1
|
Cambray-Young J. Infectious diseases of zebrafish. Zebrafish 2024:124-158. [DOI: 10.1079/9781800629431.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
2
|
Rice MC, Janik AJ, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. PLoS Biol 2024; 22:e3002606. [PMID: 38814944 PMCID: PMC11139271 DOI: 10.1371/journal.pbio.3002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew J. Janik
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Rice MC, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555169. [PMID: 37693489 PMCID: PMC10491165 DOI: 10.1101/2023.08.28.555169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current Address: Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
4
|
Janik AJ, Whipps CM. Differences in susceptibility to Mycobacterium chelonae in zebrafish (Danio rerio) lines commonly used in scientific research. JOURNAL OF FISH DISEASES 2022; 45:435-443. [PMID: 34905233 PMCID: PMC8828697 DOI: 10.1111/jfd.13572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/14/2023]
Abstract
Mycobacteriosis is one of the most common diseases encountered in laboratory zebrafish. These infections can present a problem to researchers using zebrafish because they may introduce unknown experimental variables. Whilst differences in severity of infections between species of Mycobacterium infecting zebrafish have been well documented, little is known about differences in susceptibility between zebrafish lines. Previous surveys have found higher prevalence in the TU zebrafish line relative to other lines, suggesting that there may be underlying genetic differences in susceptibility. This study investigates Mycobacterium chelonae H1E2-GFP infections in four different zebrafish lines commonly used in research (AB, 5D, casper and TU). Fish were exposed to a labelled (green-fluorescent protein (GFP)) strain of M. chelonae by intraperitoneal injection, and infection status was evaluated after 10 weeks. Visualization of GFP in euthanized fish and histology were used as endpoints. In GFP images, severity was assessed by image analysis, and in histological sections, counts of granulomas containing acid-fast bacteria were used. Results indicated differences in severity of infections between lines, but no significant differences in prevalence.
Collapse
Affiliation(s)
- Andrew J Janik
- SUNY-ESF, State University of New York College of Environmental Science and Forestry, Environmental and Forest Biology, Syracuse, NY, USA
| | - Christopher M Whipps
- SUNY-ESF, State University of New York College of Environmental Science and Forestry, Environmental and Forest Biology, Syracuse, NY, USA
| |
Collapse
|
5
|
Garcia KD, Coda KA, Smith AA, Condren AR, Deng Y, Perkins C, Sanchez LM, Fortman JD. The Effects of Water Volume and Bacterial Concentration on the Water Filtration Assay Used in Zebrafish Health Surveillance. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:655-660. [PMID: 34470695 DOI: 10.30802/aalas-jaalas-21-000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The number of zebrafish in biomedical research has increased exponentially over the past decades, leading to pressure onthe laboratory animal community to develop and refine techniques to monitor zebrafish health so that suitable stocks can be maintained for research. The water filtration assay is a promising technique in which water from a zebrafish system is filtered, and the filter analyzed by PCR. In the present report, we studied how the volume of water tested and the concentration of bacterial pathogens affected test results. To do so, we used stock solutions of 3 zebrafish pathogens: Edwardsiella ictaluri, Aeromonas hydrophila, and Mycobacterium marinum. We used these stocks to create solutions with known concentrations of each pathogen, ranging between 102 and 107 Colony Forming Units (CFU) per ml. One, 2, and 3 L of each solution was filtered using positive pressure, and the filters were submitted to a commercial lab for PCR testing. Results were fit with a logistic regression model, and the probability of obtaining a positive result were calculated. Test sensitivity varied by organism, but in general, test results were positively correlated with the volume of the water filtered and with the concentration of bacteria in solution. We conclude that a positive result can be expected for E. ictaluri at 105 CFU per mL, A. hydrophila at 106 CFU perml, and M. marinum at 106 CFU per mL, when 3 L of solution are filtered.
Collapse
|
6
|
Dyková I, Žák J, Reichard M, Součková K, Slabý O, Bystrý V, Blažek R. Histopathology of laboratory-reared Nothobranchius fishes: Mycobacterial infections versus neoplastic lesions. JOURNAL OF FISH DISEASES 2021; 44:1179-1190. [PMID: 33844322 DOI: 10.1111/jfd.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Short-lived killifishes of the genus Nothobranchius Peters, 1868 (Cyprinodontiformes) are considered promising model organisms for biomedical research on ageing and tumorigenesis. We conducted histopathological analysis of 411 adult individuals from three Nothobranchius species to study details on spontaneous age-related neoplastic lesions. Light microscopy based on H&E and toluidine blue-stained sections revealed (a) non-proliferative liver changes with pronounced vacuolation of hepatocytes; (b) proliferation of kidney haemopoietic tissue contributing to excretory system damage; (c) proliferation of splenic mononuclear haemoblasts accompanied by reduced erythropoiesis; (d) proliferation of mononuclear cell aggregates in the liver parenchyma; and (e) rare occurrence of hepatocellular adenomas. Ziehl-Neelsen (ZN) staining revealed that the proliferative lesions are a host defence response to mycobacterial infections manifested by activation of the mononuclear phagocytic system and atypical granulomatous inflammatory reaction. 16S rRNA analysis identified three species of Mycobacterium in our samples. Our findings turn attention to lesions which mimic neoplasms by their gross appearance and question the light microscopic interpretation of lesions unless differential ZN staining is included. Beyond the limitations of our morphological approach, the intensity of mycobacterial infections is a challenging opportunity for research into the molecular-genetic background of the mononuclear phagocytic system reaction in Nothobranchius killifish.
Collapse
Affiliation(s)
- Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Žák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Brno, Czech Republic
| | - Martin Reichard
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Součková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vojtěch Bystrý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radim Blažek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Regev Y, Davidovich N, Berzak R, Lau SCK, Scheinin AP, Tchernov D, Morick D. Molecular Identification and Characterization of Vibrio Species and Mycobacterium Species in Wild and Cultured Marine Fish from the Eastern Mediterranean Sea. Microorganisms 2020; 8:E863. [PMID: 32517374 PMCID: PMC7356242 DOI: 10.3390/microorganisms8060863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/03/2022] Open
Abstract
In contrast to numerous documented pathogens and infectious diseases of aquaculture, there is a lack of baseline data and information regarding pathogenic agents' prevalence in wild marine fish populations. This study focused on two common fish pathogenic microorganisms, namely Mycobacterium species and Vibrio species, both of which are known to be major causes of fish loss, occasionally to the extent of being a limiting factor in fish production. Both microorganisms are known as zoonotic agents. In total, 210 wild marine indigenous and Lessepsian fish from four different species from the eastern Mediterranean Sea were sampled and tested for Vibrio species and Mycobacterium species during a two-year period (2016-2017). Using PCR with 16S rRNA primers, we detected different strain variations of Mycobacterium species and Vibrio species and, based on the sequencing results, the overall prevalence for Vibrio species in wild fish in 2016 was significantly higher compared to 2017. No significant difference was detected for Mycobacterium species prevalence in wild fish between 2016 and 2017. In addition, 72 gilthead seabream (Sparus aurata) from an Israeli offshore marine farm were also examined during the two-year period (2017-2018). The results suggest that Mycobacterium species prevalence was significantly higher in 2018, while in 2017 there was no positive results for Mycobacterium species. In addition, there was no significant difference between both years in regard to the prevalence of Vibrio species for maricultured fish. These results highlight the necessity of continuous molecular monitoring in order to evaluate the prevalence of pathogenic microorganisms in both wild and cultured fish populations.
Collapse
Affiliation(s)
- Yael Regev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | | | - Ran Berzak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Stanley C. K. Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| | - Aviad P. Scheinin
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Dan Tchernov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Danny Morick
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
8
|
Marancik D, Collins J, Afema J, Lawrence C. Exploring the advantages and limitations of sampling methods commonly used in research facilities for zebrafish health inspections. Lab Anim 2019; 54:373-385. [PMID: 31387447 DOI: 10.1177/0023677219864616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Examining zebrafish populations for the presence of disease is an integral component of managing fish health in research facilities. Currently, many different strategies are used for zebrafish fish health inspections, which is a scenario that may result in subjective and biased diagnostic evaluations. The goal of this study was to compare the success of pathogen detection between a sample size of randomly selected fish (n = 60) that provides 95% confidence in pathogen detection based on a presumed pathogen prevalence level ≥5%, and other subpopulations and sample numbers commonly submitted for diagnostic testing within a 1000 tank, 30,000 fish, recirculating research system. This included fish collected from a sump tank (n = 53), sentinel fish (n = 11), and fish that were found moribund or freshly dead (n = 18). Additionally, five fish from each subpopulation were collected for histopathologic examination. A second study used retrospective data to examine pathogen distribution between systems (n = 2-5) in multi-system facilities (n = 5) using a sample size of 60 fish per system. For the pathogens detected, results supported the use of representative sample numbers rather than smaller numbers of populations considered more at risk. The exception to this is for the moribund/mortality group, which may be a resource for targeted surveillance of select pathogens. Each system within multi-system facilities should be considered separate units in terms of fish health inspections and biosecurity. Development of these evidence-based standards for fish health inspections in zebrafish systems enhances fish welfare, provides identification of potentially zoonotic pathogens, and ensures scientific integrity and reproducibility of research results.
Collapse
Affiliation(s)
- David Marancik
- Department of Pathobiology, St. George's University School of Veterinary Medicine, Grenada
| | | | - Josephine Afema
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, USA
| | | |
Collapse
|
9
|
Chang CT, Lewis J, Whipps CM. Source or Sink: Examining the Role of Biofilms in Transmission of Mycobacterium spp. in Laboratory Zebrafish. Zebrafish 2019; 16:197-206. [PMID: 30835168 DOI: 10.1089/zeb.2018.1689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zebrafish health is a primary research concern because diseases can have unintended impacts on experimental endpoints. Ideally, research would be conducted using disease-free fish or fish with known disease status. Mycobacteriosis is a common bacterial disease in wild and captive fishes, including zebrafish. Despite its prevalence, the dynamics of transmission and potential sources of mycobacterial infections in zebrafish are only partially understood. One suspected natural infection source is surface biofilms on tanks and other system components. This study investigates the role that tank biofilms play in mycobacteriosis in laboratory zebrafish by evaluating the establishment of biofilms from bacteria shed from fish, and conversely, the acquisition of infections in fish from surface biofilms. We found that zebrafish infected with Mycobacterium chelonae shed bacteria through feces, and bacteria are transmitted to tank biofilms from one to 16 weeks postinfection. We also found that zebrafish acquire M. chelonae infections as soon as 2 weeks when introduced to tanks with established M. chelonae biofilms. The results from this study highlight the role that tank biofilms play as both a reservoir and source of mycobacterial infections in zebrafish. Results support the inclusion of biofilm surveillance and prevention as part of a disease control program in zebrafish research facilities.
Collapse
Affiliation(s)
- Carolyn T Chang
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Jet'aime Lewis
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Christopher M Whipps
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| |
Collapse
|
10
|
Iaria C, Saoca C, Guerrera MC, Ciulli S, Brundo MV, Piccione G, Lanteri G. Occurrence of diseases in fish used for experimental research. Lab Anim 2019; 53:619-629. [DOI: 10.1177/0023677219830441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the occurrence of pathogens and diseases in laboratory fish over a 10-year period at the Centre for Experimental Fish Pathology of Sicily, University of Messina. This report also emphasizes the adverse effects of subclinical infections on research endpoints, as well as the importance of animal health with respect to welfare. Infections in fish used for research can alter experimental outcomes, increase the variability of data, and impede experimental reproducibility. For this purpose, 411 diseased fish of different species (out of a total of 2820 fish) that belonged to four marine species ( Dicentrarchus labrax, Sparus aurata, Argyrosomus regius and Mugil cephalus) and to four fresh water species ( Danio rerio, Carassius auratus, Xiphophorus variatus and Poecilia reticulata) were examined in this study. Our results showed that mycobacteriosis and myxosporidiosis were the most important diseases found in our research fish, and the results represent a useful tool to obtain wider knowledge on the incidence of various diseases in different fish species. Further studies in this field are necessary to improve knowledge on the state of the health of fish used for research.
Collapse
Affiliation(s)
- Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Concetta Saoca
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Giovanni Lanteri
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| |
Collapse
|
11
|
Mycobacteriosis in Farmed Sea Bream (Sparus aurata) Caused By Mycobacterium frederiksbergense in Turkey. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2018-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Over the past decades, different mycobacteriosis agents have become important fish pathogens. The present study describes a different mycobacteriosis in farmed sea bream (Sparus aurata) caused by Mycobacterium frederiksbergense in Turkey. Affected 15 fish, weighing 15 to 20 g, showed lethargy, stunted growth, pale skin, dorsal fin necrosis, and a significant level of mortality (40 %) in fish stocks. Internally, no multifocal white-colored granulomas in the visceral organs were observed. Inoculation of the visceral organs onto Löwenstein-Jensen medium and Tryptic Soy Agar (1.5% NaCl) slants produced only fast-growing (2-3 weeks), orange to yellow-colored, photochromogenic acid-fast colonies. Ziehl-Nielsen positive bacterial isolates were identified using a commercially available line probe assay (Genotype Mycobacterium CM/AS assay) and with 16S rRNA gene sequencing analysis based on 16S rRNA gene sequencing, fifteen isolates were identified as Mycobacterium frederiksbergense. Histopathologically, epithelioid cell granulomas were not observed in any vicseral organs but acid-fast bacteria were detected in the liver, kidney, spleen, and heart tissue. This study shows that asystemic mycobacteriosis is observed in sea bream with high mortality.
Collapse
|
12
|
Chang CT, Amack JD, Whipps CM. Zebrafish Embryo Disinfection with Povidone-Iodine: Evaluating an Alternative to Chlorine Bleach. Zebrafish 2017; 13 Suppl 1:S96-S101. [PMID: 27351620 DOI: 10.1089/zeb.2015.1229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mycobacteriosis is a common bacterial infection in laboratory zebrafish caused by several different species and strains of Mycobacterium, including both rapid and slow growers. One control measure used to prevent mycobacterial spread within and between facilities is surface disinfection of eggs. Recent studies have highlighted the effectiveness of povidone-iodine (PVPI) on preventing propagation of Mycobacterium spp. found in zebrafish colonies. We evaluated the effect of disinfection using 12.5-50 ppm PVPI (unbuffered and buffered) on zebrafish exposed at 6 or 24 h postfertilization (hpf) to determine if this treatment is suitable for use in research zebrafish. Our results show that 6 hpf embryos are less sensitive to treatment as fewer effects on mortality, developmental delay, and deformity were observed. We also found that buffered PVPI treatment results in a greater knockdown of Mycobacterium chelonae and Mycobacterium marinum, as well as results in decreased harmful effects on embryos. Treatments of shorter (2 min vs. 5 min) duration were also more effective at killing mycobacteria in addition to resulting in fewer effects on embryo health. In addition, we compared the efficacy of a rinsing regimen to rinsing and disinfecting. Based on the findings of this study, we recommend disinfecting embryos for 2 min with buffered PVPI at 12.5-25 ppm.
Collapse
Affiliation(s)
- Carolyn T Chang
- 1 Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry , Syracuse, New York
| | - Jeffrey D Amack
- 2 Department of Cell and Developmental Biology, State University of New York, Upstate Medical University , Syracuse, New York
| | - Christopher M Whipps
- 1 Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry , Syracuse, New York
| |
Collapse
|
13
|
Mason T, Snell K, Mittge E, Melancon E, Montgomery R, McFadden M, Camoriano J, Kent ML, Whipps CM, Peirce J. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility. Zebrafish 2017; 13 Suppl 1:S77-87. [PMID: 27351618 PMCID: PMC4931754 DOI: 10.1089/zeb.2015.1218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In 2011, the zebrafish research facility at the University of Oregon experienced an outbreak of Mycobacterium marinum that affected both research fish and facility staff. A thorough review of risks to personnel, the zebrafish veterinary care program, and zebrafish husbandry procedures at the research facility followed. In the years since 2011, changes have been implemented throughout the research facility to protect the personnel, the fish colony, and ultimately the continued success of the zebrafish model research program. In this study, we present the history of the outbreak, the changes we implemented, and recommendations to mitigate pathogen outbreaks in zebrafish research facilities.
Collapse
Affiliation(s)
- Timothy Mason
- 1 Aquatic Animal Care Services, University of Oregon , Eugene, Oregon
| | - Kathy Snell
- 1 Aquatic Animal Care Services, University of Oregon , Eugene, Oregon
| | - Erika Mittge
- 2 Institute of Molecular Biology, University of Oregon , Eugene, Oregon
| | - Ellie Melancon
- 3 Institute of Neuroscience, University of Oregon , Eugene, Oregon
| | | | - Marcie McFadden
- 1 Aquatic Animal Care Services, University of Oregon , Eugene, Oregon
| | - Javier Camoriano
- 1 Aquatic Animal Care Services, University of Oregon , Eugene, Oregon
| | - Michael L Kent
- 4 Department of Microbiology and Biomedical Sciences, Oregon State University , Corvallis, Oregon
| | - Christopher M Whipps
- 5 SUNY-ESF, State University of New York College of Environmental Science and Forestry , Syracuse, New York
| | - Judy Peirce
- 3 Institute of Neuroscience, University of Oregon , Eugene, Oregon
| |
Collapse
|
14
|
Kušar D, Zajc U, Jenčič V, Ocepek M, Higgins J, Žolnir-Dovč M, Pate M. Mycobacteria in aquarium fish: results of a 3-year survey indicate caution required in handling pet-shop fish. JOURNAL OF FISH DISEASES 2017; 40:773-784. [PMID: 27747884 DOI: 10.1111/jfd.12558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Fish are commonly infected with non-tuberculous mycobacteria (NTM), which should be regarded as potential pathogens when handling aquarium fish and equipment. This study examined 107 aquarium fish from pet shops. Cultivation of the fish samples using different selective media was conducted for identification of NTM. Isolates were identified using the GenoType Mycobacterium common mycobacteria and additional species assays, sequencing of the 16S rRNA and rpoB genes, and real-time PCR assay for identification of Mycobacterium (M.) marinum. Among the investigated fish, 79.4% (85/107) were positive for mycobacteria, with 8.2% (7 of 85) having two mycobacterial species present. Among the positive fish, the common pathogens M. marinum, Mycobacterium fortuitum (M. fortuitum group) and Mycobacterium chelonae were identified in approx. 90% of fish and other NTM species in 10%, including Mycobacterium peregrinum/septicum, Mycobacterium gordonae, Mycobacterium arupense, Mycobacterium kansasii, Mycobacterium ulcerans and Mycobacterium setense. The well-known human pathogen M. marinum was present in 10.6% of the positive fish (9 of 85). The species of mycobacteria identified in the study are not only recognized as aquarium fish pathogens, but can also cause pathology in humans. Microbiological and clinical communities should therefore be sensitized to the role of NTM in infections associated with exposure to aquarium fish.
Collapse
Affiliation(s)
- D Kušar
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - U Zajc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - V Jenčič
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - M Ocepek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - J Higgins
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, United States Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), Ames, IA, USA
| | - M Žolnir-Dovč
- National Reference Laboratory for Mycobacteria, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - M Pate
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Collymore C, Crim MJ, Lieggi C. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities. Zebrafish 2016; 13 Suppl 1:S138-48. [PMID: 26991393 PMCID: PMC4932782 DOI: 10.1089/zeb.2015.1210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.
Collapse
Affiliation(s)
- Chereen Collymore
- Division of Comparative Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Christine Lieggi
- Center for Comparative Medicine and Pathology, Weill Cornell Medical College and Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
16
|
Nogueira CL, Whipps CM, Matsumoto CK, Chimara E, Droz S, Tortoli E, de Freitas D, Cnockaert M, Palomino JC, Martin A, Vandamme P, Leão SC. Mycobacterium saopaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae--Mycobacterium abscessus group. Int J Syst Evol Microbiol 2016; 65:4403-4409. [PMID: 26358475 DOI: 10.1099/ijsem.0.000590] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and,in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae-Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M.abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1-2 nt differences in rpoB and internal transcribed spacer (ITS) sequences.Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values .70 % confirmed that the five isolates belong to the same species, while values ,70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results,demonstrated that they share characteristics with M. chelonae–M. abscessus members, butconstitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM10906T (5CCUG 66554T5LMG 28586T5INCQS 0733T).
Collapse
Affiliation(s)
- Christiane Lourenço Nogueira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Christopher M Whipps
- SUNY-ESF, State University of New York College of Environmental Science and Forestry, Environmental and Forest Biology, 1 Forestry Drive, Syracuse, NY, USA
| | - Cristianne Kayoko Matsumoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Erica Chimara
- Núcleo de Tuberculose e Micobacterioses, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Sara Droz
- Division of Bacteriology, University of Bern, Switzerland
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Denise de Freitas
- Departamento de Oftalmologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Margo Cnockaert
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Juan Carlos Palomino
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anandi Martin
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Legendre L, Guillet B, Leguay E, Meunier E, Labrut S, Keck N, Bardotti M, Michelet L, Sohm F. RESAMA: A Network for Monitoring Health and Husbandry Practices in Aquatic Research Facilities. Zebrafish 2016; 13 Suppl 1:S56-65. [PMID: 27192449 DOI: 10.1089/zeb.2015.1199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Health monitoring is a crucial aspect of the management of any research animal house. RESAMA is a network strong of 60 academic and private partners acting in France since the end of 2012. The network aims to increase awareness of animal caretakers and researchers on health management issues in facilities holding aquatic model species (zebrafish, Xenopus, medaka, Mexican tetra). To do so, each partner research facility will be visited at least once. The visiting team is composed at least of one veterinarian and one zootechnician specialized in aquatic species. The visit results in a health-monitoring assessment of the facility, which includes a sampling for histo-pathological, bacteriological, and molecular pathogen detection. During the visit, rearing practices are also reviewed through an interview of animal caretakers. However, the present report essentially focuses on the health-monitoring aspect. The ultimate goal of the project is to provide a network-wide picture of health issues in aquatic facilities. Performed in parallel, the rearing practice assessment will ultimately help to establish rational relationship between handling practices and animal health in aquatic facilities. The study is still in progress. Here, we describe the results to be drawn from an analysis of the 23 facilities that had been visited so far. We sampled 720 fish and 127 amphibians and performed a little less than 1400 individual tests.
Collapse
Affiliation(s)
- Laurent Legendre
- 1 UMS AMAGEN, CNRS, INRA, Université Paris-Saclay , Gif sur Yvette, France
| | - Brigitte Guillet
- 2 CRB Xénope, UMS 3387 CNRS, Université de Rennes 1 , Rennes, France
| | | | | | | | - Nicolas Keck
- 5 Laboratoire Départemental Vétérinaire de l'Hérault, Montpellier, France
| | - Massimiliano Bardotti
- 6 UMR 9197 Neuro-PSI, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif sur Yvette, France
| | - Lorraine Michelet
- 7 Université Paris-Est, Laboratoire National de Référence de la Tuberculose, Unité de Zoonoses Bactériennes, Laboratoire de Santé Animale , ANSES, Maisons-Alfort, France
| | - Frédéric Sohm
- 1 UMS AMAGEN, CNRS, INRA, Université Paris-Saclay , Gif sur Yvette, France
| |
Collapse
|
18
|
Mason T, Snell K, Mittge E, Melancon E, Montgomery R, McFadden M, Camoriano J, Kent ML, Whipps CM, Peirce J. Strategies to Mitigate a Mycobacterium marinumOutbreak in a Zebrafish Research Facility. Zebrafish 2016. [DOI: 10.1089/zeb.2015.1218.rev] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Kent ML, Watral VG, Kirchoff NS, Spagnoli ST, Sharpton TJ. Effects of Subclinical Mycobacterium chelonae Infections on Fecundity and Embryo Survival in Zebrafish. Zebrafish 2016; 13 Suppl 1:S88-95. [PMID: 27031171 DOI: 10.1089/zeb.2015.1204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mycobacteriosis is the second most common infectious disease in zebrafish research colonies, and most often this is caused by Mycobacterium chelonae. The infection is characterized by multiple granulomas in the kidney, coelomic cavity, particularly the ovary. However, most fish still appear clinically normal. Developmental genetics remain a primary area of research with the zebrafish model, and hence, an important use of adult zebrafish is as brood fish to produce embryos. We investigated the effects of experimentally induced M. chelonae infections on fecundity. A total of 480 5D wild-type zebrafish were divided into four groups: controls, males infected, females infected, and both sexes. Exposed fish developed high prevalence of infection, including many females with ovarian infections. Fish were then first subjected to four separate group spawns with four replicate tanks/group. Then, a third of the fish were subjected to pairwise spawns, representing 20 pairs/group, and then the pairs were evaluated by histopathology. Overall, the group and pairwise spawns resulted numerous eggs and viable embryos. However, we found no statistical correlations between infection status and number of eggs or viability. In contrast to Egg Associated Inflammation and Fibroplasia, lesions in infected ovaries were more localized, with large regions of the ovary appearing normal.
Collapse
Affiliation(s)
- Michael L Kent
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon.,2 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon
| | - Virginia G Watral
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Nicole S Kirchoff
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Sean T Spagnoli
- 2 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon
| | - Thomas J Sharpton
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon.,3 Department of Statistics, Oregon State University , Corvallis, Oregon
| |
Collapse
|
20
|
Hobbs MR, Shankaran SS, James WL. Controlling Endemic Pathogens-Challenges and Opportunities. Zebrafish 2016; 13 Suppl 1:S66-71. [PMID: 26982004 DOI: 10.1089/zeb.2015.1207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By most measures, the University of Utah Centralized Zebrafish Animal Resource is a successful zebrafish core facility: we house ∼4000-5000 tanks for over 16 research groups; provide services and equipment for ∼150 users; are currently undergoing an expansion by 3000 tanks; and have been praised by institutional and national regulatory agencies for the cleanliness and efficiency of our facility. In recent years, we have implemented new programs to improve the overall health of our colony and believe we have seen a reduction in apparently sick fish. However, there are still deficiencies in our monitoring and pathogen control programs. Our histopathology sample sizes have been insufficient to estimate prevalence, but our sentinel tank program reveals the presence of Pseudoloma neurophilia and myxozoan, presumably Myxidium streisinger, in our facility. As we develop protocols to further reduce the burden of disease, we are focused on defining our baseline, establishing goals, and implementing methods to monitor our progress. The data generated by this approach will allow us to evaluate and implement the most cost-effective protocols to improve fish health.
Collapse
Affiliation(s)
- Maurine R Hobbs
- 1 CZAR Zebrafish Core Facility, University of Utah , Salt Lake City, Utah
| | - Sunita S Shankaran
- 2 Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - William L James
- 1 CZAR Zebrafish Core Facility, University of Utah , Salt Lake City, Utah
| |
Collapse
|
21
|
Chang CT, Colicino EG, DiPaola EJ, Al-Hasnawi HJ, Whipps CM. Evaluating the effectiveness of common disinfectants at preventing the propagation of Mycobacterium spp. isolated from zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:45-50. [PMID: 26423444 PMCID: PMC4819436 DOI: 10.1016/j.cbpc.2015.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 11/25/2022]
Abstract
Mycobacteriosis is a bacterial disease that is common in captive, wild and research fish. There is no one causative agent of mycobacteriosis, as several strains and species of Mycobacterium have been identified in zebrafish. With increased usage and investment in wild-type and mutant zebrafish strains, considerable value is placed on preserving zebrafish health. One control measure used to prevent mycobacterial spread within and between zebrafish facilities is egg disinfection. Here we investigate the effectiveness of three disinfectants [chlorine bleach, hydrogen peroxide, and povidone-iodine (PVPI)] commonly included in egg disinfection protocols for laboratory fish as well as aquaculture fish and compare the knockdown effect of these treatments on Mycobacterium spp. in vitro. Despite current usage, comparison of these disinfection regimes' abilities to prevent mycobacterial growth has not been tested. We found that the germicidal effect of different disinfectants varies by Mycobacterium spp. Hydrogen peroxide was the least effective disinfectant, followed by unbuffered chlorine bleach, which is commonly used to disinfect embryos in zebrafish facilities. Disinfection with 25ppm PVPI for 5min was very effective, and may be an improved alternative to chlorine bleach for embryo disinfection. Results from this study can be utilized by laboratory fish facilities in order to prevent the spread of mycobacteriosis in research fish.
Collapse
Affiliation(s)
- Carolyn T Chang
- Department of Environmental and Forest Biology, 1 Forestry Drive, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | - Erica G Colicino
- Department of Environmental and Forest Biology, 1 Forestry Drive, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Elizabeth J DiPaola
- Department of Environmental and Forest Biology, 1 Forestry Drive, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Hadi Jabbar Al-Hasnawi
- Department of Environmental and Forest Biology, 1 Forestry Drive, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Christopher M Whipps
- Department of Environmental and Forest Biology, 1 Forestry Drive, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Chang CT, Whipps CM. Activity of Antibiotics against Mycobacterium Species Commonly Found in Laboratory Zebrafish. JOURNAL OF AQUATIC ANIMAL HEALTH 2015; 27:88-95. [PMID: 25951167 PMCID: PMC4425249 DOI: 10.1080/08997659.2015.1007176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Zebrafish Danio rerio is a popular vertebrate model organism used in a wide range of research fields. Importance is placed on Zebrafish health and the maintenance of disease-free laboratory fish so that experimental studies are not inadvertently affected. Mycobacteriosis, a common infection of laboratory Zebrafish, is caused by several Mycobacterium species. Little is known regarding the potential of antibiotic treatment for Zebrafish mycobacteriosis; however, treatment of infected Zebrafish may be appropriate to maintain valuable strains. Here, we investigated, in vitro, the antibiotic susceptibility of both rapid- and slow-growing isolates of Mycobacterium species from laboratory Zebrafish. Antibiotic testing was carried out using a commercially available 96-well microtiter plate format. Results indicated that some but not all antibiotics tested were effective at inhibiting mycobacterial growth and that susceptibility varied among species and strains. Tigecycline, tobramycin, clarithromycin, and amikacin were most effective at broad inhibition of rapid-growing mycobacteria; whereas, amikacin, clarithromycin, and rifampin were effective at inhibiting all slow-growing M. marinum strains tested. Results support the potential for targeted antibiotic treatment of Zebrafish infected with mycobacteria, but additional testing should be carried out in vivo.
Collapse
Affiliation(s)
- Carolyn T Chang
- a Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse , New York 13210 , USA
| | | |
Collapse
|
23
|
Disseminated Mycobacterium haemophilum infection in an ASSAM trinket snake (Elaphe frenata). J Zoo Wildl Med 2015; 45:966-9. [PMID: 25632694 DOI: 10.1638/2014-0078.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sub-adult male Assam trinket snake (Elaphe frenata) that was confiscated from an exotic animal dealer was found dead in its enclosure after a 17-mo quarantine. The snake had grown well during that period and had no physical examination or bloodwork abnormalities during the quarantine. On gross necropsy, masses were found in the epaxial musculature and stomach, the lung was diffusely thickened, the ventricular wall was mottled, and there was intracoelomic and pericardial effusion. Histopathology revealed diffusely disseminated granulomatous infiltrates throughout the lung interstitium and multifocal granulomatous infiltrates in the transmural gastric mass, within the myocardium and pericardial adipose tissue, in the liver and kidney parenchyma, in the cervical region surrounding the trachea and thyroid, and replacing the myofibers of the craniolateral epaxial muscles. Fite-Farracho acid-fast staining revealed numerous intracytoplasmic acid-fast bacilli within macrophages, and polymerase chain reaction testing on frozen tissues followed by nucleic acid sequencing of polymerase chain reaction amplicons identified Mycobacterium haemophilum.
Collapse
|
24
|
Whipps CM, Moss LG, Sisk DM, Murray KN, Tobin DM, Moss JB. Detection of autofluorescent Mycobacterium chelonae in living zebrafish. Zebrafish 2014; 11:76-82. [PMID: 24451037 DOI: 10.1089/zeb.2012.0863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium chelonae is widespread in aquatic environments and can cause mycobacteriosis with low virulence in zebrafish. The risk of infection in zebrafish is exacerbated in closed-recirculating aquatic systems where rapidly growing mycobacteria can live on biofilms, as well as in zebrafish tissues. We have discovered a method of identifying and visualizing M. chelonae infections in living zebrafish using endogenous autofluorescence. Infected larvae are easily identified and can be excluded from experimental results. Because infection may reduce fertility in zebrafish, the visualization of active infection in contaminated eggs of transparent casper females simplifies screening. Transparent fish are also particularly useful as sentinels that can be examined periodically for the presence of autofluorescence, which can then be tested directly for M. chelonae.
Collapse
Affiliation(s)
- Christopher M Whipps
- 1 SUNY-ESF, State University of New York College of Environmental Science and Forestry , Environmental and Forest Biology, Syracuse, New York
| | | | | | | | | | | |
Collapse
|
25
|
Peterson TS, Ferguson JA, Watral VG, Mutoji KN, Ennis DG, Kent ML. Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and M. chelonae in zebrafish Danio rerio. DISEASES OF AQUATIC ORGANISMS 2013; 106:229-39. [PMID: 24192000 PMCID: PMC4155924 DOI: 10.3354/dao02649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mycobacterial infections in laboratory zebrafish Danio rerio are common and widespread in research colonies. Mycobacteria within free-living amoebae have been shown to be transmission vectors for mycobacteriosis. Paramecium caudatum are commonly used as a first food for zebrafish, and we investigated this ciliate's potential to serve as a vector of Mycobacterium marinum and M. chelonae. The ability of live P. caudatum to transmit these mycobacteria to larval, juvenile and adult zebrafish was evaluated. Infections were defined by histologic observation of granulomas containing acid-fast bacteria in extraintestinal locations. In both experiments, fish fed paramecia containing mycobacteria became infected at a higher incidence than controls. Larvae (exposed at 4 d post hatch) fed paramecia with M. marinum exhibited an incidence of 30% (24/80) and juveniles (exposed at 21 d post hatch) showed 31% incidence (14/45). Adult fish fed a gelatin food matrix containing mycobacteria within paramecia or mycobacteria alone for 2 wk resulted in infections when examined 8 wk after exposure as follows: M. marinum OSU 214 47% (21/45), M. marinum CH 47% (9/19), and M. chelonae 38% (5/13). In contrast, fish feed mycobacteria alone in this diet did not become infected, except for 2 fish (5%) in the M. marinum OSU 214 low-dose group. These results demonstrate that P. caudatum can act as a vector for mycobacteria. This provides a useful animal model for evaluation of natural mycobacterial infections and demonstrates the possibility of mycobacterial transmission in zebrafish facilities via contaminated paramecia cultures.
Collapse
Affiliation(s)
- Tracy S Peterson
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
26
|
Spitsbergen JM, Buhler DR, Peterson TS. Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design. ILAR J 2013; 53:114-25. [PMID: 23382343 DOI: 10.1093/ilar.53.2.114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the past decade, the zebrafish has emerged as a leading model for mechanistic cancer research because of its sophisticated genetic and genomic resources, its tractability for tissue targeting of transgene expression, its efficiency for forward genetic approaches to cancer model development, and its cost effectiveness for enhancer and suppressor screens once a cancer model is established. However, in contrast with other laboratory animal species widely used as cancer models, much basic cancer biology information is lacking in zebrafish. As yet, data are not published regarding dietary influences on neoplasm incidences in zebrafish. Little information is available regarding spontaneous tumor incidences or histologic types in wild-type lines of zebrafish. So far, a comprehensive database documenting the full spectrum of neoplasia in various organ systems and tissues is not available for zebrafish as it is for other intensely studied laboratory animal species. This article confirms that, as in other species, diet and husbandry can profoundly influence tumor incidences and histologic spectra in zebrafish. We show that in many laboratory colonies wild-type lines of zebrafish exhibit elevated neoplasm incidences and neoplasm-associated lesions such as heptocyte megalocytosis. We present experimental evidence showing that certain diet and water management regimens can result in high incidences of neoplasia and neoplasm-associated lesions. We document the wide array of benign and malignant neoplasms affecting nearly every organ, tissue, and cell type in zebrafish, in some cases as a spontaneous aging change, and in other cases due to carcinogen treatment or genetic manipulation.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
27
|
Abstract
Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward.
Collapse
Affiliation(s)
- Christopher M Whipps
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
28
|
Peterson TS, Kent ML, Ferguson JA, Watral VG, Whipps CM. Comparison of fixatives and fixation time for PCR detection of Mycobacterium in zebrafish Danio rerio . DISEASES OF AQUATIC ORGANISMS 2013; 104:113-20. [PMID: 23709464 PMCID: PMC3707143 DOI: 10.3354/dao02585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mycobacteriosis is a common disease of laboratory zebrafish Danio rerio. Different infection patterns occur in zebrafish depending on mycobacterial species. Mycobacterium marinum and M. haemophilum produce virulent infections associated with high mortality, whereas M. chelonae is more widespread and is not associated with high mortality. Identification of mycobacterial infections to the species level provides important information for making management decisions. Observation of acid-fast bacilli in histological sections or tissue imprints is the most common diagnostic method for mycobacteriosis in fish, but only allows for diagnosis to the genus level. Mycobacterial culture followed by molecular or biochemical identification is the traditional approach, but DNA of diagnostic value can also be retrieved from paraffin blocks. Here we investigated the type of fixative, time in fixative before processing, species of mycobacteria, and severity of infection as parameters to determine whether the hsp gene PCR assay (primer set HS5F/hsp667R) could detect and amplify mycobacterial DNA from paraffin-embedded zebrafish. Whole zebrafish were experimentally infected with either M. chelonae or M. marinum, and then preserved in 10% neutral buffered formalin or Dietrich's fixative for 3, 7, 21, and 45 d. Subsequently, fish were evaluated by hematoxylin and eosin and Fite's acid-fast stains to detect mycobacteria within granulomatous lesions. The PCR assay was quite effective and obtained PCR product from 75 and 88% of the M. chelonae- and M. marinum-infected fish, respectively. Fixative type, time in fixative, and mycobacterial species showed no statistical relationship with the efficacy of the PCR test.
Collapse
Affiliation(s)
- Tracy S Peterson
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | | | |
Collapse
|
29
|
Mosi L, Mutoji NK, Basile FA, Donnell R, Jackson KL, Spangenberg T, Kishi Y, Ennis DG, Small PLC. Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): an experimental fish model of disease transmission. Microbes Infect 2012; 14:719-29. [PMID: 22465732 PMCID: PMC3389220 DOI: 10.1016/j.micinf.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer in humans, a progressive ulcerative epidermal lesion due to the mycolactone toxin produced by the bacterium. Molecular analysis of M. ulcerans reveals it is closely related to Mycobacterium marinum, a pathogen of both fish and man. Molecular evidence from diagnostic PCR assays for the insertion sequence IS2404 suggests an association of M. ulcerans with fish. However, fish infections by M. ulcerans have not been well documented and IS2404 has been found in other mycobacteria. We have thus, employed two experimental approaches to test for M. ulcerans in fish. We show here for the first time that M. ulcerans with or without the toxin does not mount acute or chronic infections in Japanese Medaka "Oryzias latipes" even at high doses. Moreover, M. ulcerans-infected medaka do not exhibit any visible signs of infection nor disease and the bacteria do not appear to replicate over time. In contrast, similar high doses of the wild-type M. marinum or a mycolactone-producing M. marinum "DL" strain are able to mount an acute disease with mortality in medaka. Although these results would suggest that M. ulcerans does not mount infections in fish we have evidence that CLC macrophages from goldfish are susceptible to mycolactones.
Collapse
Affiliation(s)
- Lydia Mosi
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections. Clin Microbiol Rev 2012; 24:701-17. [PMID: 21976605 DOI: 10.1128/cmr.00020-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium haemophilum is a slowly growing acid-fast bacillus (AFB) belonging to the group of nontuberculous mycobacteria (NTM) frequently found in environmental habitats, which can colonize and occasionally infect humans and animals. Several findings suggest that water reservoirs are a likely source of M. haemophilum infections. M. haemophilum causes mainly ulcerating skin infections and arthritis in persons who are severely immunocompromised. Disseminated and pulmonary infections occasionally occur. The second at-risk group is otherwise healthy children, who typically develop cervical and perihilar lymphadenitis. A full diagnostic regimen for the optimal detection of M. haemophilum includes acid-fast staining, culturing at two temperatures with iron-supplemented media, and molecular detection. The most preferable molecular assay is a real-time PCR targeting an M. haemophilum-specific internal transcribed spacer (ITS), but another approach is the application of a generic PCR for a mycobacterium-specific fragment with subsequent sequencing to identify M. haemophilum. No standard treatment guidelines are available, but published literature agrees that immunocompromised patients should be treated with multiple antibiotics, tailored to the disease presentation and underlying degree of immune suppression. The outcome of M. haemophilum cervicofacial lymphadenitis in immunocompetent patients favors surgical intervention rather than antibiotic treatment.
Collapse
|
31
|
Romano LA, Sampaio LA, Tesser MB. Micobacteriose por Mycobacterium marinum em "linguado" Paralichthys orbignyanus e em "barber goby" Elacatinus figaro: diagnóstico histopatológico e imuno-histoquímico. PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As micobacterioses afetam várias espécies de peixes, tanto comerciais como ornamentais. É uma enfermidade sistêmica com formação de granulomas, conhecida como micobacteriose de peixes. O desenvolvimento da aquicultura tem aumentado o número de casos com essa enfermidade que muitas vezes é de difícil diagnóstico. Neste trabalho apresentamos dois casos de micobacterioses em Paralichthys orbignyanus e Elacatinus figaro provenientes do Laboratório de Piscicultura Estuarina e Marinha da Universidade Federal do Rio Grande (FURG). As micobactérias de peixes possuem menos ácidos graxos que as de mamíferos, por isso foi utilizado o protocolo de coloração de Fite-Faraco, uma vez que o protocolo de coloração clássico de Ziehl Neelsen pode resultar em falsos negativos. Para determinar o tipo de micobactéria foi utilizada a imuno-histoquímica com a qual se pode diagnosticar a presença de Mycobacterium marinum. A enfermidade pode ser transmitida para o homem e com esse trabalho ressalta-se a necessidade de fazer o diagnóstico correto e implantar medidas de proteção para as pessoas que estão em contato com os peixes infectados.
Collapse
|
32
|
Lawrence C, Ennis DG, Harper C, Kent ML, Murray K, Sanders GE. The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:160-6. [PMID: 21726668 PMCID: PMC3338152 DOI: 10.1016/j.cbpc.2011.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front.
Collapse
Affiliation(s)
- Christian Lawrence
- Aquatic Resources Program, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Kent ML, Harper C, Wolf JC. Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J 2012; 53:126-34. [PMID: 23382344 PMCID: PMC3703941 DOI: 10.1093/ilar.53.2.126] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The zebrafish (Danio rerio) has become a very important animal model in biomedical research. In contrast with other models, such as mice, there has been relatively little documentation or control of subclinical disease in zebrafish research facilities. Several infectious and noninfectious conditions are consistently detected by histopathology in apparently healthy D. rerio. The most commonly observed infectious agent in zebrafish is Pseudoloma neurophilia, which is a microsporidian organism that targets the central nervous system, peripheral nerves, and occasionally other tissues. Mycobacteriosis, caused by Mycobacterium chelonae and other species, is also a frequent finding. Less commonly encountered agents include Pseudocapillaria tomentosa, which can cause extensive proliferative enteritis, and a myxozoan (Myxidium sp.) that inhabits the urinary tract but appears to cause few if any pathological changes. Noninfectious diseases that are often clinically unapparent in zebrafish include hepatic megalocytosis, bile and pancreatic ductal proliferation, and neoplasms of the ultimobranchial gland, gastrointestinal tract, and testis. To date, there is little information on the degree to which these conditions may impact research in subclinically affected fish, but there is reason to believe that they should be considered as potentially significant causes of nonprotocol variation in experiments. Therefore, it is imperative that research facilities monitor their stocks for the presence of these occult diseases and be aware of their existence when interpreting study results. Furthermore, for underlying disease conditions that cannot be readily eradicated, it is essential to determine the physiological and immunological changes that they elicit in zebrafish. Understanding the cause, modes of transmission, and distribution of the pathogens would provide useful information for the development of control and prevention strategies.
Collapse
Affiliation(s)
- Michael L. Kent
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon, 977331.
| | | | - Jeffrey C. Wolf
- DVM, Dipl. ACVP Experimental Pathology Laboratories, Inc. 45600 Terminal Drive, Sterling, VA, 20166 USA Tel: 703-471-7060 Ext 242 Fax: 703-471-8447
| |
Collapse
|
34
|
Sanders JL, Kent ML. Development of a sensitive assay for the detection of Pseudoloma neurophilia in laboratory populations of the zebrafish Danio rerio. DISEASES OF AQUATIC ORGANISMS 2011; 96:145-56. [PMID: 22013754 PMCID: PMC3358228 DOI: 10.3354/dao02375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The zebrafish Danio rerio is an increasingly important biological model in many areas of research. Due to the potential for non-protocol-induced variation, diseases of zebrafish, especially those resulting in chronic, sub-lethal infections, are of great concern. The microsporidium Pseudoloma neurophilia is a common parasite of laboratory zebrafish. Current methods for detection of this parasite require lethal sampling of fish, which is often undesirable with poorly spawning mutant lines and small populations. We present here an improved molecular-based diagnostic assay using real-time polymerase chain reaction (PCR), and including sonication treatment prior to DNA extraction. Comparisons of several DNA extraction methods were performed to determine the method providing the maximum sensitivity. Sonication was found to be the most effective method for disrupting spores. Compared to previously published data on PCR-based assay using a dilution experiment, sensitivity is increased. This shows that our assay, which includes sonication, is capable of detecting parasite DNA at 1 log higher dilution than the conventional PCR-based assay, which does not include sonication. Furthermore, we demonstrate the application of this method to testing of water, eggs, and sperm, providing a potential non-lethal method for detection of this parasite in zebrafish colonies with a sensitivity of 10 spores 1(-1) of water, 2 spores per spiked egg sample, and 10 spores microl(-1) of spiked sperm sample.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
35
|
Kent ML, Buchner C, Watral VG, Sanders JL, Ladu J, Peterson TS, Tanguay RL. Development and maintenance of a specific pathogen-free (SPF) zebrafish research facility for Pseudoloma neurophilia. DISEASES OF AQUATIC ORGANISMS 2011; 95:73-9. [PMID: 21797038 PMCID: PMC3956677 DOI: 10.3354/dao02333] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pseudoloma neurophilia (Microsporidia) is very common in zebrafish Danio rerio research facilities. A new zebrafish facility has been established at the Sinnhuber Aquatic Resource Laboratory (SARL), Oregon State University, Corvallis, OR, U.S.A., and this was an opportunity to establish a specific pathogen-free (SPF) colony of zebrafish for this microsporidium. Progeny from 9 zebrafish lines (n=2203) were initially transferred to the SARL facility in 2007 following PCR screening of broodstock and a subpopulation of progeny (258 of 1000 fish from each family). Screening of fish for P. neurophilia within the facility was conducted as follows: (1) Moribund or dead fish were examined by histology. (2) Each line was regenerated on a 4 mo rotation, and a subsample of each of these major propagations (60 fry, in pools of 10) was PCR-screened at 10 d post hatch. (3) Adult fish (approximately 1 yr old) from each line were euthanized; 20 fish were examined by histology and the brains of another 60 fish (in pools of 5) were screened by PCR. (4) This screening was replicated on sentinel fish held in 4 tanks receiving effluent water from all tanks in the facility (20 fish per tank). (5) Four-month old fish (n=760) from a toxicology study conducted within the laboratory were examined by histology. To date, we have evaluated 2800 fish by PCR and 1222 fish by histology without detecting P. neurophilia. Thus, we have established 9 lines of zebrafish SPF for P. neurophilia. However, 26 fish exhibited mycobacteriosis, with acid-fast bacteria present in tissue sections, and 49 other fish had incidental lesions.
Collapse
Affiliation(s)
- Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Pennington KM, Kapuscinski AR, Morton MS, Cooper AM, Miller LM. Full life-cycle assessment of gene flow consistent with fitness differences in transgenic and wild-type Japanese medaka fish (Oryzias latipes). ACTA ACUST UNITED AC 2010; 9:41-57. [DOI: 10.1051/ebr/2010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/20/2010] [Indexed: 11/14/2022]
|
38
|
Cui Z, Samuel-Shaker D, Watral V, Kent ML. Attenuated Mycobacterium marinum protects zebrafish against mycobacteriosis. JOURNAL OF FISH DISEASES 2010; 33:371-375. [PMID: 19912456 PMCID: PMC3951474 DOI: 10.1111/j.1365-2761.2009.01115.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Z Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
39
|
Ramsay JM, Watral V, Schreck CB, Kent ML. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton). JOURNAL OF FISH DISEASES 2009; 32:931-41. [PMID: 19531062 PMCID: PMC2765522 DOI: 10.1111/j.1365-2761.2009.01074.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities.
Collapse
Affiliation(s)
- J M Ramsay
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
40
|
Hinton DE, Hardman RC, Kullman SW, (Mac) Law JM, Schmale MC, Walter RB, Winn RN, Yoder JA. Aquatic animal models of human disease: selected papers and recommendations from the 4th Conference. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:121-8. [PMID: 19150511 PMCID: PMC2676715 DOI: 10.1016/j.cbpc.2008.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- David E. Hinton
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Box 90328, A333B LSRC, Durham, NC 27708-0328, USA, Email address: , Tel.: +1 919 613 8038, Fax.: +1 919 684 8741
| | - Ron C. Hardman
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Box 90328, A333A LSRC, Durham, NC 27708-0328, USA, Email address: , Tel.: +1 919 613 8038, Fax.: +1 919 684 8741
| | - Seth W. Kullman
- Department of Environmental and Molecular Toxicology, Box 7633, North Carolina State University, Raleigh, NC 27695-7633, Email address: , Tel.: +1 919 515 2274, Fax.: +1 919 515 7169
| | - Jerry M. (Mac) Law
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, Email address: , Tel.: +1 919 515 7411, Fax.: +1 919 515 3044
| | - Michael C. Schmale
- Division of Marine Biology and Fisheries, Rosentiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy. Miami, FL 33149, USA, Email address: , Tel.:+1 305 421 4140, Fax.: +1 305 421 4600
| | - Ronald B. Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, Email address: , Tel.: +1 512 245 0357, Fax.: +1 512 245 1922
| | - Richard N. Winn
- Aquatic Biotechnology and Environmental Lab (ABEL), 2580 Devil’s Ford Road, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA, Email address: , Tel.: +1 706 369 5858, Fax.: +1 706 353 2620
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606 USA, Email address: , Tel.: +1 919 515 7406, Fax.: +1 919 513 7301
| |
Collapse
|
41
|
Kent ML, Feist SW, Harper C, Hoogstraten-Miller S, Law JM, Sánchez-Morgado JM, Tanguay RL, Sanders GE, Spitsbergen JM, Whipps CM. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:240-8. [PMID: 18755294 PMCID: PMC3270489 DOI: 10.1016/j.cbpc.2008.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/20/2022]
Abstract
Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.
Collapse
Affiliation(s)
- Michael L Kent
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Broussard GW, Norris MB, Schwindt AR, Fournie JW, Winn RN, Kent ML, Ennis DG. Chronic Mycobacterium marinum infection acts as a tumor promoter in Japanese Medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:152-60. [PMID: 18929684 PMCID: PMC2700008 DOI: 10.1016/j.cbpc.2008.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 09/13/2008] [Accepted: 09/14/2008] [Indexed: 12/11/2022]
Abstract
An accumulating body of research indicates there is an increased cancer risk associated with chronic infections. The genus Mycobacterium contains a number of species, including M. tuberculosis, which mount chronic infections and have been implicated in higher cancer risk. Several non-tuberculosis mycobacterial species, including M. marinum, are known to cause chronic infections in fish and like human tuberculosis, often go undetected. The elevated carcinogenic potential for fish colonies infected with Mycobacterium spp. could have far reaching implications because fish models are widely used to study human diseases. Japanese medaka (Oryzias latipes) is an established laboratory fish model for toxicology, mutagenesis, and carcinogenesis; and produces a chronic tuberculosis-like disease when infected by M. marinum. We examined the role that chronic mycobacterial infections play in cancer risk for medaka. Experimental M. marinum infections of medaka alone did not increase the mutational loads or proliferative lesion incidence in all tissues examined. However, we showed that chronic M. marinum infections increased hepatocellular proliferative lesions in fish also exposed to low doses of the mutagen benzo[a]pyrene. These results indicate that chronic mycobacterial infections of medaka are acting as tumor promoters and thereby suggest increased human risks for cancer promotion in human populations burdened with chronic tuberculosis infections.
Collapse
Affiliation(s)
- Gregory W. Broussard
- Department of Biology, University of Louisiana, P.O. Box 42451, Lafayette, LA 70504-2451, USA
| | - Michelle B. Norris
- Warnell School of Forestry and Natural Resources, University of Georgia, Aquatic Biotechnology and Environmental Lab, 2580 Devil’s Ford Road, Athens, GA 30602, USA
| | - Adam R. Schwindt
- Center for Fish Disease Research, Department of Microbiology, 220 Nash, Oregon State University, Corvallis, OR 97331-3804, USA
| | - John W. Fournie
- U.S. Environmental Protection Agency, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Richard N. Winn
- Warnell School of Forestry and Natural Resources, University of Georgia, Aquatic Biotechnology and Environmental Lab, 2580 Devil’s Ford Road, Athens, GA 30602, USA
| | - Michael L. Kent
- Center for Fish Disease Research, Department of Microbiology, 220 Nash, Oregon State University, Corvallis, OR 97331-3804, USA
| | - Don G. Ennis
- Department of Biology, University of Louisiana, P.O. Box 42451, Lafayette, LA 70504-2451, USA
| |
Collapse
|
43
|
Pourahmad F, Thompson K, Adams A, Richards R. Comparative evaluation of Polymerase Chain Reaction–Restriction Enzyme Analysis (PRA) and sequencing of heat shock protein 65 (hsp65) gene for identification of aquatic mycobacteria. J Microbiol Methods 2009; 76:128-35. [DOI: 10.1016/j.mimet.2008.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/20/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
44
|
Pourahmad F, Cervellione F, Thompson KD, Taggart JB, Adams A, Richards RH. Mycobacterium stomatepiae sp. nov., a slowly growing, non-chromogenic species isolated from fish. Int J Syst Evol Microbiol 2009; 58:2821-7. [PMID: 19060066 DOI: 10.1099/ijs.0.2008/001164-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slowly growing, non-chromogenic mycobacteria were isolated from striped barombi mbo cichlids (Stomatepia mariae) maintained at the London Zoo Aquarium, UK. The isolates could be differentiated from other slowly growing, non-pigmented mycobacteria by a combination of phenotypic features including their inability to grow at 37 degrees C, positive tests for heat-stable catalase, tellurite reduction and arylsulfatase activity, and the absence of urease activity, Tween 80 hydrolysis, nitrate reductase, iron uptake and semiquantitative catalase. The almost full-length 16S rRNA gene sequence, together with partial sequences from the 65 kDa heat-shock protein (hsp65) and the beta-subunit of the bacterial RNA polymerase (rpoB) genes and the 16S-23S internal transcribed spacer 1 (ITS 1) region were identical for all three novel strains, but distinct from those of all known mycobacterial species. Phylogenetic analysis based on 16S rRNA gene sequences placed the novel isolates within the slowly growing mycobacteria group in close proximity to Mycobacterium florentinum. Based on genotypic and phenotypic findings, it is proposed that these isolates represent a novel species of the genus Mycobacterium, for which the name Mycobacterium stomatepiae sp. nov. is proposed with strain T11(T) (=DSM 45059(T)=CIP 109275(T)=NCIMB 14252(T)) as the type strain.
Collapse
Affiliation(s)
- Fazel Pourahmad
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Mycobacteriosis in fishes: a review. Vet J 2008; 180:33-47. [PMID: 18620877 DOI: 10.1016/j.tvjl.2008.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
Abstract
Mycobacterium species have long been recognised as a significant source of morbidity and mortality in finfish aquaculture, as well as in wild finfishes. Mycobacteria infecting fishes also include zoonotic pathogens that can cause protracted illness, especially in immunocompromised individuals. Several basic aspects of mycobacterial pathobiology in aquatic animals remain poorly understood, although a number of important recent developments have been made, especially with respect to identification of novel Mycobacterium spp. infecting fishes and a new group of mycobacteria closely related to the human pathogen Mycobacterium ulcerans. This review will encompass important aspects of mycobacterial disease in fishes, discuss recent research including studies of mycobacteriosis in striped bass (Morone saxatilis) of Chesapeake Bay, USA, and suggest directions for future work.
Collapse
|
46
|
Zanoni RG, Florio D, Fioravanti ML, Rossi M, Prearo M. Occurrence of Mycobacterium spp. in ornamental fish in Italy. JOURNAL OF FISH DISEASES 2008; 31:433-441. [PMID: 18471099 DOI: 10.1111/j.1365-2761.2008.00924.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The occurrence of Mycobacterium spp. in freshwater and marine ornamental fish was studied in Italy from June 2002 to May 2005. Two surveys were carried out, one of aquarium fish sent to the Laboratory for diagnosis, and the other of prevalence of infection by mycobacteria in ornamental fish imported into Italy. Bacterial isolation was carried out from the spleen, kidney and liver, and the isolates were subsequently identified by biochemical tests. In the first survey, 387 fish were examined and Mycobacterium spp. were isolated from 181 (46.8%) fish. In the second survey 127 batches of ornamental fish from different countries were examined. Mycobacterium spp. were isolated from 38 (29.9%) batches. The following species were found: M. fortuitum, M. peregrinum, M. chelonae, M. abscessus, M. marinum, M. gordonae, M. nonchromogenicum and M. interjectum. There was a high prevalence of infection independent of the presence of macroscopic lesions. Mycobacterium fortuitum and M. chelonae were more prevalent than M. marinum in the samples examined.
Collapse
Affiliation(s)
- R G Zanoni
- Department of Veterinary Public Health and Animal Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
47
|
Mycobacterium peregrinum infection in farmed European tench (Tinca tinca L.). Vet Microbiol 2008; 131:393-9. [PMID: 18539409 DOI: 10.1016/j.vetmic.2008.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 11/24/2022]
Abstract
This work is the first description of Mycobacterium peregrinum as an etiological agent for mycobacteriosis in farmed fishes. We report the mycobacterial infection in farmed European tench (Tinca tinca L.) which was confirmed by culture, molecular identification methods (PCRs aimed at 16S rRNA, rpobeta and hsp65 sequencing), and histopathology. Since M. peregrinum infection has been described in humans, their clinical significance in fishes should be considered of healthcare interest. With this case report, we also show that a multidisciplinary approach was needed to overcome difficulties associated to diagnosis of piscine mycobacteriosis.
Collapse
|
48
|
Whipps CM, Butler WR, Pourahmad F, Watral VG, Kent ML. Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol 2008; 57:2525-2531. [PMID: 17978213 DOI: 10.1099/ijs.0.64841-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterial infections in fish are usually attributed to strains of Mycobacterium marinum, Mycobacterium chelonae and Mycobacterium fortuitum. Bacteria identified as M. chelonae have been isolated numerous times from salmonid fishes. Recently, this bacterium has been associated with salmon mortalities in the aquaculture industry. An M. chelonae-like species from salmon, 'Mycobacterium salmoniphilum', was described in 1960. However, the species name lost standing in nomenclature when it was omitted from the 1980 Approved Lists of Bacterial Names because the species could not be distinguished with confidence from M. fortuitum. In the 1980s, mycobacteria isolated from salmon were characterized as a distinct subspecies, 'Mycobacterium chelonae subsp. piscarium'. Again, the uncertainty of the validity of the species resulted in the subsequent withdrawal of the name. Since then, most studies have considered isolates from salmon to be M. chelonae. Nucleotide sequence analysis of the small-subunit rRNA, hsp65 and rpoB genes was used to examine the taxonomic relatedness of type cultures and authentic isolates in our culture collection available from earlier studies. The M. chelonae-like strains from salmon were phylogenetically distinct from other Mycobacterium strains and members of the M. chelonae complex. Moreover, the cell-wall-bound mycolic acids were not representative of known mycolate patterns for M. chelonae-complex organisms. These results supported the status of the species as a separate taxon and effect the valid publication of the name 'M. salmoniphilum' as Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., with the type strain SCT (=ATCC 13578T =DSM 43276T).
Collapse
Affiliation(s)
- Christopher M Whipps
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331-3404, USA
| | - W Ray Butler
- Mycobacteriology Branch, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fazel Pourahmad
- School of Veterinary Medicine, Ilam University, PO Box 69315-516, Ilam, Iran.,Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Virginia G Watral
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331-3404, USA
| | - Michael L Kent
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331-3404, USA
| |
Collapse
|
49
|
Species of environmental mycobacteria differ in their abilities to grow in human, mouse, and carp macrophages and with regard to the presence of mycobacterial virulence genes, as observed by DNA microarray hybridization. Appl Environ Microbiol 2007; 74:275-85. [PMID: 17981953 DOI: 10.1128/aem.01480-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are many species of environmental mycobacteria (EM) that infect animals that are important to the economy and research and that also have zoonotic potential. The genomes of very few of these bacterial species have been sequenced, and little is known about the molecular mechanisms by which most of these opportunistic pathogens cause disease. In this study, 18 isolates of EM isolated from fish and humans (including strains of Mycobacterium avium, Mycobacterium peregrinum, Mycobacterium chelonae, and Mycobacterium salmoniphilum) were examined for their abilities to grow in macrophage lines from humans, mice, and carp. Genomic DNA from 14 of these isolates was then hybridized against DNA from an M. avium reference strain, with a custom microarray containing virulence genes of mycobacteria and a selection of representative genes from metabolic pathways. The strains of EM had different abilities to grow within the three types of cell lines, which grouped largely according to the host from which they were isolated. Genes identified as being putatively absent in some of the strains included those with response regulatory functions, cell wall compositions, and fatty acid metabolisms as well as a recently identified pathogenicity island important to macrophage uptake. Further understanding of the role these genes play in host specificity and pathogenicity will be important to gain insight into the zoonotic potential of certain EM as well as their mechanisms of virulence.
Collapse
|
50
|
Harriff MJ, Bermudez LE, Kent ML. Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. JOURNAL OF FISH DISEASES 2007; 30:587-600. [PMID: 17850575 DOI: 10.1111/j.1365-2761.2007.00839.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The natural route by which fish become infected with mycobacteria is unknown. Danio rerio (Hamilton) were exposed by bath immersion and intubation to Mycobacterium marinum and Mycobacterium peregrinum isolates obtained from diseased zebrafish. Exposed fish were collected over the course of 8 weeks and examined for the presence of mycobacteriosis. Mycobacteria were consistently cultured from the intestines, and often from the livers and spleens of fish exposed by both methods. Mycobacteria were not observed in the gills. Histological analysis revealed that fish infected with M. marinum often developed granulomas accompanied by clinical signs of mycobacteriosis, while infection with M. peregrinum infrequently led to clinical signs of disease. Passage of the bacteria through environmental amoebae (Acanthamoeba castellani) was associated with increased growth of M. peregrinum over the course of 8 weeks, when compared to infection with the bacteria not passed through amoebae. The results provide evidence that zebrafish acquire mycobacteria primarily through the intestinal tract, resulting in mycobacterial dissemination.
Collapse
Affiliation(s)
- M J Harriff
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|