1
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Li C, Ma Y, Cai Z, Wan Q, Tian S, Ning H, Wang S, Chen JL, Yang G. Neuropeptide S and its receptor NPSR enhance the susceptibility of hosts to pseudorabies virus infection. Res Vet Sci 2022; 146:15-23. [PMID: 35298925 DOI: 10.1016/j.rvsc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
The neuropeptide S (NPS) and its receptor (NPSR) represent a signaling system in the brain. Increased levels of NPS and NPSR have been observed in PK15 cells and murine brains in response to pseudorabies virus (PRV) infection, but it remains unclear whether elevated levels of NPS and NPSR are involved in the pathogenic process of PRV infection. In this study, the activities of both NPS and NPSR during PRV pathogenesis were explored in vitro and in vivo by reverse transcription polymerase chain reaction (RT-PCR), PCR, real-time quantitative RT-PCR (qRT-PCR), qPCR, TCID50, and Western blotting methods. NPSR-deficient cells were less susceptible to PRV infection, as evidenced by decreased viral production and PRV-glycoprotein E (gE) expression. In vitro studies showed that exogenous NPS promoted the expression of interleukin 6 (IL-6) mRNA but inhibited interferon β (IFN-β) mRNA expression in PK15 cells after PRV infection. In vivo studies showed that NPS-treated mice were highly susceptible to PRV infection, with decreased survival rates and body weights. In addition, NPS-treated mice showed elevated levels of IL-6 mRNA and STAT3 phosphorylation. However, the expression of IFN-β mRNA was greatly decreased after virus challenge. Contrasting results were obtained from the NPSR-ir-treated groups, which further highlighted the effects of NPS. This study revealed that NPS-treated hosts are more susceptible to PRV infection than controls. Moreover, excessive IL-6/STAT3 and defective IFN-β responses in NPS-treated mice may contribute to the pathogenesis of PRV.
Collapse
Affiliation(s)
- Chunyu Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Yijie Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Zifeng Cai
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Qianhui Wan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Shimao Tian
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Hongxia Ning
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Guihong Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China.
| |
Collapse
|
3
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Fang C, Zhang J, Wan Y, Li Z, Qi F, Dang Y, Li J, Wang Y. Neuropeptide S (NPS) and its receptor (NPSR1) in chickens: cloning, tissue expression, and functional analysis. Poult Sci 2021; 100:101445. [PMID: 34634709 PMCID: PMC8507198 DOI: 10.1016/j.psj.2021.101445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Neuropeptide S (NPS) and its receptor neuropeptide S receptor 1 (NPSR1) have been suggested to regulate many physiological processes in the central nervous system (CNS), such as arousal, anxiety, and food intake in mammals and birds, however, the functionality and tissue expression of this NPS-NPSR1 system remain unknown in birds. Here, we cloned NPS and NPSR1 cDNAs from the chicken brain and reported their functionality and tissue expression. The cloned chicken NPS is predicted to encode a mature NPS peptide of 20 amino acids, which shows a remarkable sequence identity (∼94%) among tetrapod species examined, while NPSR1 encodes a receptor of 373 amino acids conserved across vertebrates. Using cell-based luciferase reporter systems, we demonstrated that chicken NPS could potently activate NPSR1 expressed in vitro and thus stimulates multiple signaling pathways, including calcium mobilization, cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways, indicating that NPS actions could be mediated by NPSR1 in birds. Quantitative real-time PCR revealed that NPS and NPSR1 are widely expressed in chicken tissues, including the hypothalamus, and NPSR1 expression is likely controlled by a promoter upstream exon 1, which shows strong promoter activities in cultured DF-1 cells. Taken together, our data provide the first proof that the avian NPS-NPSR1 system is functional and helps to explore the conserved role of NPS and NPSR1 signaling in tetrapods.
Collapse
Affiliation(s)
- Chao Fang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; The Brain Cognition & Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zejiao Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Feiyang Qi
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuanhao Dang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
6
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
7
|
Webster AN, Cao C, Chowdhury VS, Gilbert ER, Cline MA. The hypothalamic mechanism of neuropeptide S-induced satiety in Japanese quail (Coturnix japonica) involves the paraventricular nucleus and corticotropin-releasing factor. Gen Comp Endocrinol 2020; 299:113558. [PMID: 32707241 DOI: 10.1016/j.ygcen.2020.113558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Neuropeptide S (NPS), a 20-amino acid neuropeptide, is produced in the brain and is associated with appetite suppression.Our group was the first to report this anorexigenic effect in birds using chicken as a model, although a hypothalamic molecular mechanism remains to be elucidated. Thus, we designed the present study using Japanese quail(Coturnix japonica).In Experiment 1, quail intracerebroventricularly injected with NPS reduced both food and water intake. In Experiment 2, food-restricted quail injected with NPS displayed a reduction in water intake.In Experiment 3, NPS-injected quail reduced their feeding and exploratory pecks.In Experiment 4, we quantified the number of cells expressing the early intermediate gene product c-Fos (as a marker of neuronal activation) in appetite associated hypothalamic nuclei and found that immunoreactivity was increased in the paraventricular nucleus (PVN). In Experiment 5, we utilized real-time PCR to screen for neuropeptide changes within the PVN of NPS-injected quail. Mesotocin and corticotropin-releasing factor (CRF) mRNAs increased in response to NPS injection. In Experiment 6, co-injection of astressin, a CRF receptor antagonist, was sufficient to block the food intake-suppressive effects of NPS, but in Experiment 7, co-injection of an oxytocin receptor antagonist was not sufficient to block the food intake-suppressive effects of NPS. Collectively, results support that NPS induces an anorexigenic response in Japanese quail that is mediated within the PVN and is associated with CRF.
Collapse
Affiliation(s)
- Addison N Webster
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chang Cao
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 2019; 51:1129-1152. [DOI: 10.1007/s00726-019-02762-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
9
|
Wang J, Matias J, Gilbert ER, Tachibana T, Cline MA. Hypothalamic mechanisms associated with corticotropin-releasing factor-induced anorexia in chicks. Neuropeptides 2019; 74:95-102. [PMID: 30739813 DOI: 10.1016/j.npep.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF-induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than vehicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than vehicle-injected chicks. CRF-treated chicks expressed greater amounts of CRFR2 and mesotocin mRNA than vehicle chicks in the PVN and VMH, respectively. In the DMN, CRF injection was associated with reduced NPYR1 mRNA. In conclusion, the results provide insights into understanding CRF-induced hypothalamic actions and suggest that the anorexigenic effect of CRF involves increased CRFR2-mediated signaling in the ARC and PVN that overrides the effects of NPY and other orexigenic factors.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Animal and Poultry Sciences, School of Neuroscience, USA
| | - Justin Matias
- Department of Animal and Poultry Sciences, School of Neuroscience, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, School of Neuroscience, USA; Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, School of Neuroscience, USA; Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA.
| |
Collapse
|
10
|
Zhang ZR, Tao YX. Physiology, pharmacology, and pathophysiology of neuropeptide S receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:125-148. [PMID: 30711025 DOI: 10.1016/bs.pmbts.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptide S receptor 1 (NPSR1), originally named G protein-coupled receptor 154 (GPR154), was deorphanized in 2002 with neuropeptide S identified as the endogenous ligand. NPSR1 is primarily expressed in bronchus, brain as well as immune cells. It regulates multiple physiological processes, including immunoregulation, locomotor activity, anxiety, arousal, learning and memory, and food intake and energy balance. SNPs of NPSR1 are significantly associated with several diseases, including asthma, anxiolytic and arousal disorders, and rheumatoid arthritis. This chapter will summarize studies on NPSR1, including its molecular structure, tissue distribution, physiology, pharmacology, and pathophysiology.
Collapse
Affiliation(s)
- Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.
| |
Collapse
|
11
|
Fasting and refeeding induce differential changes in hypothalamic mRNA abundance of appetite-associated factors in 7 day-old Japanese quail, Coturnix japonica. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:60-67. [DOI: 10.1016/j.cbpa.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
12
|
Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018; 9:507. [PMID: 30283399 PMCID: PMC6156427 DOI: 10.3389/fendo.2018.00507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.
Collapse
|
13
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
14
|
Clark SD, Kenakin TP, Gertz S, Hassler C, Gay EA, Langston TL, Reinscheid RK, Runyon SP. Identification of the first biased NPS receptor agonist that retains anxiolytic and memory promoting effects with reduced levels of locomotor stimulation. Neuropharmacology 2017; 118:69-78. [PMID: 28267583 DOI: 10.1016/j.neuropharm.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 01/26/2023]
Abstract
The neuropeptide S system has been implicated in a number of centrally mediated behaviors including memory consolidation, anxiolysis, and increased locomotor activity. Characterization of these behaviors has been primarily accomplished using the endogenous 20AA peptide (NPS) that demonstrates relatively equal potency for the calcium mobilization and cAMP second messenger pathways at human and rodent NPS receptors. This study is the first to demonstrate that truncations of the NPS peptide provides small fragments that retain significant potency only at one of two single polymorphism variants known to alter NPSR function (NPSR-107I), yet demonstrate a strong level of bias for the calcium mobilization pathway over the cAMP pathway. We have also determined that the length of the truncated peptide correlates with the degree of bias for the calcium mobilization pathway. A modified tetrapeptide analog (4) has greatly attenuated hyperlocomotor stimulation in vivo but retains activity in assays that correlate with memory consolidation and anxiolytic activity. Analog 4 also has a bias for the calcium mobilization pathway, at the human and mouse receptor. This suggests that future agonist ligands for the NPS receptor having a bias for calcium mobilization over cAMP production will function as non-stimulatory anxiolytics that augment memory formation.
Collapse
Affiliation(s)
- Stewart D Clark
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Terrence P Kenakin
- University of North Carolina, Department of Pharmacology, Chapel Hill, NC 27599, United States
| | - Steven Gertz
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Carla Hassler
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Elaine A Gay
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States; Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Scott P Runyon
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States.
| |
Collapse
|
15
|
Tachibana T, Tsutsui K. Neuropeptide Control of Feeding Behavior in Birds and Its Difference with Mammals. Front Neurosci 2016; 10:485. [PMID: 27853416 PMCID: PMC5089991 DOI: 10.3389/fnins.2016.00485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022] Open
Abstract
Feeding is an essential behavior for animals to sustain their lives. Over the past several decades, many neuropeptides that regulate feeding behavior have been identified in vertebrates. These neuropeptides are called “feeding regulatory neuropeptides.” There have been numerous studies on the role of feeding regulatory neuropeptides in vertebrates including birds. Some feeding regulatory neuropeptides show different effects on feeding behavior between birds and other vertebrates, particularly mammals. The difference is marked with orexigenic neuropeptides. For example, melanin-concentrating hormone, orexin, and motilin, which are regarded as orexigenic neuropeptides in mammals, have no effect on feeding behavior in birds. Furthermore, ghrelin and growth hormone-releasing hormone, which are also known as orexigenic neuropeptides in mammals, suppress feeding behavior in birds. Thus, it is likely that the feeding regulatory mechanism has changed during the evolution of vertebrates. This review summarizes the recent knowledge of peptidergic feeding regulatory factors in birds and discusses the difference in their action between birds and other vertebrates.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University Matsuyama, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
16
|
Chen H, Huang H, Chen X, Deng S, Zhu C, Huang H, Li G. Structural and functional characterization of neuromedin S in the teleost fish, zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2016; 191:76-83. [DOI: 10.1016/j.cbpb.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
|
17
|
Hassler C, Zhang Y, Gilmour B, Graf T, Fennell T, Snyder R, Deschamps J, Reinscheid RK, Garau C, Runyon SP. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation. ACS Chem Neurosci 2014; 5:731-44. [PMID: 24964000 PMCID: PMC4140596 DOI: 10.1021/cn500113c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.
Collapse
Affiliation(s)
- Carla Hassler
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yanan Zhang
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Brian Gilmour
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Tyler Graf
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Timothy Fennell
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Jeffrey
R. Deschamps
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Rainer K. Reinscheid
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Celia Garau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Scott P. Runyon
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
18
|
Yao Y, Su J, Zhang F, Lei Z. Effects of central and peripheral administration of neuropeptide s on the level of serum proinflammatory cytokines in pigs. Neuroimmunomodulation 2014; 21:45-51. [PMID: 24216974 DOI: 10.1159/000355977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The recently discovered neuropeptide S (NPS) and its cognate receptor represent a novel system of neuromodulation and are involved in many physiological and pathological processes. NPS has been implicated in the regulation of proinflammatory cytokine secretion in the pulmonary alveolar macrophages (PAMs) of pigs in vitro. In this study, we tested the hypothesis whether either central or peripheral injection of NPS would stimulate the secretion of the proinflammatory cytokines in pigs. METHODS In experiment 1, pigs were fitted with an intracerebroventricular cannula and indwelling jugular catheters, and were then randomly assigned to receive 10 or 30 nmol NPS in artificial cerebrospinal fluid. In experiment 2, pigs were fitted with indwelling jugular catheters, and randomly received 15 or 30 nmol NPS in saline. Serial blood samples were collected every 10 min for 1 h before and for 2 h after injections, and serum concentrations of IL-1β, IL-6 and TNF-α were determined. RESULTS Serum concentrations of these cytokines were increased in pigs that received central and peripheral injection of NPS, and the elevated secretion of these cytokines was in a time- and concentration-dependent manner. CONCLUSION The level of serum proinflammatory cytokines could be activated by both central and peripheral administration of NPS in a dose- and time-dependent manner in the pig. The present data support the concept that NPS may be considered as a potent modulator for the immune system and may play an important role in the inflammation and immune system of pigs.
Collapse
Affiliation(s)
- Yuan Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing,P.R. China
| | | | | | | |
Collapse
|
19
|
Gardella E, Romei C, Cavallero A, Trapella C, Fedele E, Raiteri L. Neuropeptide S inhibits release of 5-HT and glycine in mouse amygdala and frontal/prefrontal cortex through activation of the neuropeptide S receptor. Neurochem Int 2013; 62:360-6. [DOI: 10.1016/j.neuint.2013.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/27/2023]
|
20
|
González CR, Martínez de Morentin PB, Martínez-Sánchez N, Gómez-Díaz C, Lage R, Varela L, Diéguez C, Nogueiras R, Castaño JP, López M. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Res 2012; 1450:40-8. [PMID: 22425186 DOI: 10.1016/j.brainres.2012.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities.
Collapse
Affiliation(s)
- Carmen R González
- Department of Physiology, School of Medicine-CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Petrella C, Agostini S, Guerrini R, Calò G, Giaquinto A, De Nuccio C, Improta G, Broccardo M. Neuropeptide S inhibits stress-stimulated faecal output in the rat. Pharmacol Res 2011; 64:471-7. [DOI: 10.1016/j.phrs.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/16/2023]
|
22
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
23
|
Meis S, Stork O, Munsch T. Neuropeptide S-mediated facilitation of synaptic transmission enforces subthreshold theta oscillations within the lateral amygdala. PLoS One 2011; 6:e18020. [PMID: 21437203 PMCID: PMC3060922 DOI: 10.1371/journal.pone.0018020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/21/2011] [Indexed: 12/03/2022] Open
Abstract
The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie,
Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioral Brain Sciences,
Magdeburg, Germany
| | - Oliver Stork
- Center for Behavioral Brain Sciences,
Magdeburg, Germany
- Abteilung für Genetik & Molekulare
Neurobiologie, Institut für Biologie, Otto-von-Guericke-Universität,
Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie,
Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioral Brain Sciences,
Magdeburg, Germany
| |
Collapse
|
24
|
Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev 2011; 30:751-77. [PMID: 19824051 DOI: 10.1002/med.20180] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptide S (NPS) is the last neuropeptide identified via reverse pharmacology techniques. NPS selectively binds and activates a previous orphan GPCR, now named NPSR, producing intracellular calcium mobilization and increases in cAMP levels. Biological functions modulated by the NPS/NPSR system include anxiety, arousal, locomotion, food intake, memory, and drug addiction. The primary sequence of NPS (in humans SFRNGVGTGMKKTSFQRAKS) is highly conserved among vertebrates especially at the N-terminus. Ala- and D-scan studies demonstrated that this part of the molecule is crucial for biological activity. Focused structure-activity studies performed on Phe(2), Arg(3), and Asn(4) confirmed this indication and revealed the chemical requirements of these positions for NPSR binding and activation. The sequence Gly(5)-Val(6)-Gly(7) seems to be important for shaping the bioactive conformation of the peptide. Structure-activity studies on Gly(5) enabled identification of the first generation of peptidergic NPSR pure antagonists including [D-Cys(tBu)(5)]NPS and [D-Val(5)]NPS whose antagonist properties were confirmed in vivo. Finally, the pharmacological features of substituted bicyclic piperazine molecules (e.g. SHA 68 (3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide) were recently published making available the first generation of nonpeptide NPSR antagonists. The use in future studies of NPSR antagonists will be of paramount importance for understanding which biological functions are controlled by the NPS/NPSR system and for defining the therapeutic potential of selective NPSR ligands.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
25
|
Yao Y, Su J, Yang G, Zhang G, Lei Z, Zhang F, Li X, Kou R, Liu Y, Liu J. Effects of neuropeptide S on the proliferation of splenic lymphocytes, phagocytosis, and proinflammatory cytokine production of pulmonary alveolar macrophages in the pig. Peptides 2011; 32:118-24. [PMID: 20933561 DOI: 10.1016/j.peptides.2010.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 11/23/2022]
Abstract
Neuropeptide S (NPS), a newly identified neuropeptide, is involved in many physiological and pathological activities through the NPS receptor (NPSR). Recently, the NPS and NPSR have been detected in peripheral systems of pigs including immune tissues, suggesting that NPS may play an important role in the regulation of immune function. The aim of this study was to demonstrate the presence and function of NPS and NPSR in splenic lymphocytes (SPLs) and pulmonary alveolar macrophages (PAMs) of pigs. By RT-PCR, the expression of NPS and NPSR mRNA was detected in the SPLs and PAMs. NPS immunoreactivity was observed in the membrane and cytoplasm of both SPLs and PAMs. We found that NPS could stimulate the proliferation of SPLs, when NPS was added at concentrations of 0.01, 0.1, 1, 10, 100 and 1000 nM alone or in combination with PHA/LPS in vitro. In macrophages from bronchoalveolar lavage (BAL) fluid of pigs, various doses of NPS (0.01, 0.1, 1, 10, 100 and 1000 nM) up-regulated the phagocytosis of PAMs in comparison to controls. In PAMs, NPS could induce the production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. Taken together, all data suggest that NPS is capable of inducing phagocytosis of non-opsonized E. coli. NPS might act as potent neuroimmunomodulatory factors and affects the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cifani C, Micioni Di Bonaventura MV, Cannella N, Fedeli A, Guerrini R, Calo G, Ciccocioppo R, Ubaldi M. Effect of neuropeptide S receptor antagonists and partial agonists on palatable food consumption in the rat. Peptides 2011; 32:44-50. [PMID: 20971145 DOI: 10.1016/j.peptides.2010.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand for the previously orphan G-protein-coupled-receptor, now termed NPS receptor (NPSR). NPS has both anxiolytic and pro-arousal properties and decreases food intake. In this work we use a rat model of palatable food intake to test in vivo different analogs of human NPS developed in our laboratories and characterized in previous in vitro experiments as partial agonists ([Ala(3)]NPS and [Aib(5)]NPS), or antagonists ([D-Cys((t)Bu)(5)]NPS and [(t)Bu-D-Gly(5)]NPS). Our results confirmed that intracerebroventricular (ICV) injection of NPS (1 nmol) decreases standard chow intake in food restricted rats as well as in freely feeding animals fed with standard or palatable food diets. [Aib(5)]NPS (30 and 60 nmol), like NPS, reduced palatable food intake, thus confirming in vivo its ability to activate NPSR. [Ala(3)]NPS (60 nmol) did not affect palatable food intake per se but blocked the anorectic effect of NPS, thus suggesting its ability to function as an antagonist in this model. Finally, [D-Cys((t)Bu)(5)]NPS (20-60 nmol) and [(t)Bu-D-Gly(5)]NPS (10-30 nmol), described in previous in vitro studies as pure NPSR antagonists, did not affect palatable food intake when given alone, but fully blocked the anorectic effect of NPS. These results provide an important characterization of the pharmacological properties of these NPS analogs in vivo. Of particular relevance are the data showing that [D-Cys((t)Bu)(5)]NPS and [(t)Bu-D-Gly(5)]NPS behave as pure antagonists at NPSR regulating food intake, indicating that these molecules are suitable tools for further investigation of the physiopharmacology of the NPS/NPSR system.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Peng YL, Han RW, Chang M, Zhang L, Zhang RS, Li W, Han YF, Wang R. Central Neuropeptide S inhibits food intake in mice through activation of Neuropeptide S receptor. Peptides 2010; 31:2259-63. [PMID: 20800637 DOI: 10.1016/j.peptides.2010.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), can regulate a variety of biological functions, including arousal, anxiety, locomotion, memory and drug abuse. Previous studies have shown that central NPS inhibited food intake in rats and chicks. In the present study, we investigated the role of central NPS on food intake in fasted mice, and detected the underlying mechanism(s) by using NPSR antagonist [D-Val(5)]NPS and Corticotropin-Releasing Factor 1 (CRF₁) Receptor antagonist NBI-27914. The present results indicated that intracerebroventricular injection of NPS (0.001-0.1 nmol) dose-dependently inhibited food intake in fasted mice. The anorectic effect of NPS reached the maximum at the dose of 0.1 nmol, which could be antagonized by co-injection of 10 nmol NPSR antagonist [D-Val(5)]NPS. Furthermore, CRF₁ receptor antagonist NBI-27914 at the dose of 2 μg antagonized the hyperlocomotor action of NPS, but did not affect the role of NPS on food intake. In conclusion, our results demonstrated central NPS inhibited food intake in fasted mice, mediated by its cognate NPSR, but not by CRF₁ receptor.
Collapse
Affiliation(s)
- Ya-Li Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Institute of Biochemistry and Molecular Biology, School of Life Sciences, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tachibana T, Matsuda K, Khan MSI, Ueda H, Cline MA. Feeding and drinking response following central administration of neuromedin S in chicks. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:63-7. [PMID: 20451649 DOI: 10.1016/j.cbpa.2010.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Neuromedin S (NMS) is recognized as an anorexigenic peptide in the brain of mammals. In chicks (Gallus gallus), however, the effect of NMS has not been investigated. Therefore, the purpose of the present study was to investigate whether intracerebroventricular (ICV) injection of NMS affected feeding and drinking behavior in chicks. The injection of NMS (0.01-1 nmol) significantly decreased food intake under both ad libitum and food deprivation-induced feeding conditions. However, NMS did not affect water deprivation-induced drinking behavior. ICV injection of NMS stimulated voluntary locomotion and wing-flapping behavior. In addition, we found that those effects of NMS might be related to the hypothalamus-pituitary-adrenal axis because ICV injection of NMS stimulated corticosterone release. The present study suggests that central NMS functions an anorexigenic factor in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | | | | | | | | |
Collapse
|
29
|
Ruzza C, Rizzi A, Trapella C, Pela' M, Camarda V, Ruggieri V, Filaferro M, Cifani C, Reinscheid RK, Vitale G, Ciccocioppo R, Salvadori S, Guerrini R, Calo' G. Further studies on the pharmacological profile of the neuropeptide S receptor antagonist SHA 68. Peptides 2010; 31:915-25. [PMID: 20172007 DOI: 10.1016/j.peptides.2010.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Previous studies demonstrated that the non-peptide molecule SHA 68 acts as a selective NPSR antagonist. In the present study the pharmacological profile of SHA 68 has been further investigated in vitro and in vivo. In cells expressing the mouse NPSR SHA 68 was inactive per se up to 10microM while it antagonized NPS-stimulated calcium mobilization in a competitive manner showing a pA(2) value of 8.06. In the 10-50mg/kg range of doses, SHA 68 counteracted the stimulant effects elicited by NPS, but not those of caffeine, in mouse locomotor activity experiments. In the mouse righting reflex assay SHA 68 fully prevented the arousal-promoting action of the peptide. The anxiolytic-like effects of NPS were slightly reduced by SHA 68 in the mouse open field, fully prevented in the rat elevated plus maze and partially antagonized in the rat defensive burying paradigm. Finally, SHA 68 was found poorly active in antagonizing the NPS inhibitory effect on palatable food intake in rats. In all assays SHA 68 did not produce any effect per se. In conclusion, the present study demonstrated that SHA 68 behaves as a selective NPSR antagonist that can be used to characterize the in vivo actions of NPS. However the usefulness of this research tool is limited by its poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Chiara Ruzza
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cline MA, Layne JE, Calchary WA, Sheehy RR, Tachibana T, Furuse M. LPLRFamide causes anorexigenic effects in broiler chicks and Bobwhite quail. Gen Comp Endocrinol 2010; 165:315-20. [PMID: 19646446 DOI: 10.1016/j.ygcen.2009.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/18/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
Although LPLRFamide was the first member of the RFamide family to be isolated from a vertebrate species, its effects on hunger and satiety-related processes are poorly documented. Thus, we intracerebroventricularly administered LPLRFamide (3.0-15.0 nmol) to both Cobb-500 (a broiler type of Gallus gallus) and Bobwhite quail (Colinus virginianus) chicks and measured their food intake. The threshold of anorexigenic response was 7.0 nmol in Cobb-500 chicks and the effect had diminished by 30 min post-injection. In Bobwhite quail all doses of LPLRFamide tested caused anorexia that remained throughout the 60 min observation period. A comprehensive behavior analysis was conducted and Cobb-500 chicks had increased food pecks early in the observation period and spent a greater amount of time in deep rest. Although food pecks were increased pecking efficiency was decreased. In Bobwhite quail, feeding pecks and the number of jumps were reduced after LPLRFamide treatment. We judged that these behaviors in both species were likely not competitive with ingestion and thus did not secondarily contribute to anorexia. These results demonstrate that LPLRFamide is associated with satiety-related processes in Cobb-500 chicks and Bobwhite quail, while threshold of responses are different.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology, P.O. Box 6931, Radford University, Radford, VA 24142, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Boeck CR, Martinello C, de Castro AA, Moretti M, dos Santos Casagrande T, Guerrini R, Calo’ G, Gavioli EC. Blockade of adenosine A2A receptor counteracts neuropeptide-S-induced hyperlocomotion in mice. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:153-60. [DOI: 10.1007/s00210-009-0480-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/23/2009] [Indexed: 12/18/2022]
|
32
|
Yao Y, Lin X, Su J, Yang G, Hou Y, Lei Z. Cloning and distribution of neuropeptide S and its receptor in the pig. Neuropeptides 2009; 43:465-81. [PMID: 19854507 DOI: 10.1016/j.npep.2009.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/15/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptide S (NPS) precursor gene is present in most vertebrates. However, the genes of NPS and its receptor (NPSR), and their functions in the pig are currently not well understood. In order to clarify their physiological functions, it is essential to characterize in detail the distribution of NPS and NPSR. In this report, the cDNAs of NPS and NPSR were cloned and sequenced. Homology and phylogenetic analysis of NPS gene sequences were performed. The expression of NPS and NPSR mRNA in the pig was systemically investigated using semiquantitative reverse transcription polymerase chain reaction (RT-PCR), while the distribution of NPS was determined by immunohistochemistry. Our results demonstrated that the gene and predicted amino acid sequences of both NPS and NPSR were highly conserved. Phylogenetic analysis showed that NPS coding sequences from related species display high degrees of homology. NPS and NPSR mRNAs were widely expressed in various tissues of the pig. NPS mRNA was highly expressed in CNS, while NPSR mRNA was widely expressed in many tissues, with high expression in the hypophysis, endocrine tissues and glands. NPS protein also exhibited the different distribution in various organs. In the pig brain, NPS immunoreactive cells were mainly found in the diencephalon, pons and hypophysis, while immunoreactive fibres were widely distributed in the hypothalamus and olfactory bulb. In the peripheral organs, NPS immunoreactive cells were observed in the respiratory tract, alimentary tract, endocrine organs, genitourinary tract, lymphatic organs, muscle tissue, skin and skin appendages. By showing gene sequences and distribution of NPS and NPSR, these results suggest that NPS and NPSR in the pig might play important role in modulating a variety of physiological functions as in human and other animals. This research provided molecular and morphological data for further study of physiological function of NPS-NPSR system.
Collapse
Affiliation(s)
- Yuan Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Castro AA, Casagrande TS, Moretti M, Constantino L, Petronilho F, Guerra GCB, Calo' G, Guerrini R, Dal-Pizzol F, Quevedo J, Gavioli EC. Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice. Peptides 2009; 30:1914-20. [PMID: 19616051 DOI: 10.1016/j.peptides.2009.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 01/24/2023]
Abstract
Neuropeptide S (NPS) and its receptor NPSR comprise a recently deorphaned G-protein-coupled receptor system. There is a body of evidence suggesting the involvement of NPS in wakefulness, anxiety, locomotor activity and oxidative stress damage. Considering that mood stabilizers block the stimulatory effect of psychostimulants in rodents, the present study aimed to investigate the effects of the pretreatment with lithium and valproate on the hyperlocomotion evoked by NPS. Another relevant action induced by lithium and valproate is the neuroprotection against oxidative stress. Thus, aiming to get further information about the mechanisms of action of NPS, herein we evaluated the effects of NPS, lithium and valproate, and the combination of them on oxidative stress damage. Behavioral studies revealed that the pretreatment with lithium (100 mg/kg, i.p.) and valproate (200 mg/kg, i.p.) prevented hyperlocomotion evoked by NPS 0.1 nmol. Importantly, the dose of valproate used in this study reduced mouse locomotion, although it did not reach the statistical significance. Biochemical analyses showed that lithium attenuated thiobarbituric reactive species (TBARS) formation in the striatum, cerebellum and hippocampus. NPS per se reduced TBARS levels only in the hippocampus. Valproate did not significantly affect TBARS levels in the brain. However, the combination of mood stabilizers and NPS blocked, instead of potentiate, the neuroprotective effects of each one. No relevant alterations were observed in carbonylated proteins after all treatments. Altogether, the present findings suggested that mainly the mood stabilizer lithium evoked antagonistic effects on the mediation of hyperlocomotion and protection against lipid peroxidation induced by NPS.
Collapse
Affiliation(s)
- A A Castro
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fedeli A, Braconi S, Economidou D, Cannella N, Kallupi M, Guerrini R, Calò G, Cifani C, Massi M, Ciccocioppo R. The paraventricular nucleus of the hypothalamus is a neuroanatomical substrate for the inhibition of palatable food intake by neuropeptide S. Eur J Neurosci 2009; 30:1594-602. [DOI: 10.1111/j.1460-9568.2009.06948.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Guerrini R, Camarda V, Trapella C, Caló G, Rizzi A, Ruzza C, Fiorini S, Marzola E, Reinscheid RK, Regoli D, Salvadori S. Further studies at neuropeptide s position 5: discovery of novel neuropeptide S receptor antagonists. J Med Chem 2009; 52:4068-71. [PMID: 19473027 DOI: 10.1021/jm900604g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide S (NPS) regulates various biological functions by activating the NPS receptor (NPSR). Previous studies demonstrated that the substitution of Gly(5) with d-amino acids generates NPSR antagonists. Eleven [d-Xaa(5)]NPS derivatives were synthesized and pharmacologically tested measuring [Ca(2+)](i) in HEK293(mNPSR) cells. The results confirmed that the [d-Xaa(5)] substitution promotes antagonist activity with potency inversely related to the side chain size and allowed identification of the novel potent NPSR peptide antagonist [(t)Bu-d-Gly(5)]NPS.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center and Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, National Institute of Neuroscience, Univ. of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duangdao DM, Clark SD, Okamura N, Reinscheid RK. Behavioral phenotyping of neuropeptide S receptor knockout mice. Behav Brain Res 2009; 205:1-9. [PMID: 19646487 DOI: 10.1016/j.bbr.2009.07.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 02/07/2023]
Abstract
Central administration of neuropeptide S (NPS) in rodents induces arousal and prolonged wakefulness as well as anxiolytic-like effects. NPS has also been implicated in modulation of cognitive functions and energy homeostasis. Here we present a comprehensive phenotypical analysis of mice carrying a targeted mutation in the NPS receptor (NPSR) gene. NPSR knockout mice were found to exhibit reduced exploratory activity when challenged with a novel environment, which might indicate attenuated arousal. We also observed attenuated late peak wheel running activity in NPSR knockout mice, representing reduced activity during the subjective evening. These mice also displayed increased anxiety-like behaviors when compared to their wildtype littermates, although analysis of anxiety behaviors was limited by genetic background influences. Unexpectedly, NPSR knockout mice showed enhanced motor performance skills. No phenotypical differences were detected in the forced-swim test, startle habituation and pre-pulse inhibition paradigms. Together, these data indicate that the endogenous NPS system might be involved in setting or maintaining behavioral arousal thresholds and that the NPS system might have other yet undiscovered physiological functions.
Collapse
Affiliation(s)
- Dee M Duangdao
- Department of Pharmaceutical Sciences, University of California Irvine, 360 Med Surge 2, Irvine, CA 92697-4625, USA.
| | | | | | | |
Collapse
|
37
|
Han RW, Chang M, Peng YL, Qiao LY, Yin XQ, Li W, Wang R. Central Neuropeptide S inhibits distal colonic transit through activation of central Neuropeptide S receptor in mice. Peptides 2009; 30:1313-7. [PMID: 19540430 DOI: 10.1016/j.peptides.2009.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), regulates many biological functions, including arousal, anxiety, locomotion and food intake. NPSR mRNA is expressed in several regions of central autonomic network through which the brain controls visceromotor and other responses essential for survival. However, the role of NPS/NPSR system in regulating gastrointestinal motor is still unknown. Here, we studied the effects of NPS on distal colonic transit in mice. Intracerebroventricular (i.c.v.) injection of NPS (1-1000 pmol) inhibited fecal pellet output and bead expulsion in a dose-dependent manner. However, intraperitoneal injection of NPS (1000 and 10000 pmol) did not affect fecal pellet output and bead expulsion. In vitro, NPS (0.1-10 microM) also did not modulate distal colonic contractions. Furthermore, i.c.v. co-administration of [D-Val(5)]NPS, a pure and potent NPSR antagonist, dose-dependently antagonized the inhibitory effects of NPS on fecal pellet output and bead expulsion. In conclusion, our results firstly indicate that central NPS inhibits distal colonic transit through the activation of central NPSR, which implicate that NPS/NPSR system might be a new target to treat function disorder of distal colon.
Collapse
Affiliation(s)
- Ren-Wen Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-d-aspartate receptor antagonist in mice. Neurosci Lett 2009; 455:74-7. [DOI: 10.1016/j.neulet.2009.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 01/23/2023]
|
39
|
Raiteri L, Luccini E, Romei C, Salvadori S, Calò G. Neuropeptide S selectively inhibits the release of 5-HT and noradrenaline from mouse frontal cortex nerve endings. Br J Pharmacol 2009; 157:474-81. [PMID: 19371348 DOI: 10.1111/j.1476-5381.2009.00163.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide S (NPS) is a recently identified neurotransmitter/neuromodulator able to increase arousal and wakefulness while decreasing anxiety-like behaviour. As several classical transmitters play a role in arousal and anxiety, we here investigated the possible presynaptic regulation of transmitter release by NPS. EXPERIMENTAL APPROACH Synaptosomes purified from mouse frontal cortex were prelabelled with [(3)H]5-hydroxytryptamine (5-HT), noradrenaline, dopamine, choline, D-aspartate or GABA and depolarized in superfusion with 12-15 mmol.L(-1) KCl to evoke [(3)H]neurotransmitter exocytosis. NPS was added at different concentrations (0.001 to 100 nmol.L(-1)). KEY RESULTS NPS behaved as an extremely potent inhibitor of the evoked overflow of [(3)H]5-HT and [(3)H]noradrenaline exhibiting EC50 values in the low picomolar range. The inhibitory action of NPS on [(3)H]5-HT release was mimicked by [Ala(2)]NPS that was, however, about 100-fold less potent than the natural peptide. NPS (up to 100 nmol.L(-1)) was unable to affect the depolarization-evoked overflow of [(3)H]D-aspartate and [(3)H]GABA. The neuropeptide only weakly reduced the overflow of [(3)H]dopamine and [(3)H]ACh when added at relatively high concentrations. CONCLUSIONS AND IMPLICATIONS NPS, at low picomolar concentrations, can selectively inhibit the evoked release of 5-HT and noradrenaline in the frontal cortex by acting directly on 5-hydroxytryptaminergic and noradrenergic nerve terminals. These direct effects may explain only in part the unique behavioural activities of NPS, while an indirect involvement of other transmitters, especially of glutamate, must be considered.
Collapse
Affiliation(s)
- L Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, Genova 16148, Italy.
| | | | | | | | | |
Collapse
|
40
|
Li W, Chang M, Peng YL, Gao YH, Zhang JN, Han RW, Wang R. Neuropeptide S produces antinociceptive effects at the supraspinal level in mice. ACTA ACUST UNITED AC 2009; 156:90-5. [PMID: 19345242 DOI: 10.1016/j.regpep.2009.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/06/2009] [Accepted: 03/25/2009] [Indexed: 11/25/2022]
Abstract
Neuropeptide S (NPS), a recently identified bioactive peptide through reverse pharmacology approach, was reported to regulate arousal, anxiety, locomotor activity, feeding behaviors and drug reward. NPS receptor (NPSR) mRNA was found in the area related to the descending control system of pain, such as the periaqueductal gray (PAG), raphe nuclei, and lateral parabrachial nucleus (PBN), suggesting a possible role of the NPS-NPSR system in the regulation of pain transmission. In the present study, we evaluated the effects of NPS in pain modulation at the supraspinal level for the first time, using the tail withdrawal test and hot-plate test in mice. NPS (mouse, 0.01-1 nmol) injected intracerebroventricularly (i.c.v.) caused a significant increase of tail withdrawal latency and paw-licking/jumping latency in the tail withdrawal test and the hot-plate test, respectively. Antinociceptive effect elicited by NPS (0.1 nmol, i.c.v.) was not affected by naloxone (i.c.v., 10 nmol co-injection or i.p., 10 mg/kg, 10 min prior to NPS) in both tail withdrawal test and hot-plate test. However, at the doses, naloxone significantly inhibited the antinociceptive effect induced by morphine (i.c.v., 3 nmol). NPS (0.1 nmol, i.c.v.)-induced antinociception was inhibited by co-injection with 10 nmol, but not 3 nmol [D-Cys(tBu)(5)]NPS, a peptidergic antagonist identified more recently, while [D-Cys(tBu)(5)]NPS (3 and 10 nmol) alone induced neither hyperalgesia nor antinociception. These results revealed that NPS could produce antinociception through NPS receptor, but not opioid receptor, and NPS-NPSR system could be a potential target for developing new analgesic drugs.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Castro A, Moretti M, Casagrande T, Martinello C, Petronilho F, Steckert A, Guerrini R, Calo' G, Dal Pizzol F, Quevedo J, Gavioli E. Neuropeptide S produces hyperlocomotion and prevents oxidative stress damage in the mouse brain: A comparative study with amphetamine and diazepam. Pharmacol Biochem Behav 2009; 91:636-42. [DOI: 10.1016/j.pbb.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/24/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
|
42
|
Li W, Gao YH, Chang M, Peng YL, Yao J, Han RW, Wang R. Neuropeptide S inhibits the acquisition and the expression of conditioned place preference to morphine in mice. Peptides 2009; 30:234-40. [PMID: 18992779 DOI: 10.1016/j.peptides.2008.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/25/2022]
Abstract
Neuropeptide S (NPS), a recently identified bioactive peptide, was reported to regulate arousal, anxiety, motoring and feeding behaviors. NPS precursor and NPS receptor mRNA were found in the amygdala, the ventral tegmental area (VTA) and the substantia nigra, the area thought to modulate rewarding properties of drugs. In the present study, we examined the influence of NPS on the rewarding action of morphine, using the unbiased conditioned place preference (CPP) paradigm. Morphine (1, 3 and 6 nmol, i.c.v.) induced a significant place preference. For testing the effect of NPS on the acquisition of morphine CPP, mice were given the combination of NPS and morphine on the conditioning days, and without drug treatment on the followed test day. To study the effect of NPS on the expression of morphine CPP, mice received the treatment of saline/morphine on the conditioning days, and NPS on the test day, 15 min before the placement in the CPP apparatus. Our results showed that NPS (0.3-10 nmol) alone neither induced place preference nor aversion, however, NPS (1 and 3 nmol) blocked the acquisition of CPP induced by 3 nmol morphine, and acquisition of 6 nmol morphine-induced CPP was also reduced by NPS (6 and 10 nmol). Moreover, the expression of CPP induced by 6 nmol morphine was also inhibited by NPS (0.1, 1 and 10 nmol). These results revealed the involvement of NPS in rewarding activities of morphine, and demonstrated the interaction between NPS system and opioid system for the first time.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Applied Organic Chemistry, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Camarda V, Trapella C, Calo' G, Guerrini R, Rizzi A, Ruzza C, Fiorini S, Marzola E, Reinscheid RK, Regoli D, Salvadori S. Structure-activity study at positions 3 and 4 of human neuropeptide S. Bioorg Med Chem 2008; 16:8841-5. [PMID: 18793857 DOI: 10.1016/j.bmc.2008.08.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/21/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Neuropeptide S (NPS) has been identified as the endogenous ligand of a previously orphan receptor now named NPSR. Previous studies demonstrated that the N-terminal sequence Phe(2)-Arg(3)-Asn(4) of the peptide is crucial for biological activity. Here, we report on a focused structure-activity study of Arg(3) and Asn(4) that have been replaced with a series of coded and non-coded amino acids. Thirty-eight human NPS analogues were synthesized and pharmacologically tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPSR. The results of this study demonstrated the following NPS position 3 structure-activity features: (i) the guanidine moiety and its basic character are not crucial requirements, (ii) an aliphatic amino acid with a linear three carbon atom long side chain is sufficient to bind and fully activate NPSR, (iii) the receptor pocket allocating the position 3 side chain can accommodate slightly larger side chains at least to a certain degree [hArg, Arg(NO2) or Arg(Me)2 but not Arg(Tos)]. Position 4 seems to be more sensitive to amino acids replacement compared to position 3; in fact, all the amino acid replacements investigated produced either an important decrease of biological activity or generated inactive derivatives suggesting a pivotal role of the Asn(4) side chain for NPS bioactivity.
Collapse
Affiliation(s)
- Valeria Camarda
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cline MA, Bowden CN, Calchary WA, Layne JE. Short-term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. J Neuroendocrinol 2008; 20:971-7. [PMID: 18540998 DOI: 10.1111/j.1365-2826.2008.01749.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to measure food and water intake, changes in hypothalamic chemistry, and other behaviour modifications after central injection of neuropeptide (NP) VF in broiler type chicks. In Experiment 1, chicks responded to central NPVF with a reduction in food intake for up to 90 min post injection. Water intake was unaffected. In Experiment 2, NPVF exerted a less potent and shorter duration of attenuated food intake than did the structurally related NPFF. In Experiment 3, 16.0 nmol NPVF reversed the prolactin-releasing peptide induced orexigenic effect. In Experiment 4, central NPVF treatment was associated with decreased c-Fos immunoreactivity in the lateral hypothalamus, whereas c-Fos immunoreactivity in the dorsomedial nucleus, infundibular nucleus (homologue to the mammalian arcuate nucleus) and ventromedial nucleus was increased. In Experiment 5, behaviours unrelated to ingestion including sit, stand, deep rest and locomotion were affected by central NPVF injection. Some of these behaviours are incompatible with ingestion and may contribute to hypothalamic associated perception of satiety after central NPVF. In conclusion, NVPF is a short-term regulator of appetite and its effects are associated with hypothalamic and behaviour changes in chicks.
Collapse
Affiliation(s)
- M A Cline
- Department of Biology, Radford University, Radford, VA 24142, USA.
| | | | | | | |
Collapse
|
45
|
Cline MA, Prall BC, Smith ML, Calchary WA, Siegel PB. Differential appetite-related responses to central neuropeptide S in lines of chickens divergently selected for low or high body weight. J Neuroendocrinol 2008; 20:904-8. [PMID: 18445129 DOI: 10.1111/j.1365-2826.2008.01742.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anorexigenic 20 amino acid neuropeptide S (NPS) has not been studied in an animal model of hypo- or hyperphagia. The present study aimed to elucidate whether central NPS appetite-related effects are different in lines of chickens that had undergone long-term divergent selection for low (LWS) or high (HWS) body weight and that were hypo- and hyperphagic, respectively. It took a longer time for food intake to be reduced in LWS than HWS chicks administered the lowest dose of NPS tested (0.14 nmol) and, at the highest dose tested (0.56 nmol), they had a greater reduction in food intake than did HWS chicks. HWS chicks responded with a similar magnitude of food intake reduction that was independent of NPS dose. Although water intake was reduced concurrently with food intake after central NPS in both lines, blood glucose concentrations were not affected. Hypothalamic signalling was different between the lines. Although both lines respond to central NPS with decreased c-Fos immunoreactivity in the lateral hypothalamus, the periventricular nucleus had increased c-Fos immunoreactivity in LWS but not HWS chicks. After central NPS treatment, there was increased c-Fos immunoreactivity in the paraventricular nucleus in HWS but not LWS chicks. These data support the notion of differences in the central NPS system between the LWS and HWS lines and infer that central NPS may differentially affect appetite-related processes in other species that contain hypo- and hyperphagic individuals.
Collapse
Affiliation(s)
- M A Cline
- Department of Biology, Radford University, Radford, VA, USA.
| | | | | | | | | |
Collapse
|
46
|
Cline MA, Fouse DN, Prall BC. Central and peripheral alytesin cause short-term anorexigenic effects in neonatal chicks. Neuropeptides 2008; 42:283-91. [PMID: 18384875 DOI: 10.1016/j.npep.2008.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/10/2008] [Accepted: 02/12/2008] [Indexed: 12/20/2022]
Abstract
We studied the effects of alytesin, a natural analogue of bombesin, on appetite-related responses and behaviors in neonatal chicks. Chicks responded to both intracerebroventricular (ICV) and peripheral injections of alytesin with short-term reduced feed intake. ICV alytesin caused reduced short-term water intake when feed was present, but we determined this effect was secondary to feed intake since an effect on water intake was not detected in feed-restricted alytesin-treated chicks. The anorexigenic effect of both ICV and peripheral alytesin may be mediated at the hypothalamus, since all hypothalamic nuclei studied; regio lateralis hypothalami, nucleus dorsomedialis hypothalami, nucleus paraventricularis magnocellularis, nucleus perventricularis hypothalami, nucleus infundibuli hypothalami and the nucleus ventromedialis hypothalami, were activated as evident by increased c-Fos immunoreactivity. Central alytesin did not cause increased behaviors that were unrelated to ingestion and did not cause anxiety-related behavior patterns. Additionally, central alytesin did not affect pecking efficacy. We conclude that both ICV and peripheral alytesin injections induce anorexigenic effects in chicks, and the hypothalamus is involved. While the anorexigenic effects of alytesin and bombesin appear to be conserved across species, the two peptides may differ in other behavioral responses and central mechanisms of action.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology (6931), Radford University, Radford, VA 24142, USA.
| | | | | |
Collapse
|
47
|
Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. Br J Pharmacol 2008; 154:471-9. [PMID: 18376418 DOI: 10.1038/bjp.2008.96] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide S (NPS) was recently identified as the endogenous ligand of an orphan receptor, now referred to as the NPS receptor. In vivo, NPS produces a unique behavioural profile by increasing wakefulness and exerting anxiolytic-like effects. In the present study, we further evaluated the effects of in vivo supraspinal NPS in mice. EXPERIMENTAL APPROACH Effects of NPS, injected intracerebroventricularly (i.c.v.), on locomotor activity (LA), righting reflex (RR) recovery and on anxiety states (measured with the elevated plus maze (EPM) and stress-induced hyperthermia (SIH) tests) were assessed in Swiss mice. KEY RESULTS NPS (0.01-1 nmol per mouse) caused a significant increase in LA in naive mice, in mice habituated to the test cages and in animals sedated with diazepam (5 mg kg(-1)). In the RR assay, NPS dose dependently reduced the proportion of animals losing the RR in response to diazepam (15 mg kg(-1)) and their sleeping time. In the EPM and SIH test, NPS dose dependently evoked anxiolytic-like effects by increasing the time spent by animals in the open arms and reducing the SIH response, respectively. CONCLUSIONS AND IMPLICATIONS We provide further evidence that NPS acts as a novel modulator of arousal and anxiety-related behaviours by promoting a unique pattern of effects: stimulation associated with anxiolysis. Therefore, NPS receptor ligands may represent innovative drugs for the treatment of sleep and anxiety disorders.
Collapse
|