-10) and Thr-11. Removal of the glycan structure by O-glycanase made the in vitro activity of stingray GRLN-LP decreased when it was evaluated by the increase in intracellular Ca2+ concentrations using a rat GHS-R1a-expressing cell line, suggesting that the glycan structure plays an important role for maintaining the activity of stingray GRLN-LP. Conclusions This study reveals the structural diversity of GRLN and GRLN-LP in vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hanson KC, Abizaid A, Cooke SJ. Causes and consequences of voluntary anorexia during the parental care period of wild male smallmouth bass (Micropterus dolomieu). Horm Behav 2009; 56:503-9. [PMID: 19729013 DOI: 10.1016/j.yhbeh.2009.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 12/15/2022]
Abstract
By definition, parental care behaviors increase offspring survival, and individual fitness, at some cost to the parent. In smallmouth bass (Micropterus dolomieu), parental males provide sole care for the developing brood that includes an increase in activity during brood defense and decreased foraging resulting in a decline in endogenous energy reserves. No mechanisms have been proposed for cessation of voluntary foraging, though regulation of appetite hormones such as ghrelin have been documented to affect feeding behavior in other fishes. We documented baseline fluctuations in plasma ghrelin concentrations across parental care. Plasma ghrelin concentrations were lowest during the early stages of parental care before increasing as the brood developed to independence. Additionally, we performed an intervention experiment whereby plasma ghrelin levels were artificially increased through an injection of rodent ghrelin at the onset of parental care. Despite measuring a significant increase in plasma ghrelin approximately 1 week after injection, we noted no differences in plasma-borne indicators of recent foraging activity indicating that voluntary anorexia is possibly reinforced by receptor insensitivity to appetite hormones. Finally, we assessed the ultimate consequences of foraging during parental care by feeding fish to satiation and measuring post-prandial changes in swimming performance and aggression. Fish fed to satiation showed significant decreases in burst swimming ability and aggressiveness towards potential brood predators. Voluntary anorexia during smallmouth bass parental care is an adaptive behavior that avoids potentially deleterious declines in swimming performance and aggression apparently through a modulation of production and reception of appetite hormones including ghrelin.
Collapse
Affiliation(s)
- Kyle C Hanson
- Fish Ecology and Conservation Physiology Laboratory, Ottawa-Carleton Institute for Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|