1
|
Zhang Y, Li K, Li C, Liang W, Li K, Li J, Wei X, Yang J. An atypical KLRG1 in Nile tilapia involves in adaptive immunity as a potential marker for activated T lymphocytes. FISH & SHELLFISH IMMUNOLOGY 2021; 113:51-60. [PMID: 33798718 DOI: 10.1016/j.fsi.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Killer cell lectin-like receptor G subfamily 1 (KLRG1) is a receptor generally expressed on effector CD8+ T cells or NK cells at terminal differentiation stage, and it will be highly induced for lymphocyte cytotoxicity upon pathogen infection or lymphocyte activation. However, little is known about the character or function of KLRG1 in lower vertebrates. In present study, we reappraised a molecule that previously defined as KLRG1 in the genomic sequence of Nile tilapia Oreochromis niloticus, and identified it as an atypical KLRG1-like molecule (defined as On-KLRG1-L), and illustrated its potential function serving as a marker representing effector T lymphocytes of fish species. On-KLRG1-L consists of two C-type lectin-like domains (CTLDs) without transmembrane region, and the tertiary structure of the CTLD is highly alike to that in mouse KLRG1. As a CTLD-containing protein, the recombinant On-KLRG1-L could bind PGN and several microbes in vitro. On-KLRG1-L was widely expressed in immune-associated tissues, with the highest expression level in the gill. Once Nile tilapia is infected by Aeromonas hydrophila, mRNA level of On-KLRG1-L in spleen lymphocytes were significantly up-regulated on 5 days after infection. Meanwhile, On-KLRG1-L protein was also induced on 5 or 8 days after A. hydrophila infection. Furthermore, we found both mRNA and protein levels of On-KLRG1-L were dramatically enhanced within several hours after spleen lymphocytes were activated by T cell-specific mitogen PHA in vitro. More importantly, the ratio of On-KLRG1-L+ T cells was also augmented after PHA stimulation. The observations suggested that the KLRG1-like molecule from Nile tilapia participated in lymphocyte activation and anti-bacterial adaptive immune response, and could serve as an activation marker of T lymphocytes. Our study thus provided new evidences to understand lymphocyte-mediated adaptive immunity of teleost.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Lin G, Zheng M, Li S, Xie J, Fang W, Gao D, Huang J, Lu J. Response of gut microbiota and immune function to hypoosmotic stress in the yellowfin seabream (Acanthopagrus latus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140976. [PMID: 32736105 DOI: 10.1016/j.scitotenv.2020.140976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Osmotic stress is associated with heightened immune functions and altered microbiota in the fish intestine. In this study, we explored the effects of hypoosmotic stress on the intestine of euryhaline yellowfin seabream (Acanthopagrus latus) after acute exposure to brackish water, low-saline water, and freshwater environments. The results showed that hypoosmotic stress reshaped the composition of the microbial community and altered the gene expression in the intestine. Probiotics Lactobacillus and Pseudomonas showed higher relative abundance in a brackish water environment, whereas pathogenic bacteria, including Vibrio and Aeromonas, were more abundant in the freshwater environment. At the transcriptional level, osmoregulation-related genes were identified as up/down regulated differentially expressed genes (DEGs) as well as a series of immune-related DEGs associated with pathogen recognition, antimicrobial ability, pro-inflammatory cytokines, cell apoptosis, and antioxidant defense. Physiological analysis showed that Na+ K+-ATPase activity was significantly inhibited by hypoosmotic stress in freshwater. Meanwhile, the intestinal antioxidant defense system of yellowfin seabream was challenged. Correlation network analysis demonstrated the close interactions among intestinal microbes, differentially expressed genes, and physiological parameters. This study provides the critical insights into the function of the intestine fish encountering hypoosmotic stress.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
3
|
Huang Y, Liu X, Cai J, Tang J, Cai S, Lu Y, Wang B, Jian J. Biological characterisation, expression and functional analysis of non-specific cytotoxic cell receptor protein 1 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 104:579-586. [PMID: 32610151 DOI: 10.1016/j.fsi.2020.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Non-specific cytotoxic cell receptor protein 1 (NCCRP-1) plays a role in recognition of target cell and activation of non-specific cytotoxic cell (NCC). In this study, the full length of Nile tilapia NCCRP-1 (On-NCCRP-1) was cloned. cDNA is composed of 1045 bp with a 90 bp of 5'-Untranslated Regions (UTR), 702 bp open reading frame (ORF) and 253 bp 3'-UTR, encoding 233 amino acids (GenBank accession no: MF162296). The On-NCCRP-1 genomic sequence is 4471 bp in length and contains six exons and five introns. On-NCCRP-1 possesses some inherent conservative domains, such as proline-rich motifs, antigen recognition site, and F-box-related domain. Subcellular localisation and Western blot analysis indicated that On-NCCRP-1 is located in the cell membrane. The transcript of On-NCCRP-1 was detected in all the examined tissues of healthy Nile tilapia by using qRT-PCR, with the highest expression levels in the liver. Following Streptococcus agalactiae challenged in vivo, the On-NCCRP-1 expression was up-regulated significantly in brain, intestines, head kidney and spleen. In the in vitro analysis, the On-NCCRP-1 expression in NCCs was up-regulated significantly from 8 h to 12 h after LPS challenge, and up-regulated significantly at 12 h after challenged with polyI:C. After NCCs were challenged with inactivated S. agalactiae, the On-NCCRP-1 expression was down-regulated significantly after 24 h. NF-кB pathway was strongly activated by the over-expression of On-NCCRP-1 in HEK-293T cells. These results indicate that On-NCCRP-1, as a membrane surface receptor of NCCs, may play an important role in immune response to pathogenic infection in Nile tilapia.
Collapse
Affiliation(s)
- Yu Huang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Xinchao Liu
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jufen Tang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Bei Wang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
4
|
Gökalp FD, Doğanlar O, Doğanlar ZB, Güner U. The genotoxic effects of mixture of aluminum, arsenic, cadmium, cobalt, and chromium on the gill tissue of adult zebrafish ( Danio rerio, Hamilton 1822). Drug Chem Toxicol 2020; 45:1158-1167. [PMID: 32847431 DOI: 10.1080/01480545.2020.1810260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study is to investigate the genotoxic effects of mixtures of five metals on zebrafish at two different concentrations; at the permissible maximum contamination levels in drinking water and irrigation waters. The drinking water limits are as follows: 300 µg/L for Aluminum (Al+3), 10 µg/L for Arsenic (As+3), 5 µg/L for Cadmium (Cd+2), 10 µg/L for Cobalt (Co+2), and 50 µg/L for Chromium (Cr+2). The irrigation water limits: 5000 µg/L for Al+3, 100 µg/L for As+3, 10 µg/L for Cd+2, 50 µg/L for Co+2, and 100 µg/L for Cr+2. The zebrafish underwent chronic exposure for periods of 5, 10, and 20 days. The gene expressions for mitochondrial superoxide dismutase (SOD2), stress-specific receptor protein NCCRP1, the heat shock proteins: Hsp9, Hsp14, Hsp60, Hsp70, DNA repair (XRCC1 and EXO1), and apoptosis (BOK and BAX) were evaluated. It was found that exposure to the low- and high-concentrations of the heavy metal mixtures caused cell stress, an increased expression of the antioxidant genes, and repair proteins. As the duration of exposure was increased, the cells progressed through the apoptotic pathway. This was more evident in the high-concentration exposure groups. The results demonstrated the necessity for a reevaluation of the maximum values of heavy metal and toxic element concentrations as prescribed by the Local Standing Rules of Water Pollution Control Regulation, as well as a reevaluation of the limitations of heavy metal mixture interactions with respect to ecological balance and environmental health.HighlightsThe purpose of this study was to investigate the genotoxic effects of a mixture of Aluminum, Arsenic, Cadmium, Cobalt, Chromium on zebrafish, within drinking water, and irrigation water limits determining the concentration.The zebrafish were exposed to two different concentrations of each metal mixture for 5-, 10-, and 20-day periods. Following exposure, gene expressions of the zebrafish's gill tissues were examined.As a result of the exposure to the metal mixtures, the following occurred: cell stress, increased antioxidant gene activity, and attempts to protect cell viability. However, the cells progressed through the apoptotic pathway after prolonged exposure.The results demonstrated the necessity for a reevaluation of the maximum limits of metal and toxic element concentrations as stated in the Standing Rules of Water Pollution Control Regulation.
Collapse
Affiliation(s)
- Fulya Dilek Gökalp
- Science Faculty, Department of Biology, Trakya University, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Medicine Faculty, Department of Medicine Biology, Trakya University, Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Medicine Faculty, Department of Medicine Biology, Trakya University, Edirne, Turkey
| | - Utku Güner
- Science Faculty, Department of Biology, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
6
|
Jurado J, Villasanta-González A, Tapia-Paniagua ST, Balebona MC, García de la Banda I, Moríñigo MÁ, Prieto-Álamo MJ. Dietary administration of the probiotic Shewanella putrefaciens Pdp11 promotes transcriptional changes of genes involved in growth and immunity in Solea senegalensis larvae. FISH & SHELLFISH IMMUNOLOGY 2018; 77:350-363. [PMID: 29635066 DOI: 10.1016/j.fsi.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Senegalese sole (Solea senegalensis) has been proposed as a high-potential species for aquaculture diversification in Southern Europe. It has been demonstrated that a proper feeding regimen during the first life stages influences larval growth and survival, as well as fry and juvenile quality. The bacterial strain Shewanella putrefaciens Pdp11 (SpPdp11) has shown very good probiotic properties in Senegalese sole, but information is scarce about its effect in the earliest stages of sole development. Thus, the aim of this study was to investigate the effect of SpPdp11, bioencapsulated in live diet, administered during metamorphosis (10-21 dph) or from the first exogenous feeding of Senegalese sole (2-21 dph). To evaluate the persistence of the probiotic effect, we sampled sole specimens from metamorphosis until the end of weaning (from 23 to 73 dph). This study demonstrated that probiotic administration from the first exogenous feeding produced beneficial effects on Senegalese sole larval development, given that specimens fed this diet exhibited higher and less dispersed weight, as well as increases in both total protein concentration and alkaline phosphatase activity, and in non-specific immune response. Moreover, real-time PCR documented changes in the expression of a set of genes involved in central metabolic functions including genes related to growth, genes coding for proteases (including several digestive enzymes), and genes implicated in the response to stress and in immunity. Overall, these results support the application of SpPdp11 in the first life stages of S. senegalensis as an effective tool with the clear potential to benefit sole aquaculture.
Collapse
Affiliation(s)
- Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Alejandro Villasanta-González
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Miguel Ángel Moríñigo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
7
|
Wu N, Zhang XY, Huang B, Zhang N, Zhang XJ, Guo X, Chen XL, Zhang Y, Wu H, Li S, Li AH, Zhang YA. Investigating the potential immune role of fish NCAMs: Molecular cloning and expression analysis in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:765-777. [PMID: 26277647 DOI: 10.1016/j.fsi.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
The immune role of NCAMs has been revealed in mammals, yet there is no such report in fish. Hence, we analyzed the molecular characterizations and immune-associated expression patterns of NCAMs in mandarin fish. Three NCAM members, named mfNCAM1a, mfNCAM1b and mfNCAM2, were identified. Among the cDNA sequences of mfNCAMs, AU-rich elements in the 3' UTRs of mfNCAM1b and mfNCAM2 as well as VASE sequences in the fourth Ig-like domain-encoding regions of mfNCAM1a and mfNCAM1b were discovered. Moreover, the syntenic analysis suggested that the duplication of NCAM1 is fish-specific. At mRNA and protein levels, the expression analyses revealed that mfNCAMs existed in both systemic and mucosal immune tissues, and located within lymphoid cells. Upon stimulated either by LPS or poly I:C, the expression level of mfNCAM1a was significantly up-regulated in head kidney, spleen, liver, and gut, whereas mfNCAM1b only in head kidney and liver, and mfNCAM2 only in liver. Additionally, the cells coexpressed mfNCAM1 and mfNCCRP-1 might imply the equivalents to mammalian NK cells. Our finding firstly demonstrates the member-specific immune-related tissue expression pattern and immune activity for fish NCAMs. Current data indicate that mfNCAM2 has little immune activity, while the immune activity of mfNCAM1a exists in more tissues than mfNCAM1b, and mfNCAM1a may tend to respond more actively to viral while mfNCAM1b to bacterial stimulants. Additionally, NCAM1b should be a fish-specific member with unique immune function, judging from its different expression pattern, immune activity as well as phylogenetic relationship to mfNCAM1a.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Nu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Shanghai Ocean University, Shanghai 201306, China
| | - Xia Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 4302231, China
| | - Xiao-Ling Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ai-Hua Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Huang XZ, Li YW, Mai YZ, Luo XC, Dan XM, Li AX. Molecular cloning of NCCRP-1 gene from orange-spotted grouper (Epinephelus coioides) and characterization of NCCRP-1(+) cells post Cryptocaryon irritans infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:267-278. [PMID: 24844613 DOI: 10.1016/j.dci.2014.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Nonspecific cytotoxic cells (NCCs) are an important cytotoxic cell population in the innate teleost immune system. The receptor designated "NCC receptor protein 1" (NCCRP-1) has been reported to be involved in the recognition and activation of NCCs. In this study, the full-length cDNA of Epinephelus coioides NCCRP-1 (ecnccrp-1) was cloned. The open reading frame (ORF) of ecnccrp-1 is 699 bp, encoding a 232 amino acid protein that includes proline-rich motifs at the N-terminus and is related to the F-box associated family. Although a bioinformatics analysis showed that EcNCCRP-1 had no signal peptide or transmembrane helices, a polyclonal antibody directed against recombinant EcNCCRP-1 efficiently labeled a membrane protein in the head kidney, detected with Western blot analysis, which indicated that the protein localized to the cell surface. RT-PCR showed that the constitutive expression of ecnccrp-1 was higher in the lymphoid organs, such as the trunk kidney, spleen, head kidney, and thymus, and lower in brain, heart, fat, liver, muscle, and skin. After infection with Cryptocaryon irritans, the transcription of ecnccrp-1 was analyzed at the infected sites (skin and gills) and in the systemic immune organs (head kidney and spleen). At the infected sites, especially the skin, ecnccrp-1 expression was upregulated at 6h post infection, reaching peak expression on day 3 post the primary infection. However, the expression patterns differed in the systemic immune organs. In the spleen, ecnccrp-1 was gradually increased in the early infection period and decreased sharply on day 3 post the primary infection, whereas in the head kidney, the transcription of ecnccrp-1 was depressed during almost the whole course of infection. An immunohistochemical analysis showed that EcNCCRP-1(+) cells accumulated at the sites of infection with C. irritans. These results suggested that NCCs were involved in the process of C. irritans infection in E. coioides.
Collapse
Affiliation(s)
- Xia-Zi Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Yong-Zhan Mai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong Province, PR China
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
9
|
Lazado CC, Caipang CMA. Probiotics-pathogen interactions elicit differential regulation of cutaneous immune responses in epidermal cells of Atlantic cod Gadus morhua. FISH & SHELLFISH IMMUNOLOGY 2014; 36:113-119. [PMID: 24176817 DOI: 10.1016/j.fsi.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/19/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
Little is known on the cutaneous immune responses during probiotics-pathogen interactions in fish. Thus, this study employed Atlantic cod primary epidermal (EP) cell cultures as a model to understand this interaction. The probiotics-pathogen interactions in the EP cell cultures were elucidated using Vibrio anguillarum 2133 (VA) as the pathogen and two host-derived bacteria (GP21 and GP12) as the probiotics. There was a regional size difference on the EP cells; i.e., EP cells from the dorsal region were significantly larger than the EP cells at the ventral side. VA significantly decreased viability of EP cells. In the presence of probiotics, this inhibition was mitigated. The probiotics reduced VA-induced cellular apoptosis and the probiotics-pathogen interactions influenced cellular myeloperoxidase activity during the latter stage of co-incubation. The probiotics-pathogen interactions triggered differential regulation of immune-related genes and the effects of the interaction were dependent on the region where the cells were isolated and the length of the co-incubation period. In most cases, the presence of probiotics alone showed no significant change on the mRNA level of immune genes in the EP cells but triggered immunostimulatory activity when incubated with VA. This study showed that the virulence of VA in EP cells could be modulated by host-derived probiotics and the immunomodulatory characteristics of the two candidate probionts advanced their immune-related probiotic potential.
Collapse
Affiliation(s)
- Carlo C Lazado
- Aquaculture Genomics Research Unit, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway
| | | |
Collapse
|
10
|
Cai J, Wei S, Wang B, Huang Y, Tang J, Lu Y, Wu Z, Jian J. Cloning and expression analysis of nonspecific cytotoxic cell receptor 1 (Ls-NCCRP1) from red snapper (Lutjanus sanguineus). Mar Genomics 2013; 11:39-44. [DOI: 10.1016/j.margen.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 11/26/2022]
|
11
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
12
|
Krasnov A, Kileng Ø, Skugor S, Jørgensen SM, Afanasyev S, Timmerhaus G, Sommer AI, Jensen I. Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (Gadus morhua) brain. Mol Immunol 2013; 54:443-52. [DOI: 10.1016/j.molimm.2013.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/17/2013] [Indexed: 01/04/2023]
|
13
|
Lazado CC, Caipang CMA, Gallage S, Brinchmann MF, Kiron V. Expression profiles of genes associated with immune response and oxidative stress in Atlantic cod, Gadus morhua head kidney leukocytes modulated by live and heat-inactivated intestinal bacteria. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:249-55. [DOI: 10.1016/j.cbpb.2009.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/25/2022]
|
14
|
Prieto-Alamo MJ, Abril N, Osuna-Jiménez I, Pueyo C. Solea senegalensis genes responding to lipopolysaccharide and copper sulphate challenges: large-scale identification by suppression subtractive hybridization and absolute quantification of transcriptional profiles by real-time RT-PCR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:312-319. [PMID: 19070373 DOI: 10.1016/j.aquatox.2008.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 11/01/2008] [Indexed: 05/27/2023]
Abstract
Solea senegalensis is a commercially relevant aquaculture species that remains largely unexplored at the genomic level. The aim of this study was to identify novel genomic responses to lipopolysaccharide and copper sulphate challenges using suppression subtractive hybridization (SSH) and real-time RT-PCR. Forward- and reverse-subtractive libraries were generated for the identification of genes whose transcription is altered in response to lipopolysaccharide (LPS) (immunomodulator) in head kidney (immunologically important organ) and to CuSO(4) (common algacide) in liver (central metabolic organ and important source of immune transcripts). A total of 156 genes involved in major physiological functions were identified by SSH, the identified sequences representing a significant increase in the number of sole ESTs in public databases. Fifteen genes represented in the subtracted libraries were selected for further tissue, temporal and inducible transcriptional profiling by real-time RT-PCR. A rigorous quantification of transcript copy numbers was performed for this purpose in both pooled and individual samples from two independent experiments. More than half of the investigated mRNAs encode proteins that deal with different aspects of the immune response, like NCCRP1 (non-specific cytotoxic cell receptor), C3 and C7 (complement components), and ferritin M, HP and TF (iron homeostasis), or play a crucial role in its regulation, like TRAF3. Other mRNAs studied encode proteins involved in metabolism, like TKT and NDUFA4, the response to stimulus, like CEBPB (transcription factor) and CIRBP (RNA-binding protein), and other cell processes. Highly abundant (>500 molecules/pg total RNA) and rare (< or =1 molecules/pg) mRNA species were quantified in each sole organ examined, and outstanding differences were also recorded in the comparison between the two organs, e.g. C3 and TF mRNAs were largely overexpressed in liver (>5000 molecules/pg) as compared to head kidney (<5 molecules/pg). Most investigated mRNAs displayed significant alterations in their steady-state copy number following LPS and/or CuSO(4) stimulation, i.e. they were (i) up-regulated in response to both treatments in at least one of the two organs (NCCRP1, CEBPB, SQSTM1, NDUFA4, C7 and HP), (ii) up-regulated (TF, CIRBP, TRFA, C3) or down-regulated (TKT) by LPS, their levels remaining essentially unchanged upon CuSO(4) challenge, or (iii) down-regulated by LPS, though up-regulated by CuSO(4) (ferritin M). Quantifications in individual fish were consistent with those in pooled samples with respect to both the direction and the absolute changes in transcript abundance.
Collapse
|
15
|
Caipang CMA, Hynes N, Puangkaew J, Brinchmann MF, Kiron V. Intraperitoneal vaccination of Atlantic cod, Gadus morhua with heat-killed Listonella anguillarum enhances serum antibacterial activity and expression of immune response genes. FISH & SHELLFISH IMMUNOLOGY 2008; 24:314-322. [PMID: 18226548 DOI: 10.1016/j.fsi.2007.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/22/2007] [Accepted: 11/24/2007] [Indexed: 05/25/2023]
Abstract
Serum-mediated reduction in bacterial count and expression of a number of immune response genes in the blood of Atlantic cod, Gadus morhua were investigated following intraperitoneal vaccination with heat-killed Listonella (Vibrio) anguillarum. Blood was collected from the caudal vein of both vaccinated and non-vaccinated (PBS-injected) fish at 0, 1, 3, 7 and 10 days post-vaccination (dpv). Serum protein concentration and antibacterial activity of the serum samples were determined. Whole blood was used for semi-quantitative RT-PCR of immune-related genes. Total serum protein was not significantly different between the vaccinated and non-vaccinated groups. Sera from the vaccinated fish significantly reduced L. anguillarum count on 3 dpv, with reductions of at least 2 log colony forming units per ml (CFU/ml) relative to the non-vaccinated fish. Expression of antibacterial genes, bactericidal/permeability-increasing protein/lipopolysaccharide-binding protein (BPI/LBP), g-type lysozyme and transferrin was significantly upregulated in the vaccinated fish, with maximum expression within 7 dpv. Cytotoxic-related and cell-mediated immunity genes such as, apolipoprotein A-I and the non-specific cytotoxic cell receptor protein (NCCRP-1) had maximum expression at 3 and 7 dpv, respectively. Significant upregulation in expression of pro-inflammatory cytokines, IL-1 beta and IL-8 was also observed in the vaccinated fish at 1 dpv. The upregulation of immune response genes following vaccination provides valuable information in the understanding of immune mechanisms against vibriosis in Atlantic cod particularly on the acute phase response during bacterial infection.
Collapse
|
16
|
Seppola M, Larsen AN, Steiro K, Robertsen B, Jensen I. Characterisation and expression analysis of the interleukin genes, IL-1beta, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Mol Immunol 2007; 45:887-97. [PMID: 17875325 DOI: 10.1016/j.molimm.2007.08.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The mammalian interleukins IL-1beta and IL-8 are important pro-inflammatory cytokines often used as markers of an activated inflammatory response, while IL-10 is regarded as an anti-inflammatory cytokine and plays a crucial role in the regulation of inflammation. Few cytokines from gadoid fish have been described, and herein the sequence and expression of these interleukin genes are studied in Atlantic cod (Gadus morhua L.). IL-1beta, IL-8 and IL-10 from cod show similarities in gene organisation and predicted protein sequences, compared to counterpart genes in other teleosts. Gene expression was studied using quantitative real time PCR in response to several treatments both in vitro and in vivo. In adherent head kidney cells, infectious pancreatic necrosis virus (IPNV) and lipopolysaccharide (LPS) significantly stimulated gene expression of IL-1beta. The expression of IL-1beta was not increased after treatment with a viral imitator (poly I:C), and neither IL-8 nor IL-10 responded to any of these agents in vitro. However, in vivo administrated poly I:C and formalin-killed Vibrio anguillarum (In-V.ang) induced interleukin expression, varying in intensity between different organs. IL-1beta and IL-10 gene expression profiles showed an opposite induction pattern in the in vivo experiments. Injection of In-V.ang highly induced IL-1beta expression, while a low induction was evident for IL-10, whereas the opposite was observed after injection of poly I:C. This pattern was particularly marked in spleen, where also IL-8 followed the expression pattern of IL-1beta. The opposite expression profiles indicate a suppressive role for IL-10 on the transcription of IL-1beta, and to a lesser extent on IL-8 transcription. Along with the identification of important promoter regulatory motives, these results provide tools for studying inflammatory responses in cod.
Collapse
Affiliation(s)
- Marit Seppola
- Fiskeriforskning, Norwegian Institute of Fisheries and Aquaculture Research, N-9291 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
17
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|