1
|
Hridoy HM, Hossain MP, Ali MH, Hasan I, Uddin MB, Alam MT, Kabir SR. Alocasia macrorrhiza rhizome lectin inhibits growth of pathogenic bacteria and human lung cancer cell in vitro and Ehrlich ascites carcinoma cell in vivo in mice. Protein Expr Purif 2024; 219:106484. [PMID: 38614377 DOI: 10.1016/j.pep.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 μg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 μg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.
Collapse
Affiliation(s)
- Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Pervez Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hasan Ali
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Taufiq Alam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
3
|
Zarei S, Motard M, Cecioni S. Stable Amide Activation of N-Acetylated Glycosamines for the Synthesis of Fused Polycyclic Glycomimetics. Org Lett 2024; 26:204-209. [PMID: 38166160 DOI: 10.1021/acs.orglett.3c03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
N-Acetylation of carbohydrates is an underexplored target for chemoselective derivatization and generation of glycomimetic scaffolds. Through mild amide activation, we report that N-acetimidoyl heterocycles are stable in neutral or basic conditions yet are excellent leaving groups through acid catalysis. While this specific reactivity could prove broadly useful in amide activation strategies, stably activated N-acetylated sugars can also be diversified using libraries of hydrazides. We optimized an acid-catalyzed one-pot sequence that includes nucleophilic displacement, cyclodehydration, and intramolecular glycosylation to ultimately deliver pyranosides fused to morpholines or piperazines. This strategy of stable activation followed by acid-triggered reaction sequences exemplifies the efficient assembly of 3D-rich fused glycomimetic libraries.
Collapse
Affiliation(s)
- Samaneh Zarei
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Mélina Motard
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Samy Cecioni
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Feng X, Shi Q, Jian Q, Li F, Li Z, Cheng K. Alterations in mitochondrial protein glycosylation in myocardial ischaemia reperfusion injury. Biochem Biophys Rep 2023; 35:101509. [PMID: 37601448 PMCID: PMC10439394 DOI: 10.1016/j.bbrep.2023.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
The alterations in mitochondrial protein glycosylation in myocardial ischaemia reperfusion (I/R) injury are still unclear. Therefore, based on a lectin microarray and liquid chromatograph-mass spectrometer/mass spectrometer (LC‒MS/MS) technology combined with a bioinformatics analysis, we studied the changes in mitochondrial protein glycosylation during I/R injury. This study revealed significant differences in mitochondrial glycoprotein during I/R injury. Compared with the sham operation group, the model group, which underwent ischaemia for 30 min, showed a high expression of glycan structures recognized by lectins, such as WFA, PTL-I, LTL, GSL-I, SBA and SNA, and a low expression of glycan structures recognized by ConA, VVA and RCA120. The model group, which underwent ischaemia for 45 min, showed a high expression of glycan structures recognized by LTL and SNA and a low expression of glycan structures recognized by ECA. Further analysis showed that the Siaα2-6Gal/N-acetylgalactosamine (GalNAc) structures recognized by SNA were significantly increased. In total, 91 differential proteins were identified by LC‒MS/MS, and 8 hub genes were screened by Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein interaction analyses. Compared with the Gene Expression Omnibus (GEO) database genes, two differential genes, Pros1 and Vtn, were obtained. Pros1 is a key regulator of the inflammatory response and vascular injury response. The Vtn gene variant is associated with the risk of myocardial infarction. This study is expected to provide a new method for the treatment of I/R injury and could provide new ideas for the postoperative prognosis of patients.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Cardiac and Pan-Vascular Diseases, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Qing Shi
- Xi'an Satellite Control Center, Xi'an, China
| | - Qiang Jian
- Department of Scientific Research, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Fan Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Cheng
- Department of Cardiac and Pan-Vascular Diseases, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|
5
|
Baruah P, Patra A, Barge S, Khan MR, Mukherjee AK. Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19). J Fungi (Basel) 2023; 9:897. [PMID: 37755005 PMCID: PMC10532592 DOI: 10.3390/jof9090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Collapse
Affiliation(s)
- Paran Baruah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aparup Patra
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Sagar Barge
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Ashis K. Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| |
Collapse
|
6
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
7
|
Wang X, Terrie L, Wu G, Van Damme EJM, Thorrez L, Fooks AR, Banyard AC, Jochmans D, Neyts J. Urtica dioica Agglutinin Prevents Rabies Virus Infection in a Muscle Explant Model. Pharmaceutics 2023; 15:pharmaceutics15051353. [PMID: 37242595 DOI: 10.3390/pharmaceutics15051353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Infection with the rabies virus (RABV) results in a 100% lethal neurological disease once symptoms develop. Post-exposure prophylaxis (PEP) consists of a combination of vaccination and anti-rabies immunoglobulins (RIGs); it is 100% effective if administered early after exposure. Because of its limited availability, alternatives for RIGs are needed. To that end, we evaluated a panel of 33 different lectins for their effect on RABV infection in cell culture. Several lectins, with either mannose or GlcNAc specificity, elicited anti-RABV activity, of which the GlcNAc-specific Urtica dioica agglutinin (UDA) was selected for further studies. UDA was found to prevent the entry of the virus into the host cell. To further assess the potential of UDA, a physiologically relevant RABV infection muscle explant model was developed. Strips of dissected swine skeletal muscle that were kept in a culture medium could be productively infected with the RABV. When the infection of the muscle strips was carried out in the presence of UDA, RABV replication was completely prevented. Thus, we developed a physiologically relevant RABV muscle infection model. UDA (i) may serve as a reference for further studies and (ii) holds promise as a cheap and simple-to-produce alternative for RIGs in PEP.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Guanghui Wu
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Sponsel J, Guo Y, Hamzam L, Lavanant AC, Pérez-Riverón A, Partiot E, Muller Q, Rottura J, Gaudin R, Hauck D, Titz A, Flacher V, Römer W, Mueller CG. Pseudomonas aeruginosa LecB suppresses immune responses by inhibiting transendothelial migration. EMBO Rep 2023; 24:e55971. [PMID: 36856136 PMCID: PMC10074054 DOI: 10.15252/embr.202255971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro. It impairs the migration of dendritic cells into the paracortex of lymph nodes leading to a reduced antigen-specific T cell response. Under the effect of the lectin, endothelial cells undergo profound cellular changes resulting in endocytosis and degradation of the junctional protein VE-cadherin, formation of an actin rim, and arrested cell motility. This likely negatively impacts the capacity of endothelial cells to respond to extracellular stimuli and to generate the intercellular gaps for allowing leukocyte diapedesis. A LecB inhibitor can restore dendritic cell migration and T cell activation, underlining the importance of LecB antagonism to reactivate the immune response against P. aeruginosa infection.
Collapse
Affiliation(s)
- Janina Sponsel
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France.,Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yubing Guo
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France.,Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lutfir Hamzam
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France
| | - Alice C Lavanant
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France
| | | | - Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Quentin Muller
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France.,Laboratoire BIOTIS, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Julien Rottura
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Dirk Hauck
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Vincent Flacher
- CNRS UPR 3572, IBMC, University of Strasbourg, Strasbourg, France
| | - Winfried Römer
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
9
|
Zahorska E, Rosato F, Stober K, Kuhaudomlarp S, Meiers J, Hauck D, Reith D, Gillon E, Rox K, Imberty A, Römer W, Titz A. Neutralizing the Impact of the Virulence Factor LecA from Pseudomonas aeruginosa on Human Cells with New Glycomimetic Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202215535. [PMID: 36398566 PMCID: PMC10107299 DOI: 10.1002/anie.202215535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.
Collapse
Affiliation(s)
- Eva Zahorska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.,Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-, Braunschweig, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Kai Stober
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sakonwan Kuhaudomlarp
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.,Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-, Braunschweig, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.,Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-, Braunschweig, Germany
| | - Dorina Reith
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-, Braunschweig, Germany.,Department of Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.,Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-, Braunschweig, Germany
| |
Collapse
|
10
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
11
|
Mała P, Siebs E, Meiers J, Rox K, Varrot A, Imberty A, Titz A. Discovery of N-β-l-Fucosyl Amides as High-Affinity Ligands for the Pseudomonas aeruginosa Lectin LecB. J Med Chem 2022; 65:14180-14200. [PMID: 36256875 PMCID: PMC9620277 DOI: 10.1021/acs.jmedchem.2c01373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/30/2022]
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa causes severe infections mainly in immunocompromised or cystic fibrosis patients and is able to resist antimicrobial treatments. The extracellular lectin LecB plays a key role in bacterial adhesion to the host and biofilm formation. For the inhibition of LecB, we designed and synthesized a set of fucosyl amides, sulfonamides, and thiourea derivatives. Then, we analyzed their binding to LecB in competitive and direct binding assays. We identified β-fucosyl amides as unprecedented high-affinity ligands in the two-digit nanomolar range. X-ray crystallography of one α- and one β-anomer of N-fucosyl amides in complex with LecB revealed the interactions responsible for the high affinity of the β-anomer at atomic level. Further, the molecules showed good stability in murine and human blood plasma and hepatic metabolism, providing a basis for future development into antibacterial drugs.
Collapse
Affiliation(s)
- Patrycja Mała
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre
for Infection Research, 66123Saarbrücken, Germany
- Faculty
of Chemistry, Adam Mickiewicz University, 61-614Poznań, Poland
| | - Eike Siebs
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre
for Infection Research, 66123Saarbrücken, Germany
- Department
of Chemistry, Saarland University, 66123Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124Braunschweig, Germany
| | - Joscha Meiers
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre
for Infection Research, 66123Saarbrücken, Germany
- Department
of Chemistry, Saarland University, 66123Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124Braunschweig, Germany
| | - Katharina Rox
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124Braunschweig, Germany
- Chemical
Biology (CBIO), Helmholtz Centre for Infection
Research, 38124Braunschweig, Germany
| | | | - Anne Imberty
- Univ.
Grenoble
Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Alexander Titz
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre
for Infection Research, 66123Saarbrücken, Germany
- Department
of Chemistry, Saarland University, 66123Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124Braunschweig, Germany
| |
Collapse
|
12
|
Bermeo R, Lal K, Ruggeri D, Lanaro D, Mazzotta S, Vasile F, Imberty A, Belvisi L, Varrot A, Bernardi A. Targeting a Multidrug-Resistant Pathogen: First Generation Antagonists of Burkholderia cenocepacia's BC2L-C Lectin. ACS Chem Biol 2022; 17:2899-2910. [PMID: 36174276 PMCID: PMC9594048 DOI: 10.1021/acschembio.2c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multidrug-resistant pathogens such as Burkholderia cenocepacia have become a hazard in the context of healthcare-associated infections, especially for patients admitted with cystic fibrosis or immuno-compromising conditions. Like other opportunistic Gram-negative bacteria, this pathogen establishes virulence and biofilms through lectin-mediated adhesion. In particular, the superlectin BC2L-C is believed to cross-link human epithelial cells to B. cenocepacia during pulmonary infections. We aimed to obtain glycomimetic antagonists able to inhibit the interaction between the N-terminal domain of BC2L-C (BC2L-C-Nt) and its target fucosylated human oligosaccharides. In a previous study, we identified by fragment virtual screening and validated a small set of molecular fragments that bind BC2L-C-Nt in the vicinity of the fucose binding site. Here, we report the rational design and synthesis of bifunctional C- or N-fucosides, generated by connecting these fragments to a fucoside core using a panel of rationally selected linkers. A modular route starting from two key fucoside intermediates was implemented for the synthesis, followed by evaluation of the new compounds as BC2L-C-Nt ligands with a range of techniques (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR, differential scanning calorimetry, and X-ray crystallography). This study resulted in a hit molecule with an order of magnitude gain over the starting methyl fucoside and in two crystal structures of antagonist/lectin complexes.
Collapse
Affiliation(s)
- Rafael Bermeo
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France,Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Kanhaya Lal
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France,Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Davide Ruggeri
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Daniele Lanaro
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Sarah Mazzotta
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesca Vasile
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Anne Imberty
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble 38000, France
| | - Laura Belvisi
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | | | - Anna Bernardi
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, Milano 20133, Italy,
| |
Collapse
|
13
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Li Z, Jia L, Yi H, Guo G, Huang L, Zhang Y, Jiao Z, Wu J. Pre-exposure to Candida albicans induce trans-generational immune priming and gene expression of Musca domestica. Front Microbiol 2022; 13:902496. [PMID: 36238590 PMCID: PMC9551092 DOI: 10.3389/fmicb.2022.902496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Insects have the phenomenon of immune priming by which they can have enhanced protection against reinfection with the same pathogen, and this immune protection can be passed on to their offspring, which is defined as “trans-generational immune priming (TGIP).” But whether housefly possesses TGIP is still unclear. Therefore, we used the housefly as the insect model and Candida albicans as the pathogen to explore whether the housefly is capable of eliciting TGIP, and RNA sequencing (RNA-seq) was performed to explore the molecular mechanism of TGIP of the housefly. We found that the housefly possesses TGIP, and adults pre-exposed to heat-killed C. albicans could confer protection to itself and its offspring upon reinfection with a lethal dose of C. albicans. RNA-seq results showed that 30 and 154 genes were differentially expressed after adults were primed with heat-killed C. albicans (CA-A) and after offspring larvae were challenged with a lethal dose of C. albicans (CA-CA-G), respectively. Among the differentially expressed genes (DEGs), there were 23 immune genes, including 6 pattern recognition receptors (PRRs), 7 immune effectors, and 10 immunoregulatory molecules. More importantly, multiple DEGs were involved in the Toll signaling pathway and phagosome signaling pathway, suggesting that the Toll signaling pathway and phagocytosis might play important roles in the process of TGIP of housefly to C. albicans. Our results expanded on previous studies and provided parameters for exploring the mechanism of TGIP.
Collapse
Affiliation(s)
- Zhongxun Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin, West China Yibin Hospital, Yibin, China
| | - Lina Jia
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hong Yi
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Li Huang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yingchun Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhenlong Jiao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Zhenlong Jiao,
| | - Jianwei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Jianwei Wu,
| |
Collapse
|
15
|
Tricomi J, Cacaci M, Biagiotti G, Caselli L, Niccoli L, Torelli R, Gabbani A, Di Vito M, Pineider F, Severi M, Sanguinetti M, Menna E, Lelli M, Berti D, Cicchi S, Bugli F, Richichi B. Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms. NANOSCALE 2022; 14:10190-10199. [PMID: 35796327 DOI: 10.1039/d2nr02027k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Lucrezia Caselli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Lorenzo Niccoli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Mirko Severi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Menna
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centre for Mechanics of Biological Materials - CMBM, Via Marzolo 9, 35131 Padova, Italy
| | - Moreno Lelli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Debora Berti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
16
|
Wojtczak K, Byrne JP. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. ChemMedChem 2022; 17:e202200081. [PMID: 35426976 PMCID: PMC9321714 DOI: 10.1002/cmdc.202200081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium, responsible for a large portion of nosocomial infections globally and designated as critical priority by the World Health Organisation. Its characteristic carbohydrate-binding proteins LecA and LecB, which play a role in biofilm-formation and lung-infection, can be targeted by glycoconjugates. Here we review the wide range of inhibitors for these proteins (136 references), highlighting structural features and which impact binding affinity and/or therapeutic effects, including carbohydrate selection; linker length and rigidity; and scaffold topology, particularly for multivalent candidates. We also discuss emerging therapeutic strategies, which build on targeting of LecA and LecB, such as anti-biofilm activity, anti-adhesion and drug-delivery, with promising prospects for medicinal chemistry.
Collapse
Affiliation(s)
- Karolina Wojtczak
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| | - Joseph P. Byrne
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| |
Collapse
|
17
|
Shanina E, Kuhaudomlarp S, Siebs E, Fuchsberger FF, Denis M, da Silva Figueiredo Celestino Gomes P, Clausen MH, Seeberger PH, Rognan D, Titz A, Imberty A, Rademacher C. Targeting undruggable carbohydrate recognition sites through focused fragment library design. Commun Chem 2022; 5:64. [PMID: 36697615 PMCID: PMC9814205 DOI: 10.1038/s42004-022-00679-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023] Open
Abstract
Carbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca2+-dependent carbohydrate-protein interactions. Here, we show the effect of MBPs on the clinically relevant lectins DC-SIGN, Langerin, LecA and LecB. Detailed structural and biochemical investigations revealed the specificity of MBPs for different Ca2+-dependent lectins. Exploring the structure-activity relationships of several fragments uncovered the functional groups in the MBPs suitable for modification to further improve lectin binding and selectivity. Selected inhibitors bound efficiently to DC-SIGN-expressing cells. Altogether, the discovery of MBPs as a promising class of Ca2+-dependent lectin inhibitors creates a foundation for fragment-based ligand design for future drug discovery campaigns.
Collapse
Affiliation(s)
- Elena Shanina
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- grid.450307.50000 0001 0944 2786University Grenoble Alpes, CNRS, CERMAV, Grenoble, France ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Eike Siebs
- grid.461899.bChemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany ,grid.11749.3a0000 0001 2167 7588Saarland University, Department of Chemistry, 66123 Saarbrücken, Germany ,grid.452463.2German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Felix F. Fuchsberger
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| | - Priscila da Silva Figueiredo Celestino Gomes
- grid.503326.10000 0004 0367 4780Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France ,grid.252546.20000 0001 2297 8753Department of Physics, College of Sciences and Mathematics, Auburn University, 36849 Auburn, AL USA
| | - Mads H. Clausen
- grid.5170.30000 0001 2181 8870Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Peter H. Seeberger
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Didier Rognan
- grid.503326.10000 0004 0367 4780Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Alexander Titz
- grid.461899.bChemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany ,grid.11749.3a0000 0001 2167 7588Saarland University, Department of Chemistry, 66123 Saarbrücken, Germany ,grid.452463.2German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Anne Imberty
- grid.450307.50000 0001 0944 2786University Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Christoph Rademacher
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
18
|
Hudson RE, Job KM, Sayre CL, Krepkova LV, Sherwin CM, Enioutina EY. Examination of Complementary Medicine for Treating Urinary Tract Infections Among Pregnant Women and Children. Front Pharmacol 2022; 13:883216. [PMID: 35571128 PMCID: PMC9094615 DOI: 10.3389/fphar.2022.883216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Urinary tract infections (UTIs) are a significant clinical problem that pregnant women and children commonly experience. Escherichia coli is the primary causative organism, along with several other gram-negative and gram-positive bacteria. Antimicrobial drugs are commonly prescribed to treat UTIs in these patients. Conventional treatment can range from using broad-spectrum antimicrobial drugs for empirical or prophylactic therapy or patient-tailored therapy based on urinary cultures and sensitivity to prospective antibiotics. The ongoing emergence of multi-drug resistant pathogens has raised concerns related to commonly prescribed antimicrobial drugs such as those used routinely to treat UTIs. Consequently, several natural medicines have been explored as potential complementary therapies to improve health outcomes in patients with UTIs. This review discusses the effectiveness of commonly used natural products such as cranberry juice/extracts, ascorbic acid, hyaluronic acid, probiotics, and multi-component formulations intended to treat and prevent UTIs. The combination of natural products with prescribed antimicrobial treatments and use of formulations that contained high amounts of cranberry extracts appear to be most effective in preventing recurrent UTIs (RUTIs). The incorporation of natural products like cranberry, hyaluronic acid, ascorbic acid, probiotics, Canephron® N, and Cystenium II to conventional treatments of acute UTIs or as a prophylactic regimen for treatment RUTIs can benefit both pregnant women and children. Limited information is available on the safety of natural products in these patients' populations. However, based on limited historical information, these remedies appear to be safe and well-tolerated by patients.
Collapse
Affiliation(s)
- Rachel E. Hudson
- Department of Pediatrics, Post-Doctoral Fellow, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kathleen M. Job
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Casey L. Sayre
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
- College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Lubov V. Krepkova
- Head of Toxicology Department, Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Catherine M. Sherwin
- Department of Pediatrics, Vice-Chair for Research, Professor, Wright State University Boonshoft School of Medicine/Dayton Children’s Hospital, Dayton, OH, United States
| | - Elena Y. Enioutina
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
19
|
Al-Zrkani MK, Abdulkareem RA, Al-Fahad D, Al Shouber M, Nasr AMS, Al-Khdhairawi A. Elucidating novel antibacterial compounds from the NPASS database against the FimH lectin domain for the treatment of urinary tract infections: an in-silico study. J Biomol Struct Dyn 2022; 41:3914-3925. [PMID: 35403563 DOI: 10.1080/07391102.2022.2059009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increase in multidrug-resistant pathogens in urinary tract infections (UTIs) among communities and hospitals threatens our ability to treat these common pathogens. Uropathogenic Escherichia coli (UPEC) strains are the most frequent uropathies linked to the development of UTIs. This work aims to introduce bioactive natural products via virtual screening of small molecules from a public database to prevent biofilm formation by inhibiting FimH, a type 1 fimbriae that plays a crucial role in UPEC pathogenicity. A total of 30926 small molecules from the NPASS database were subjected to screening via molecular docking. Followed by performing in silico ADME studies, seven molecules showed promising docking results ranging from -6.8 to -8.7 kcal/mol. As a result of the docking score findings, 100 ns Molecular dynamics (MD) simulations were performed. Based on MM-PBSA analysis, NPC313334 ligand showed high binding affinity -42 and stability with the binding pocket of FimH protein during molecular dynamic simulations. DFT calculations were also performed on the ligands to calculate the HOMO-LUMO energies of the compounds in order to an idea about their structure and reactivity. This research suggests that NPC313334 may be a possible antibacterial drug candidate that targets FimH to reduce the number of UPEC-related urinary tract infections. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mrtatha K Al-Zrkani
- Institute of Genetic Engineering & Biotechnology Research, Baghdad University, Baghdad, Iraq
| | - Rafid A Abdulkareem
- Institute of Genetic Engineering & Biotechnology Research, Baghdad University, Baghdad, Iraq
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Science, College of Pharmacy, University of Thi-Qar, Nasiriyah, Iraq
| | - Marwah Al Shouber
- Department of Pharmaceutical, Al Zahra Teaching Hospital of Wasit, Kut, Iraq
| | | | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
20
|
Siebs E, Shanina E, Kuhaudomlarp S, da Silva Figueiredo Celestino Gomes P, Fortin C, Seeberger PH, Rognan D, Rademacher C, Imberty A, Titz A. Targeting the Central Pocket of the Pseudomonas aeruginosa Lectin LecA. Chembiochem 2022; 23:e202100563. [PMID: 34788491 PMCID: PMC9300185 DOI: 10.1002/cbic.202100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic ESKAPE pathogen that produces two lectins, LecA and LecB, as part of its large arsenal of virulence factors. Both carbohydrate-binding proteins are central to the initial and later persistent infection processes, i. e. bacterial adhesion and biofilm formation. The biofilm matrix is a major resistance determinant and protects the bacteria against external threats such as the host immune system or antibiotic treatment. Therefore, the development of drugs against the P. aeruginosa biofilm is of particular interest to restore efficacy of antimicrobials. Carbohydrate-based inhibitors for LecA and LecB were previously shown to efficiently reduce biofilm formations. Here, we report a new approach for inhibiting LecA with synthetic molecules bridging the established carbohydrate-binding site and a central cavity located between two LecA protomers of the lectin tetramer. Inspired by in silico design, we synthesized various galactosidic LecA inhibitors with aromatic moieties targeting this central pocket. These compounds reached low micromolar affinities, validated in different biophysical assays. Finally, X-ray diffraction analysis revealed the interactions of this compound class with LecA. This new mode of action paves the way to a novel route towards inhibition of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Eike Siebs
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover-BraunschweigGermany
| | - Elena Shanina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of BiologyChemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Sakonwan Kuhaudomlarp
- Université Grenoble Alpes, CNRS, CERMAV38000GrenobleFrance
- Department of Biochemistry and Centre for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkokThailand
| | | | - Cloé Fortin
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of BiologyChemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Didier Rognan
- Laboratoire d'Innovation ThérapeutiqueUMR 7200 CNRS-Université de Strasbourg, Strasbourg67400IllkirchFrance
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of BiologyChemistry and PharmacyFreie Universität Berlin14195BerlinGermany
- Department of Pharmaceutical SciencesUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Department of MicrobiologyImmunology and GeneticsUniversity of ViennaMax F. Perutz Labs, Biocenter 51030ViennaAustria
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV38000GrenobleFrance
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF) Standort Hannover-BraunschweigGermany
| |
Collapse
|
21
|
Metelkina O, Huck B, O'Connor JS, Koch M, Manz A, Lehr CM, Titz A. Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes. J Mater Chem B 2022; 10:537-548. [PMID: 34985094 DOI: 10.1039/d1tb02086b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olga Metelkina
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany. .,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Benedikt Huck
- Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jonathan S O'Connor
- KIST Europe, 66123 Saarbrücken, Germany.,Department of Systems Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Andreas Manz
- KIST Europe, 66123 Saarbrücken, Germany.,Department of Systems Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany. .,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat Commun 2022; 13:194. [PMID: 35017516 PMCID: PMC8752737 DOI: 10.1038/s41467-021-27871-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections. Pseudomonas aeruginosa employs lectins to bind to its host cells, and is known to be the major cause of lung infections. Lectin B (LecB) from Pseudomonas aeruginosa binds specifically to galactose and fucose and is important for pathogenicity, adhesion and biofilm formation. In this work, the neutron crystal structure (1.9 Å) of the deuterated LecB/Ca/fucose complex is reported. The structure, in combination with perdeuteration of the ligand and the receptor allowed the observation of hydrogen atoms, protonation states and hydrogen bonds involved in the interaction between pathogenic bacteria and host cells. Thus the study provides structural insights into the mechanism of high affinity binding of LecB to its targets.
Collapse
|
23
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Allosterische, Wirkstoff‐zugängliche Bindestellen in β‐Propeller‐Lektinen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Department of Biochemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
- Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kanhaya Lal
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Dipartimento di Chimica via Golgi 19 Università degli Studi di Milano 20133 Milano Italien
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anne Imberty
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| |
Collapse
|
24
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Druggable Allosteric Sites in β-Propeller Lectins. Angew Chem Int Ed Engl 2022; 61:e202109339. [PMID: 34713573 PMCID: PMC9298952 DOI: 10.1002/anie.202109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrate‐binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non‐carbohydrate drug‐like inhibitors are still unavailable. Here, we present a druggable pocket in a β‐propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure–activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol−1 HA−1 that affected the orthosteric site. This effect was substantiated by site‐directed mutagenesis in the orthosteric and secondary pockets. Future drug‐discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic‐resistant pathogens.
Collapse
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanhaya Lal
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Dipartimento di Chimica via Golgi 19, Universita" degli Studi di Milano, 20133, Milano, Italy
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1080, Vienna, Austria.,Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
25
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
26
|
Vendeville JB, Kyriakides MJ, Takebayashi Y, Rama S, Preece J, Samphire J, Ramos-Soriano J, Amieva AM, Holbrow-Wilshaw ME, Gordon Newman HR, Kou SL, Medina-Villar S, Dorh N, Dorh JN, Spencer J, Galan MC. Fast Identification and Quantification of Uropathogenic E. coli through Cluster Analysis. ACS Biomater Sci Eng 2021; 8:242-252. [PMID: 34894660 DOI: 10.1021/acsbiomaterials.1c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid diagnostic tools to detect, identify, and enumerate bacteria are key to maintaining effective antibiotic stewardship and avoiding the unnecessary prescription of broad-spectrum agents. In this study, a 15 min agglutination assay is developed that relies on the use of mannose-functionalized polymeric microspheres in combination with cluster analysis. This allows for the identification and enumeration of laboratory (BW25113), clinical isolate (NCTC 12241), and uropathogenic Escherichia coli strains (NCTC 9001, NCTC 13958, J96, and CFT073) at clinically relevant concentrations in tryptic soy broth (103-108 CFU/mL) and in urine (105-108 CFU/mL). This fast, simple, and efficient assay offers a step forward toward efficient point-of-care diagnostics for common urinary tract infections.
Collapse
Affiliation(s)
| | | | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - Sylvain Rama
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Preece
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Jenny Samphire
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | - Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | | | | | | | - Sio Lou Kou
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Sandra Medina-Villar
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Neciah Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Josephine Ndoa Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
27
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
28
|
Cristófalo AE, Nieto PM, Thépaut M, Fieschi F, Di Chenna PH, Uhrig ML. Synthesis, self-assembly and Langerin recognition studies of a resorcinarene-based glycocluster exposing a hyaluronic acid thiodisaccharide mimetic. Org Biomol Chem 2021; 19:6455-6467. [PMID: 34236375 DOI: 10.1039/d1ob00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of an octavalent glycocluster exposing a thiodisaccharide mimetic of the repetitive unit of hyaluronic acid, βSGlcA(1 → 3)βSGlcNAc, constructed on a calix[4]resorcinarene scaffold by CuAAC reaction of suitable precursors. This glycocluster showed a strong tendency toward self-aggregation. DOSY-NMR and DLS experiments demonstrated the formation of spherical micelles of d ≅ 6.2 nm, in good agreement. TEM micrographs showed the presence of particles of different sizes, depending on the pH of the starting solution, thus evidencing that the negative charge on the micelle surface due to ionization of the GlcA residues plays an important role in the aggregation process. STD-NMR and DLS experiments provided evidence of the interaction between the synthetic glycocluster and Langerin, a relevant C-type lectin. This interaction was not observed in the STD-NMR experiments performed with the basic disaccharide, providing evidence of a multivalent effect.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, España.
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pablo H Di Chenna
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), C1428EGA Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| |
Collapse
|
29
|
Siukstaite L, Imberty A, Römer W. Structural Diversities of Lectins Binding to the Glycosphingolipid Gb3. Front Mol Biosci 2021; 8:704685. [PMID: 34381814 PMCID: PMC8350385 DOI: 10.3389/fmolb.2021.704685] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glycolipids are present on the surfaces of all living cells and thereby represent targets for many protein receptors, such as lectins. Understanding the interactions between lectins and glycolipids is essential for investigating the functions of lectins and the dynamics of glycolipids in living membranes. This review focuses on lectins binding to the glycosphingolipid globotriaosylceramide (Gb3), an attractive host cell receptor, particularly for pathogens and pathogenic products. Shiga toxin (Stx), from Shigella dysenteriae or Escherichia coli, which is one of the most virulent bacterial toxins, binds and clusters Gb3, leading to local negative membrane curvature and the formation of tubular plasma membrane invaginations as the initial step for clathrin-independent endocytosis. After internalization, it is embracing the retrograde transport pathway. In comparison, the homotetrameric lectin LecA from Pseudomonas aeruginosa can also bind to Gb3, triggering the so-called lipid zipper mechanism, which results in membrane engulfment of the bacterium as an important step for its cellular uptake. Notably, both lectins bind to Gb3 but induce distinct plasma membrane domains and exploit mainly different transport pathways. Not only, several other Gb3-binding lectins have been described from bacterial origins, such as the adhesins SadP (from Streptococcus suis) and PapG (from E. coli), but also from animal, fungal, or plant origins. The variety of amino acid sequences and folds demonstrates the structural versatilities of Gb3-binding lectins and asks the question of the evolution of specificity and carbohydrate recognition in different kingdoms of life.
Collapse
Affiliation(s)
- Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Cavalcante da Silva G, Macário de Oliveira A, Soares de Freitas AF, Paiva PMG, Napoleão TH. Antinociceptive and Anti-Inflammatory Effects of Saline Extract and Lectin-Rich Fraction from Microgramma vacciniifolia Rhizome in Mice. Chem Biodivers 2021; 18:e2100125. [PMID: 33893724 DOI: 10.1002/cbdv.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 11/07/2022]
Abstract
Previous studies have characterized a saline extract from Microgramma vacciniifolia rhizome and its lectin (MvRL)-rich fraction with low acute toxicity. In the present study, we evaluated these preparations for acute toxicity (1,000 mg/kg) and antinociceptive and anti-inflammatory activities (100-400 mg/kg for the extract and 25-50 mg/kg for the fraction). No signs of toxicity were observed. Both the extract and fraction increased the latency period for nociception in the hot plate assay, decreased writhing induced by acetic acid, and promoted analgesic effects in phases 1 and 2 of the formalin test. The antinociceptive mechanism was attributed to interactions with opioid receptors and K+ ATPase channels. The extract and fraction decreased carrageenan-induced paw edema in 46.15 % and 77.22 %, respectively, at the highest doses evaluated. Furthermore, the fraction was shown to act on the bradykinin pathway. The ability to decrease leukocyte migration after treatment was also verified in the peritonitis and air pouch models. In exudates collected from air pouches, decreased tumor necrosis factor (TNF)-α and increased interleukin (IL)-10 levels were noted. Both the extract and fraction also effectively inhibited the development of granulomatous tissue. In conclusion, the substances investigated in this study can be used for the development of novel therapeutic options for pain and inflammatory processes.
Collapse
Affiliation(s)
- Gabriela Cavalcante da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
31
|
Kuhaudomlarp S, Siebs E, Shanina E, Topin J, Joachim I, da Silva Figueiredo Celestino Gomes P, Varrot A, Rognan D, Rademacher C, Imberty A, Titz A. Non-Carbohydrate Glycomimetics as Inhibitors of Calcium(II)-Binding Lectins. Angew Chem Int Ed Engl 2021; 60:8104-8114. [PMID: 33314528 PMCID: PMC8048816 DOI: 10.1002/anie.202013217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Because of the antimicrobial resistance crisis, lectins are considered novel drug targets. Pseudomonas aeruginosa utilizes LecA and LecB in the infection process. Inhibition of both lectins with carbohydrate-derived molecules can reduce biofilm formation to restore antimicrobial susceptibility. Here, we focused on non-carbohydrate inhibitors for LecA to explore new avenues for lectin inhibition. From a screening cascade we obtained one experimentally confirmed hit, a catechol, belonging to the well-known PAINS compounds. Rigorous analyses validated electron-deficient catechols as millimolar LecA inhibitors. The first co-crystal structure of a non-carbohydrate inhibitor in complex with a bacterial lectin clearly demonstrates the catechol mimicking the binding of natural glycosides with LecA. Importantly, catechol 3 is the first non-carbohydrate lectin ligand that binds bacterial and mammalian calcium(II)-binding lectins, giving rise to this fundamentally new class of glycomimetics.
Collapse
Affiliation(s)
| | - Eike Siebs
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| | - Elena Shanina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of Biology, Chemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Jérémie Topin
- Université Grenoble AlpesCNRSCERMAV38000GrenobleFrance
- Institute of Chemistry-NiceUMR 7272 CNRSUniversité Côte d'Azur06108NiceFrance
| | - Ines Joachim
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| | | | | | - Didier Rognan
- Laboratoire d'Innovation ThérapeutiqueUMR 7200 CNRS-Université de Strasbourg67400IllkirchFrance
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
- Institute of Chemistry and BiochemistryDepartment of Biology, Chemistry and PharmacyFreie Universität Berlin14195BerlinGermany
| | - Anne Imberty
- Université Grenoble AlpesCNRSCERMAV38000GrenobleFrance
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research66123SaarbrückenGermany
- Department of ChemistrySaarland University66123SaarbrückenGermany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover-BraunschweigGermany
| |
Collapse
|
32
|
Kuhaudomlarp S, Siebs E, Shanina E, Topin J, Joachim I, Silva Figueiredo Celestino Gomes P, Varrot A, Rognan D, Rademacher C, Imberty A, Titz A. Non‐Carbohydrate Glycomimetics as Inhibitors of Calcium(II)‐Binding Lectins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Eike Siebs
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| | - Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Department of Biology, Chemistry and Pharmacy Freie Universität Berlin 14195 Berlin Germany
| | - Jérémie Topin
- Université Grenoble Alpes CNRS CERMAV 38000 Grenoble France
- Institute of Chemistry-Nice UMR 7272 CNRS Université Côte d'Azur 06108 Nice France
| | - Ines Joachim
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| | | | | | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique UMR 7200 CNRS-Université de Strasbourg 67400 Illkirch France
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry Department of Biology, Chemistry and Pharmacy Freie Universität Berlin 14195 Berlin Germany
| | - Anne Imberty
- Université Grenoble Alpes CNRS CERMAV 38000 Grenoble France
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH) Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research 66123 Saarbrücken Germany
- Department of Chemistry Saarland University 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig Germany
| |
Collapse
|
33
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
34
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
36
|
Kuhaudomlarp S, Cerofolini L, Santarsia S, Gillon E, Fallarini S, Lombardi G, Denis M, Giuntini S, Valori C, Fragai M, Imberty A, Dondoni A, Nativi C. Fucosylated ubiquitin and orthogonally glycosylated mutant A28C: conceptually new ligands for Burkholderia ambifaria lectin (BambL). Chem Sci 2020; 11:12662-12670. [PMID: 34094460 PMCID: PMC8163020 DOI: 10.1039/d0sc03741a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two orthogonal, metal free click reactions, enabled to glycosylate ubiquitin and its mutant A28C forming two protein scaffolds with high affinity for BambL, a lectin from the human pathogen Burkholderia ambifaria. A new fucoside analogue, with high affinity with BambL, firstly synthetized and co-crystallized with the protein target, provided the insights for sugar determinants grafting onto ubiquitin. Three ubiquitin-based glycosides were thus assembled. Fuc-Ub, presented several copies of the fucoside analogue, with proper geometry for multivalent effect; Rha-A28C, displayed one thio-rhamnose, known for its ability to tuning the immunological response; finally, Fuc-Rha-A28C, included both multiple fucoside analogs and the rhamnose residue. Fuc-Ub and Fuc-Rha-A28C ligands proved high affinity for BambL and unprecedented immune modulatory properties towards macrophages activation.
Collapse
Affiliation(s)
| | - Linda Cerofolini
- CIRMMP, University of Florence via Sacconi, 6 50019 Sesto F.no FI Italy
| | - Sabrina Santarsia
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| | - Silvia Fallarini
- Università del Piemonte Orientale, Department of Pharmaceutical Sciences 28100 Novara Italy
| | - Grazia Lombardi
- Università del Piemonte Orientale, Department of Pharmaceutical Sciences 28100 Novara Italy
| | - Maxime Denis
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,Giotto Biotech via Madonna del Piano, 6, 50019 Sesto F.no FI Italy
| | - Stefano Giuntini
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,CERM via Sacconi, 6, 50019 Sesto F.no FI Italy
| | - Carolina Valori
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| | - Marco Fragai
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,CERM via Sacconi, 6, 50019 Sesto F.no FI Italy
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, University of Ferrara 44121 Ferrara Italy
| | - Cristina Nativi
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| |
Collapse
|
37
|
Meiers J, Zahorska E, Röhrig T, Hauck D, Wagner S, Titz A. Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of Pseudomonas aeruginosa. J Med Chem 2020; 63:11707-11724. [PMID: 32924479 PMCID: PMC7586336 DOI: 10.1021/acs.jmedchem.0c00856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infections by Pseudomonas aeruginosa are characterized by biofilm formation, which effectively enhances resistance toward antibiotics. Biofilm-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. Two extracellular P. aeruginosa lectins, LecA and LecB, are essential structural components for biofilm formation and thus render a possible anchor for biofilm-targeted drug delivery. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. We synthesized several ciprofloxacin-carbohydrate conjugates and established a structure-activity relationship. Conjugation of ciprofloxacin to lectin probes enabled biofilm accumulation in vitro, reduced the antibiotic's cytotoxicity, but also reduced its antibiotic activity against planktonic cells due to a reduced cell permeability and on target activity. This work defines the starting point for new biofilm/lectin-targeted drugs to modulate antibiotic properties and ultimately break antimicrobial resistance.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Eva Zahorska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Teresa Röhrig
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
38
|
Gonzalez-Gil A, Li TA, Porell RN, Fernandes SM, Tarbox HE, Lee HS, Aoki K, Tiemeyer M, Kim J, Schnaar RL. Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor Siglec-8. J Allergy Clin Immunol 2020; 147:1442-1452. [PMID: 32791164 DOI: 10.1016/j.jaci.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Haley E Tarbox
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Hyun Sil Lee
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Jean Kim
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
39
|
Liu M, Cheng X, Wang J, Tian D, Tang K, Xu T, Zhang M, Wang Y, Wang M. Structural insights into the fungi-nematodes interaction mediated by fucose-specific lectin AofleA from Arthrobotrys oligospora. Int J Biol Macromol 2020; 164:783-793. [PMID: 32698064 DOI: 10.1016/j.ijbiomac.2020.07.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Fungal lectin can bind specific carbohydrate structures of the host and work in recognition and adhesion or as a toxic factor. AofleA, as a fucose-specific lectin from widely studied nematode predatory fungus Arthrobotrys oligospora, possibly plays a key role in the event of capturing nematodes, but the mechanism remains unknown. Here we report the crystal structure of AofleA, which exists as a homodimer with each subunit folds as a six-bladed β-propeller. Our structural and biological results revealed that three of the six putative binding sites of AofleA had fucose-binding abilities. In addition, we found that AofleA could bind to the pharynx and intestine of the nematode in a fucose-binding-dependent manner. Our results facilitate the understanding of the mechanism that fucose-specific lectin mediates fungi-nematodes interaction, and provide structural information for the development of potential applications of AofleA.
Collapse
Affiliation(s)
- Mingjie Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Xiaowen Cheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Dongrui Tian
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kaijing Tang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
40
|
Cavada BS, Silva MTL, Osterne VJS, Pinto-Junior VR, Lossio CF, Madeira JC, Pereira MG, Leal RB, Ferreira WP, Nascimento KS, Assreuy AMS. Exploring the carbohydrate-binding ability of Canavalia bonariensis lectin in inflammation models. J Mol Recognit 2020; 33:e2870. [PMID: 32648306 DOI: 10.1002/jmr.2870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Lectins are a group of proteins of non-immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA-like mannose/glucose-specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α-methyl-D-mannoside (MMA) and mannose-1,3-α-D-mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose-type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high-mannose N-glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.
Collapse
Affiliation(s)
- Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Mayara T L Silva
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vinicius J S Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Claudia F Lossio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Juliana C Madeira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Maria G Pereira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ana M S Assreuy
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| |
Collapse
|
41
|
BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules 2020; 25:molecules25020248. [PMID: 31936166 PMCID: PMC7024360 DOI: 10.3390/molecules25020248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Lectins mediate adhesion of pathogens to host tissues, filling in a key role in the first steps of infection. Belonging to the opportunistic pathogen Burkholderia cenocepacia, BC2L-C is a superlectin with dual carbohydrate specificity, believed to mediate cross-linking between bacteria and host cells. Its C-terminal domain binds to bacterial mannosides while its N-terminal domain (BCL2-CN) recognizes fucosylated human epitopes. BC2L-CN presents a tumor necrosis factor alpha (TNF-) fold previously unseen in lectins with a novel fucose binding mode. We report, here, the production of a novel recombinant form of BC2L-CN (rBC2L-CN2), which allowed better protein stability and unprecedented co-crystallization with oligosaccharides. Isothermal calorimetry measurements showed no detrimental effect on ligand binding and data were obtained on the binding of Globo H hexasaccharide and l-galactose. Crystal structures of rBC2L-CN2 were solved in complex with two blood group antigens: H-type 1 and H-type 3 (Globo H) by X-ray crystallography. They provide new structural information on the binding site, of importance for the structural-based design of glycodrugs as new antimicrobials with antiadhesive properties.
Collapse
|
42
|
Zahorska E, Kuhaudomlarp S, Minervini S, Yousaf S, Lepsik M, Kinsinger T, Hirsch AKH, Imberty A, Titz A. A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from d-galactose pentaacetate. Chem Commun (Camb) 2020; 56:8822-8825. [DOI: 10.1039/d0cc03490h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Design and four step synthesis of simple, readily accessible low-nanomolar divalent LecA ligands with selectivity over human galectin-1.
Collapse
Affiliation(s)
- Eva Zahorska
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | | | - Saverio Minervini
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Sultaan Yousaf
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Martin Lepsik
- Université Grenoble Alpes
- CNRS
- CERMAV
- 38000 Grenoble
- France
| | - Thorsten Kinsinger
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| | - Anna K. H. Hirsch
- Deutsches Zentrum für Infektionsforschung (DZIF)
- Standort Hannover-Braunschweig
- 38124 Braunschweig
- Germany
- Department of Pharmacy
| | - Anne Imberty
- Université Grenoble Alpes
- CNRS
- CERMAV
- 38000 Grenoble
- France
| | - Alexander Titz
- Chemical Biology of Carbohydrates
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- 66123 Saarbrücken
- Germany
| |
Collapse
|