1
|
Calo J, Blanco AM, Soengas JL. Dietary lipid sensing through fatty acid oxidation and chylomicron formation in the gastrointestinal tract of rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111638. [PMID: 38657943 DOI: 10.1016/j.cbpa.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
In mammals, physiological processes related to lipid metabolism, such as chylomicron synthesis or fatty acid oxidation (FAO), modulate eating, highlighting the importance of energostatic mechanisms in feeding control. This study, using rainbow trout (Oncorhynchus mykiss) as model, aimed to characterize the role of FAO and chylomicron formation as peripheral lipid sensors potentially able to modulate feeding in fish. Fish fed with either a normal- (24%) or high- (32%) fat diet were intraperitoneally injected with water alone or containing etomoxir (inhibitor of FAO rate-limiting enzyme carnitine palmitoyl-transferase 1). First, feed intake levels were recorded. We observed an etomoxir-derived decrease in feeding at short times, but a significant increase at 48 h after treatment in fish fed normal-fat diet. Then, we evaluated putative etomoxir effects on the mRNA abundance of genes related to lipid metabolism, chylomicron synthesis and appetite-regulating peptides. Etomoxir treatment upregulated mRNA levels of genes related to chylomicron assembly in proximal intestine, while opposite effects occurred in distal intestine, indicating a clear regionalization in response. Etomoxir also modulated gastrointestinal hormone mRNAs in proximal intestine, upregulating ghrl in fish fed normal-fat diet and pyy and gcg in fish fed high-fat diet. These results provide evidence for an energostatic control of feeding related to FAO and chylomicron formation at the peripheral level in fish.
Collapse
Affiliation(s)
- Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Ayelén M Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
2
|
Caroleo M, Carbone EA, Arcidiacono B, Greco M, Primerano A, Mirabelli M, Fazia G, Rania M, Hribal ML, Gallelli L, Foti DP, De Fazio P, Segura-Garcia C, Brunetti A. Does NUCB2/Nesfatin-1 Influence Eating Behaviors in Obese Patients with Binge Eating Disorder? Toward a Neurobiological Pathway. Nutrients 2023; 15:nu15020348. [PMID: 36678225 PMCID: PMC9864089 DOI: 10.3390/nu15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Nesfatin-1 is a new anorexigenic neuropeptide involved in the regulation of hunger/satiety, eating, and affective disorders. We aimed to investigate nesfatin-1 secretion in vitro, in murine adipose cells, and in human adipose fat samples, as well as to assess the link between circulating nesfatin-1 levels, NUCB2 and Fat Mass and Obesity Gene (FTO) polymorphisms, BMI, Eating Disorders (EDs), and pathological behaviors. Nesfatin-1 secretion was evaluated both in normoxic fully differentiated 3T3-L1 mouse adipocytes and after incubation under hypoxic conditions for 24 h. Omental Visceral Adipose tissue (VAT) specimens of 11 obese subjects, and nesfatin-1 serum levels' evaluation, eating behaviors, NUCB2 rs757081, and FTO rs9939609 polymorphisms of 71 outpatients seeking treatment for EDs with different Body Mass Index (BMI) were studied. Significantly higher levels of nesfatin-1 were detected in hypoxic 3T3-L1 cultured adipocytes compared to normoxic ones. Nesfatin-1 was highly detectable in the VAT of obese compared to normal-weight subjects. Nesfatin-1 serum levels did not vary according to BMI, sex, and EDs diagnosis, but correlations with grazing; emotional, sweet, and binge eating; hyperphagia; social eating; childhood obesity were evident. Obese subjects with CG genotype NUCB2 rs757081 and AT genotype FTO rs9939609 polymorphisms had higher nesfatin-1 levels. It could represent a new biomarker of EDs comorbidity among obese patients.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Maria Mirabelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-171-2408; Fax: +39-096-171-2393
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Pulido-Rodriguez LF, Cardinaletti G, Secci G, Randazzo B, Bruni L, Cerri R, Olivotto I, Tibaldi E, Parisi G. Appetite Regulation, Growth Performances and Fish Quality Are Modulated by Alternative Dietary Protein Ingredients in Gilthead Sea Bream ( Sparus aurata) Culture. Animals (Basel) 2021; 11:1919. [PMID: 34203438 PMCID: PMC8300235 DOI: 10.3390/ani11071919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
By answering the need for increasing sustainability in aquaculture, the present study aimed to compare growth, gene expression involved in appetite regulation, physical characteristics, and chemical composition of Sparus aurata fed alternative protein sources. Fish were fed ten iso-proteic, iso-lipidic, and isoenergetic diets: a vegetable-based (CV) and a marine ingredient-rich (CF) diet were set as control diets. The others were prepared by replacing graded levels (10, 20 or 40%) of the vegetable proteins in the CV with proteins from a commercial defatted Hermetia illucens pupae meal (H), poultry by-product meal (PBM) singly (H10, H20, H40, P20, P40) or in combination (H10P30), red swamp crayfish meal (RC10) and from a blend (2:1, w:w) of Tisochrysis lutea and Tetraselmis suecica (MA10) dried biomasses. The increase in ghre gene expression observed in MA10 fed fish matched with increased feed intake and increased feed conversion ratio. Besides, the MA10 diet conferred a lighter aspect to the fish skin (p < 0.05) than the others. Overall, no detrimental effects of H, PBM, and RC meal included in the diets were observed, and fish fatty acid profile resulted as comparable among these groups and CV, thus demonstrating the possibility to introduce H, PBM, and RC in partial replacement of vegetable proteins in the diet for Sparus aurata.
Collapse
Affiliation(s)
- Lina Fernanda Pulido-Rodriguez
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Firenze, Italy; (L.F.P.-R.); (G.S.); (L.B.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (G.C.); (R.C.); (E.T.)
| | - Giulia Secci
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Firenze, Italy; (L.F.P.-R.); (G.S.); (L.B.)
| | - Basilio Randazzo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (B.R.); (I.O.)
| | - Leonardo Bruni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Firenze, Italy; (L.F.P.-R.); (G.S.); (L.B.)
| | - Roberto Cerri
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (G.C.); (R.C.); (E.T.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (B.R.); (I.O.)
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (G.C.); (R.C.); (E.T.)
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Firenze, Italy; (L.F.P.-R.); (G.S.); (L.B.)
| |
Collapse
|
5
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
6
|
Blanco AM, Bertucci JI, Velasco C, Unniappan S. Growth differentiation factor 15 (GDF-15) is a novel orexigen in fish. Mol Cell Endocrinol 2020; 505:110720. [PMID: 31991159 DOI: 10.1016/j.mce.2020.110720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Growth differentiation factor 15 (GDF-15), an anti-inflammatory and anti-tumorigenic cytokine, has been emerging as a regulator of appetite and energy homeostasis in mammals. In fish, the physiological role of this peptide remains to be elucidated. This research aimed to determine the possible role of GDF-15 on food intake in goldfish (Carassius auratus). To achieve our objectives, we first obtained a 595 bp gdf-15 cDNA sequence from goldfish tissues, and examined the tissue expression profile of mRNAs encoding both GDF-15 and its receptor (GFRAL). Both mRNAs were detected in several goldfish tissues, including the hypothalamus, foregut and liver (main tissues regulating appetite and energy balance). Food deprivation for 3 and 7 days significantly upregulated gdf-15 mRNAs in the foregut, but downregulated them in the liver. Our in vivo study using diets with varying amounts of carbohydrates, proteins and fats, and our in vitro study exposing goldfish tissues to different macronutrients revealed that gdf-15 mRNAs are importantly modulated by macronutrients. In general terms, we found an increase in gdf-15 mRNA levels in the goldfish foregut and liver in response to all macronutrients tested. Finally, our in vivo study testing the effects of GDF-15 on appetite levels demonstrated an important dose-dependent orexigenic role for this peptide in goldfish. Results from this study described GDF-15 as a novel regulator of appetite in fish, importantly modulated by food availability and diet composition.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Dietary protein modulates digestive enzyme activities and gene expression in red tilapia juveniles. Animal 2020; 14:1802-1810. [PMID: 32213230 DOI: 10.1017/s1751731120000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is known that the level of dietary protein modulates the enzymatic activity of the digestive tract of fish; however, its effect at the molecular level on these enzymes and the hormones regulating appetite has not been well characterised. The objective of this study was to evaluate the effect of CP on the activity of proteases and the expression of genes related to the ingestion and protein digestion of juveniles of red tilapia (Oreochromis sp.), as well as the effects on performance, protein retention and body composition of tilapia. A total of 240 juveniles (29.32 ± 5.19 g) were used, distributed across 20 tanks of 100 l in a closed recirculation system. The fish were fed to apparent satiety for 42 days using four isoenergetic diets with different CP levels (24%, 30%, 36% and 42%). The results indicate that fish fed the 30% CP diet exhibited a higher growth performance compared to those on the 42% CP diet (P < 0.05). Feed intake in fish fed 24% and 30% CP diets was significantly higher than that in fish fed 36% and 42% CP diets (P < 0.05). A significant elevation of protein retention was observed in fish fed with 24% and 30% CP diets. Fish fed with 24% CP exhibited a significant increase in lipid deposition in the whole body. The diet with 42% CP was associated with the highest expression of pepsinogen and the lowest activity of acid protease (P < 0.05). The expression of hepatopancreatic trypsinogen increased as CP levels in the diet increased (P < 0.05) up to 36%, whereas trypsin activity showed a significant reduction with 42% CP (P < 0.05). The diet with 42% CP was associated with the lowest intestinal chymotrypsinogen expression and the lowest chymotrypsin activity (P < 0.05). α-amylase expression decreased with increasing (P < 0.05) CP levels up to 36%. No significant differences were observed in the expression of procarboxypeptidase, lipase or leptin among all the groups (P > 0.05). In addition, the diet with 42% CP resulted in a decrease (P < 0.05) in the expression of ghrelin and insulin and an increase (P < 0.05) in the expression of cholecystokinin and peptide yy. It is concluded that variation in dietary protein promoted changes in the metabolism of the red tilapia, which was reflected in proteolytic activity and expression of digestion and appetite-regulating genes.
Collapse
|
8
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
9
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
10
|
Bertucci JI, Blanco AM, Sánchez‐Bretaño A, Unniappan S, Canosa LF. Ghrelin and NUCB2/Nesfatin‐1 Co‐Localization With Digestive Enzymes in the Intestine of Pejerrey (
Odontesthes bonariensis
). Anat Rec (Hoboken) 2018; 302:973-982. [DOI: 10.1002/ar.24012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
- Departamento de Fisiología (Fisiología Animal II), Facultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Aida Sánchez‐Bretaño
- Department of Pharmacology and Toxicology, and Neuroscience InstituteMorehouse School of Medicine 720 Westview Drive, GA, 30310 Atlanta Georgia
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
| |
Collapse
|
11
|
Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S. Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 2018; 257:13-28. [PMID: 28185936 DOI: 10.1016/j.ygcen.2017.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Goldfish has been used as an unconventional model organism to study a number of biological processes. For example, goldfish is a well-characterized and widely used model in comparative endocrinology, especially in neuroendocrinology. Several decades of research has established and validated an array of tools to study hormones in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus, are invaluable tools for the neuroanatomic localization and central administration of endocrine factors. In vitro techniques, such as organ and primary cell cultures, have been developed using goldfish. In vivo approaches using goldfish were used to measure endogenous hormonal milieu, feeding, behaviour and stress. While there are many benefits in using goldfish as a model organism in research, there are also challenges associated with it. One example is its tetraploid genome that results in the existence of multiple isoforms of endocrine factors. The presence of extra endogenous forms of peptides and its receptors adds further complexity to the already redundant multifactorial endocrine milieu. This review will attempt to discuss the importance of goldfish as a model organism in comparative endocrinology. It will highlight some of the merits and challenges in employing goldfish as an animal model for hormone research in the post-genomic era.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
12
|
Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout. Front Endocrinol (Lausanne) 2018; 9:484. [PMID: 30210451 PMCID: PMC6121026 DOI: 10.3389/fendo.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén M. Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Juan I. Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Argentina
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
13
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Direct actions of macronutrient components on goldfish hepatopancreas in vitro to modulate the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs. Gen Comp Endocrinol 2017; 250:1-8. [PMID: 28549738 DOI: 10.1016/j.ygcen.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
In mammals and fish, somatic growth and metabolism are coordinated by the GH-IGF axis, composed of growth hormone (GH), growth hormone receptors I and II (GHR-I and GHR-II), and the insulin-like growth factors I and II (IGF-I and IGF-II). In order to determine if dietary macronutrients regulate the hepatopancreatic expression of ghr-I, ghr-II, igf-I and igf-II independently of circulating GH, organ culture experiments were conducted. Briefly, goldfish hepatopancreas sections were incubated with different doses of glucose; L-tryptophan; oleic acid; linolenic acid (LNA); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). After two and four hours of treatment, the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs was quantified. We found that glucose and L-tryptophan globally upregulate the mRNA expression of ghr-I; ghr-II; igf-I and igf-II. Duration of exposure, and unsaturation level of fatty acids differentially modulate ghr-I, ghr-II and igf-II mRNA expression. Additionally, we found that fatty acids increase the expression of igf-I depending on incubation time and fatty acid class. In conclusion, here we present evidence for GH-independent, direct effects exerted by dietary macronutrients on GHR and IGF in goldfish hepatopancreas.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
14
|
Yang GT, Zhao HY, Kong Y, Sun NN, Dong AQ. Study of the effects of nesfatin-1 on gastric function in obese rats. World J Gastroenterol 2017; 23:2940-2947. [PMID: 28522911 PMCID: PMC5413788 DOI: 10.3748/wjg.v23.i16.2940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of nesfatin-1 on gastric function in obese rats.
METHODS The obese rat model was induced by a high-fat diet. The gastric emptying rate and gastric acid secretory capacity of the rats were determined after treatment with different drug concentrations of nesfatin-1 and administration routes. Based on this, the expression of H+/K+-ATPase was measured using RT-PCR and western blot to preliminarily explore the mechanism of gastric acid secretion changes.
RESULTS Body weight, body length, and Lee’s index of the rats significantly increased in the high-fat diet-induced obese rat model. Two hours after lateral intracerebroventricular injection of nesfatin-1, the gastric emptying rate and gastric acid secretory capacity of rats decreased. Four hours after injection, both were restored to normal levels. In addition, the expression of H+/K+-ATPase decreased and moved in line with changes in gastric acid secretory capacity. This in vivo experiment revealed that intracerebroventricular injection of nesfatin-1, rather than intravenous injection, could suppress gastric function in obese rats. Moreover, its effect on the gastric emptying and gastric acid secretory capacity of rats is dose-dependent within a certain period of time.
CONCLUSION Through this research, we provide a theoretical basis for further studies on nesfatin-1, a potential anti-obesity drug.
Collapse
|
15
|
Blanco AM, Bertucci JI, Sánchez-Bretaño A, Delgado MJ, Valenciano AI, Unniappan S. Ghrelin modulates gene and protein expression of digestive enzymes in the intestine and hepatopancreas of goldfish (Carassius auratus) via the GHS-R1a: Possible roles of PLC/PKC and AC/PKA intracellular signaling pathways. Mol Cell Endocrinol 2017; 442:165-181. [PMID: 28042022 DOI: 10.1016/j.mce.2016.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin, a multifunctional gut-brain hormone, is involved in the regulation of gastric functions in mammals. This study aimed to determine whether ghrelin modulates digestive enzymes in goldfish (Carassius auratus). Immunofluorescence microscopy found colocalization of ghrelin, GHS-R1a and the digestive enzymes sucrase-isomaltase, aminopeptidase A, trypsin and lipoprotein lipase in intestinal and hepatopancreatic cells. In vitro ghrelin treatment in intestinal and hepatopancreas explant culture led to a concentration- and time-dependent modulation (mainly stimulatory) of most of the digestive enzymes tested. The ghrelin-induced upregulations of digestive enzyme expression were all abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6, and most of them by the phospholipase C inhibitor U73122 or the protein kinase A inhibitor H89. This indicates that ghrelin effects on digestive enzymes are mediated by GHS-R1a, partly by triggering the PLC/PKC and AC/PKA intracellular signaling pathways. These data suggest a role for ghrelin on digestive processes in fish.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Aída Sánchez-Bretaño
- Department of Pharmacology and Toxicology, and Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, GA 30310 Atlanta, GA, United States.
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Ana Isabel Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Glucose, amino acids and fatty acids directly regulate ghrelin and NUCB2/nesfatin-1 in the intestine and hepatopancreas of goldfish (Carassius auratus) in vitro. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:24-35. [PMID: 28089858 DOI: 10.1016/j.cbpa.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Ghrelin and nesfatin-1 are two peptidyl hormones primarily involved in food intake regulation. We previously reported that the amount of dietary carbohydrates, protein and lipids modulates the expression of these peptides in goldfish in vivo. In the present work, we aimed to characterize the effects of single nutrients on ghrelin and nesfatin-1 in the intestine and hepatopancreas. First, immunolocalization of ghrelin and NUCB2/nesfatin-1 in goldfish hepatopancreas cells was studied by immunohistochemistry. Second, the effects of 2 and 4hour-long exposures of cultured intestine and hepatopancreas sections to glucose, l-tryptophan, oleic acid, linolenic acid (LNA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on ghrelin and nesfatin-1 gene and protein expression were studied. Co-localization of ghrelin and NUCB2/nesfatin-1 in the cytoplasm of goldfish hepatocytes was found. Exposure to glucose led to an upregulation of preproghrelin and a downregulation of nucb2/nesfatin-1 in the intestine. l-Tryptophan mainly decreased the expression of both peptides in the intestine and hepatopancreas. Fatty acids, in general, downregulated NUCB2/nesfatin-1 in the intestine, but only the longer and highly unsaturated fatty acids inhibited preproghrelin. EPA exposure led to a decrease in preproghrelin, and an increase in nucb2/nesfatin-1 expression in hepatopancreas after 2h. These results show that macronutrients exert a dose- and time-dependent, direct regulation of ghrelin and nesfatin-1 in the intestine and hepatopancreas, and suggest a role for these hormones in the digestive process and nutrient metabolism.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
17
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
18
|
Nesfatin-1-Like Peptide Encoded in Nucleobindin-1 in Goldfish is a Novel Anorexigen Modulated by Sex Steroids, Macronutrients and Daily Rhythm. Sci Rep 2016; 6:28377. [PMID: 27329836 PMCID: PMC4916606 DOI: 10.1038/srep28377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1.
Collapse
|