1
|
Bond A, Fiaz S, Rollins K, Nario JEQ, Snyder ET, Atkins DJ, Rosen SJ, Granados A, Dey SS, Wilson MZ, Morrissey MA. Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms. Dev Cell 2024; 59:2882-2896.e7. [PMID: 39137774 PMCID: PMC11537821 DOI: 10.1016/j.devcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erika T Snyder
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Dixon J Atkins
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Samuel J Rosen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA; Bioengineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
3
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Wan Z, Zhang S, Zhong AX, Xu L, Coughlin MF, Pavlou G, Shelton SE, Nguyen HT, Hirose S, Kim S, Floryan MA, Barbie DA, Hodi FS, Kamm RD. Transmural Flow Upregulates PD-L1 Expression in Microvascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400921. [PMID: 38696611 PMCID: PMC11234398 DOI: 10.1002/advs.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression. Here, a new microfluidic device is developed to investigate the relationship between transmural flow and PD-L1 expression in microvascular networks (MVNs). After treating the MVNs with transmural flow for 24 h, the expression of PD-L1 in endothelial cells is upregulated. Additionally, CD8 T cell activation by phytohemagglutinin (PHA) is suppressed when cultured in the MVNs pre-conditioned with transmural flow. Moreover, transmural flow is able to further increase PD-L1 expression in the vessels formed in the tumor microenvironment. Finally, by utilizing blocking antibodies and knock-out assays, it is found that transmural flow-driven PD-L1 upregulation is controlled by integrin αVβ3. Overall, this study provides a new biophysical explanation for high PD-L1 expression in tumoral vasculatures.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Amy X Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liling Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Huu Tuan Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Satomi Hirose
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seunggyu Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marie A Floryan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Parker Institute for Cancer Immunotherapy, Boston, MA, 02215, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Alhamdan F, Bayarsaikhan G, Yuki K. Toll-like receptors and integrins crosstalk. Front Immunol 2024; 15:1403764. [PMID: 38915411 PMCID: PMC11194410 DOI: 10.3389/fimmu.2024.1403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ganchimeg Bayarsaikhan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
6
|
Li J, Jo MH, Yan J, Hall T, Lee J, López-Sánchez U, Yan S, Ha T, Springer TA. Ligand binding initiates single-molecule integrin conformational activation. Cell 2024; 187:2990-3005.e17. [PMID: 38772370 PMCID: PMC11162317 DOI: 10.1016/j.cell.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin β-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Myung Hyun Jo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor Hall
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Uriel López-Sánchez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Newton South High School, Newton, MA 02459, USA
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Hao Y, Yan J, Fraser C, Jiang A, Anuganti M, Zhang R, Lloyd K, Jardine J, Coppola J, Meijers R, Li J, Springer TA. Synthetic integrin antibodies discovered by yeast display reveal αV subunit pairing preferences with β subunits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577394. [PMID: 38328192 PMCID: PMC10849667 DOI: 10.1101/2024.01.26.577394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Eight of the 24 integrin heterodimers bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, and play essential roles in cell adhesion, migration, and homeostasis. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands including fibronectin, vitronectin, fibrinogen, nephronectin and the prodomain of the transforming growth factors to fulfill specific functions in cellular processes. Subtype-specific antibodies against RGD-binding integrins are desirable for investigating their specific functions. In this study, we discovered 11 antibodies that exhibit high specificity and affinity towards integrins αVβ3, αVβ5, αVβ6, αVβ8, and α5β1 from a synthetic yeast-displayed Fab library. Of these, 6 are function-blocking antibodies containing an R(G/L/T) D motif in their CDR3 sequences. We report antibody binding specificity, kinetics, and binding affinity for purified integrin ectodomains as well as intact integrins on the cell surface. We further employed these antibodies to reveal binding preferences of the αV subunit for its 5 β-subunit partners: β6=β8>β3>β1=β5.
Collapse
Affiliation(s)
- Yuxin Hao
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Courtney Fraser
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Aiping Jiang
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Murali Anuganti
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Roushu Zhang
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Kenneth Lloyd
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Joseph Jardine
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Jessica Coppola
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Rob Meijers
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Room 921, Boston, MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Lacouture C, Chaves B, Guipouy D, Houmadi R, Duplan-Eche V, Allart S, Destainville N, Dupré L. LFA-1 nanoclusters integrate TCR stimulation strength to tune T-cell cytotoxic activity. Nat Commun 2024; 15:407. [PMID: 38195629 PMCID: PMC10776856 DOI: 10.1038/s41467-024-44688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Collapse
Affiliation(s)
- Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Delphine Guipouy
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Hao Y, Yan J, Fraser C, Jiang A, Anuganti M, Zhang R, Lloyd K, Jardine J, Coppola J, Meijers R, Li J, Springer TA. Synthetic integrin antibodies discovered by yeast display reveal αV subunit pairing preferences with β subunits. MAbs 2024; 16:2365891. [PMID: 38889315 PMCID: PMC11188837 DOI: 10.1080/19420862.2024.2365891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVβ3, αVβ5, αVβ6, αVβ8, and α5β1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 β-subunit partners: β6 = β8 > β3 > β1 = β5.
Collapse
Affiliation(s)
- Yuxin Hao
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Courtney Fraser
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Aiping Jiang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Roushu Zhang
- Institute for Protein Innovation, Boston, MA, USA
| | | | | | | | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Van Ryk D, Vimonpatranon S, Hiatt J, Ganesan S, Chen N, McMurry J, Garba S, Min S, Goes LR, Girard A, Yolitz J, Licavoli I, Wei D, Huang D, Soares MA, Martinelli E, Cicala C, Arthos J. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin ⍺4β7. PLoS Pathog 2023; 19:e1011860. [PMID: 38064524 PMCID: PMC10732398 DOI: 10.1371/journal.ppat.1011860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to ⍺4β7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to ⍺4β7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of ⍺4β7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G β-strand of CD4 D2, KIDIV, that binds directly to ⍺4β7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-⍺4β7 binding. The accessory ⍺4β7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and ⍺4β7. As such, the interactions of gp120 with both CD4 and ⍺4β7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and ⍺4β7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.
Collapse
Affiliation(s)
- Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Joe Hiatt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nathalie Chen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Saadiq Garba
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Susie Min
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Livia R. Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Bond A, Fiaz S, Rollins KR, Nario JEQ, Rosen SJ, Granados A, Wilson MZ, Morrissey MA. Prior Fc Receptor activation primes macrophages for increased sensitivity to IgG via long term and short term mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567059. [PMID: 38014172 PMCID: PMC10680729 DOI: 10.1101/2023.11.14.567059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor. To temporally control Fc Receptor activation, we engineered an Fc Receptor that is activated by light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that Fc Receptor activation primes macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced Fc Receptor activation eat more IgG-bound cancer cells. Increased phagocytosis occurs by two discrete mechanisms - a short- and long-term priming. Long term priming requires new protein synthesis and Erk activity. Short term priming does not require new protein synthesis and correlates with an increase in Fc Receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Kirstin R Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Samuel J Rosen
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
- Lead contact
| |
Collapse
|
12
|
Torres AY, Nano M, Campanale JP, Deak S, Montell DJ. Activated Src kinase promotes cell cannibalism in Drosophila. J Cell Biol 2023; 222:e202302076. [PMID: 37747450 PMCID: PMC10518265 DOI: 10.1083/jcb.202302076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Src family kinases (SFKs) are evolutionarily conserved proteins acting downstream of receptors and regulating cellular processes including proliferation, adhesion, and migration. Elevated SFK expression and activity correlate with progression of a variety of cancers. Here, using the Drosophila melanogaster border cells as a model, we report that localized activation of a Src kinase promotes an unusual behavior: engulfment of one cell by another. By modulating Src expression and activity in the border cell cluster, we found that increased Src kinase activity, either by mutation or loss of a negative regulator, is sufficient to drive one cell to engulf another living cell. We elucidate a molecular mechanism that requires integrins, the kinases SHARK and FAK, and Rho family GTPases, but not the engulfment receptor Draper. We propose that cell cannibalism is a result of aberrant phagocytosis, where cells with dysregulated Src activity fail to differentiate between living and dead or self versus non-self, thus driving this malignant behavior.
Collapse
Affiliation(s)
- Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Joseph P. Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sierra Deak
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
13
|
Johansen KH, Golec DP, Okkenhaug K, Schwartzberg PL. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends Immunol 2023; 44:917-931. [PMID: 37858490 PMCID: PMC10621891 DOI: 10.1016/j.it.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Sekar P, Rajagopalan S, Shabani E, Kanjee U, Schureck MA, Arora G, Peterson ME, Traore B, Crompton PD, Duraisingh MT, Desai SA, Long EO. NK cell-induced damage to P.falciparum-infected erythrocytes requires ligand-specific recognition and releases parasitophorous vacuoles that are phagocytosed by monocytes in the presence of immune IgG. PLoS Pathog 2023; 19:e1011585. [PMID: 37939134 PMCID: PMC10659167 DOI: 10.1371/journal.ppat.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMβ2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.
Collapse
Affiliation(s)
- Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marc A. Schureck
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gunjan Arora
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mary E. Peterson
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Boubacar Traore
- Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sanjay A. Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
15
|
Ockfen E, Filali L, Pereira Fernandes D, Hoffmann C, Thomas C. Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both? Front Immunol 2023; 14:1276602. [PMID: 37869010 PMCID: PMC10585106 DOI: 10.3389/fimmu.2023.1276602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.
Collapse
Affiliation(s)
- Elena Ockfen
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Diogo Pereira Fernandes
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
16
|
Belyaev AV, Fedotova IV. Molecular mechanisms of catch bonds and their implications for platelet hemostasis. Biophys Rev 2023; 15:1233-1256. [PMID: 37974999 PMCID: PMC10643804 DOI: 10.1007/s12551-023-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023] Open
Abstract
Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| | - Irina V. Fedotova
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| |
Collapse
|
17
|
Takeda K, Kaifu T, Michihata R, Kinugawa N, Fujioka A, Tateno A, Toshima K, Kanoh H, Inamori KI, Kamijo K, Himeda T, Ohara Y, Inokuchi JI, Nakamura A. Chronic encephalomyelitis virus exhibits cellular tropism and evades pDCs by binding to sialylated integrins as the cell surface receptors. Eur J Immunol 2023; 53:e2350452. [PMID: 37565654 DOI: 10.1002/eji.202350452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/03/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) causes a chronic demyelinating disease similar to multiple sclerosis in mice. Although sialic acids have been shown to be essential for TMEV attachment to the host, the surface receptor has not been identified. While type I interferons play a pivotal role in the elimination of the chronic infectious Daniel (DA) strain, the role of plasmacytoid dendritic cells (pDCs) is controversial. We herein found that TMEV binds to conventional DCs but not to pDCs. A glycomics analysis showed that the sialylated N-glycan fractions were lower in pDCs than in conventional DCs, indicating that pDCs are not susceptible to TMEV infection due to the low levels of sialic acid. TMEV capsid proteins contain an integrin recognition motif, and dot blot assays showed that the integrin proteins bind to TMEV and that the viral binding was reduced in the desialylated αX β2 . αX β2 protein suppressed TMEV replication in vivo, and TMEV co-localized with integrin αM at the cell membrane and TLR 3 in the cytoplasm, suggesting that αM serves as the viral attachment and entry. These results show that the chronic encephalomyelitis virus utilizes sialylated integrins as cell surface receptors, leading to cellular tropism to evade pDC activation.
Collapse
Affiliation(s)
- Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Ryunosuke Michihata
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Naotaka Kinugawa
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Atushi Fujioka
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Ayaka Tateno
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kaoru Toshima
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Keiju Kamijo
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | | | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. Comput Struct Biotechnol J 2023; 21:4497-4507. [PMID: 37753178 PMCID: PMC10518446 DOI: 10.1016/j.csbj.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
19
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539023. [PMID: 37205578 PMCID: PMC10187181 DOI: 10.1101/2023.05.02.539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
21
|
Johnson GA, Burghardt RC, Bazer FW, Seo H, Cain JW. Integrins and their potential roles in mammalian pregnancy. J Anim Sci Biotechnol 2023; 14:115. [PMID: 37679778 PMCID: PMC10486019 DOI: 10.1186/s40104-023-00918-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are a highly complex family of receptors that, when expressed on the surface of cells, can mediate reciprocal cell-to-cell and cell-to-extracellular matrix (ECM) interactions leading to assembly of integrin adhesion complexes (IACs) that initiate many signaling functions both at the membrane and deeper within the cytoplasm to coordinate processes including cell adhesion, migration, proliferation, survival, differentiation, and metabolism. All metazoan organisms possess integrins, and it is generally agreed that integrins were associated with the evolution of multicellularity, being essential for the association of cells with their neighbors and surroundings, during embryonic development and many aspects of cellular and molecular biology. Integrins have important roles in many aspects of embryonic development, normal physiology, and disease processes with a multitude of functions discovered and elucidated for integrins that directly influence many areas of biology and medicine, including mammalian pregnancy, in particular implantation of the blastocyst to the uterine wall, subsequent placentation and conceptus (embryo/fetus and associated placental membranes) development. This review provides a succinct overview of integrin structure, ligand binding, and signaling followed with a concise overview of embryonic development, implantation, and early placentation in pigs, sheep, humans, and mice as an example for rodents. A brief timeline of the initial localization of integrin subunits to the uterine luminal epithelium (LE) and conceptus trophoblast is then presented, followed by sequential summaries of integrin expression and function during gestation in pigs, sheep, humans, and rodents. As appropriate for this journal, summaries of integrin expression and function during gestation in pigs and sheep are in depth, whereas summaries for humans and rodents are brief. Because similar models to those illustrated in Fig. 1, 2, 3, 4, 5 and 6 are present throughout the scientific literature, the illustrations in this manuscript are drafted as Viking imagery for entertainment purposes.
Collapse
Affiliation(s)
- Gregory A Johnson
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA.
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Fuller W Bazer
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| |
Collapse
|
22
|
Sapoznikov A, Kozlovski S, Levi N, Feigelson SW, Regev O, Davidzohn N, Ben-Dor S, Haffner-Krausz R, Feldmesser E, Wigoda N, Petrovich-Kopitman E, Biton M, Alon R. Dendritic cell ICAM-1 strengthens synapses with CD8 T cells but is not required for their early differentiation. Cell Rep 2023; 42:112864. [PMID: 37494182 DOI: 10.1016/j.celrep.2023.112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts. Nevertheless, in the absence of these conjugates, CD8 lymphocyte proliferation and differentiation into functional cytotoxic T cells (CTLs) and skin homing effector lymphocytes takes place normally. Our results suggest that although CD8 T cell blasts engage in tight ICAM-1-dependent DC-T ISs, firm ISs are dispensable for TCR-triggered proliferation and differentiation into productive effector lymphocytes.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Wigoda
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Biton
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Faust MA, Rasé VJ, Lamb TJ, Evavold BD. What's the Catch? The Significance of Catch Bonds in T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:333-342. [PMID: 37459191 PMCID: PMC10732538 DOI: 10.4049/jimmunol.2300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 07/20/2023]
Abstract
One of the main goals in T cell biology has been to investigate how TCR recognition of peptide:MHC (pMHC) determines T cell phenotype and fate. Ag recognition is required to facilitate survival, expansion, and effector function of T cells. Historically, TCR affinity for pMHC has been used as a predictor for T cell fate and responsiveness, but there have now been several examples of nonfunctional high-affinity clones and low-affinity highly functional clones. Recently, more attention has been paid to the TCR being a mechanoreceptor where the key biophysical determinant is TCR bond lifetime under force. As outlined in this review, the fundamental parameters between the TCR and pMHC that control Ag recognition and T cell triggering are affinity, bond lifetime, and the amount of force at which the peak lifetime occurs.
Collapse
Affiliation(s)
- Michael A Faust
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Viva J Rasé
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tracey J Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
24
|
La Sala G, Pfleger C, Käck H, Wissler L, Nevin P, Böhm K, Janet JP, Schimpl M, Stubbs CJ, De Vivo M, Tyrchan C, Hogner A, Gohlke H, Frolov AI. Combining structural and coevolution information to unveil allosteric sites. Chem Sci 2023; 14:7057-7067. [PMID: 37389247 PMCID: PMC10306073 DOI: 10.1039/d2sc06272k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.
Collapse
Affiliation(s)
- Giuseppina La Sala
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Lisa Wissler
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Philip Nevin
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Kerstin Böhm
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Jon Paul Janet
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Marianne Schimpl
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Christopher J Stubbs
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia Via Morego 30 16163 Genoa Italy
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Anders Hogner
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics) Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Andrey I Frolov
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
25
|
A M, Wales TE, Zhou H, Draga-Coletă SV, Gorgulla C, Blackmore KA, Mittenbühler MJ, Kim CR, Bogoslavski D, Zhang Q, Wang ZF, Jedrychowski MP, Seo HS, Song K, Xu AZ, Sebastian L, Gygi SP, Arthanari H, Dhe-Paganon S, Griffin PR, Engen JR, Spiegelman BM. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α. Mol Cell 2023; 83:1903-1920.e12. [PMID: 37267907 PMCID: PMC10984146 DOI: 10.1016/j.molcel.2023.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVβ5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/β5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVβ5 complex docking model. Irisin binds very tightly to an alternative interface on αVβ5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.
Collapse
Affiliation(s)
- Mu A
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Haixia Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sorin-Valeriu Draga-Coletă
- Virtual Discovery, Inc. 569 Hammond Street, Chestnut Hill, MA 02467, USA; Non-Governmental Research Organization Biologic, 14 Schitului Street, Bucharest 032044, Romania
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Katherine A Blackmore
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline R Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dina Bogoslavski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Qiuyang Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zi-Fu Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew Z Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick R Griffin
- UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Shi H, Shao B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023; 12:cells12081136. [PMID: 37190045 DOI: 10.3390/cells12081136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immunological synapses. LFA-1 functions through interacting with its ligands with differing affinities: low, intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and immunological synapse formation.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Guffroy M, Trela B, Kambara T, Stawski L, Chen H, Luus L, Montesinos MS, Olson L, He Y, Maisonave K, Carr T, Lu M, Ray AS, Hazelwood LA. Selective inhibition of integrin αvβ6 leads to rapid induction of urinary bladder tumors in cynomolgus macaques. Toxicol Sci 2023; 191:400-413. [PMID: 36515490 PMCID: PMC9936210 DOI: 10.1093/toxsci/kfac128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Administration of a novel and selective small molecule integrin αvβ6 inhibitor, MORF-627, to young cynomolgus monkeys for 28 days resulted in the rapid induction of epithelial proliferative changes in the urinary bladder of 2 animals, in the absence of test agent genotoxicity. Microscopic findings included suburothelial infiltration by irregular nests and/or trabeculae of epithelial cells, variable cytologic atypia, and high mitotic rate, without invasion into the tunica muscularis. Morphologic features and patterns of tumor growth were consistent with a diagnosis of early-stage invasive urothelial carcinoma. Ki67 immunohistochemistry demonstrated diffusely increased epithelial proliferation in the urinary bladder of several monkeys, including those with tumors, and αvβ6 was expressed in some epithelial tissues, including urinary bladder, in monkeys and humans. Spontaneous urothelial carcinomas are extremely unusual in young healthy monkeys, suggesting a direct link of the finding to the test agent. Inhibition of integrin αvβ6 is intended to locally and selectively block transforming growth factor beta (TGF-β) signaling, which is implicated in epithelial proliferative disorders. Subsequent in vitro studies using a panel of integrin αvβ6 inhibitors in human bladder epithelial cells replicated the increased urothelial proliferation observed in monkeys and was reversed through exogenous application of TGF-β. Moreover, analysis of in vivo models of liver and lung fibrosis revealed evidence of epithelial hyperplasia and cell cycle dysregulation in mice treated with integrin αvβ6 or TGF-β receptor I inhibitors. The cumulative evidence suggests a direct link between integrin αvβ6 inhibition and decreased TGF-β signaling in the local bladder environment, with implications for epithelial proliferation and carcinogenesis.
Collapse
Affiliation(s)
| | - Bruce Trela
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | | | - Lukasz Stawski
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Huidong Chen
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Lia Luus
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | | | | | - Yupeng He
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | | | - Tracy Carr
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | - Min Lu
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Adrian S Ray
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | | |
Collapse
|
28
|
Podolnikova NP, Key S, Wang X, Ugarova TP. THE CIS ASSOCIATION OF CD47 WITH INTEGRIN Mac-1 REGULATES MACROPHAGE RESPONSES BY STABILIZING THE EXTENDED INTEGRIN CONFORMATION. J Biol Chem 2023; 299:103024. [PMID: 36796515 PMCID: PMC10124913 DOI: 10.1016/j.jbc.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMβ2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by co-immunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and β2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free β2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with PMA, Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the β2 and calf-1 and calf-2 domains of the α subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.
Collapse
Affiliation(s)
| | - Shundene Key
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
29
|
Ullo MF, Case LB. How cells sense and integrate information from different sources. WIREs Mech Dis 2023:e1604. [PMID: 36781396 DOI: 10.1002/wsbm.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Tong D, Soley N, Kolasangiani R, Schwartz MA, Bidone TC. Integrin α IIbβ 3 intermediates: From molecular dynamics to adhesion assembly. Biophys J 2023; 122:533-543. [PMID: 36566352 PMCID: PMC9941721 DOI: 10.1016/j.bpj.2022.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The platelet integrin αIIbβ3 undergoes long-range conformational transitions associated with its functional conversion from inactive (low-affinity) to active (high-affinity) during hemostasis. Although new conformations that are intermediate between the well-characterized bent and extended states have been identified, their molecular dynamic properties and functions in the assembly of adhesions remain largely unexplored. In this study, we evaluated the properties of intermediate conformations of integrin αIIbβ3 and characterized their effects on the assembly of adhesions by combining all-atom simulations, principal component analysis, and mesoscale modeling. Our results show that in the low-affinity, bent conformation, the integrin ectodomain tends to pivot around the legs; in intermediate conformations, the headpiece becomes partially extended, away from the lower legs. In the fully open, active state, αIIbβ3 is flexible, and the motions between headpiece and lower legs are accompanied by fluctuations of the transmembrane helices. At the mesoscale, bent integrins form only unstable adhesions, but intermediate or open conformations stabilize the adhesions. These studies reveal a mechanism by which small variations in ligand binding affinity and enhancement of the ligand-bound lifetime in the presence of actin retrograde flow stabilize αIIbβ3 integrin adhesions.
Collapse
Affiliation(s)
- Dudu Tong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Nidhi Soley
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biochemistry, University of Utah, Salt Lake City, Utah; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
31
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
32
|
Influence of genetic polymorphisms in P2Y12 receptor signaling pathway on antiplatelet response to clopidogrel in coronary heart disease. BMC Cardiovasc Disord 2022; 22:575. [PMID: 36581799 PMCID: PMC9801627 DOI: 10.1186/s12872-022-02988-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Remarkable interindividual variability in clopidogrel response is observed, genetic polymorphisms in P2RY12 and its signal pathway is supposed to affect clopidogrel response in CHD patients. METHODS 539 CHD patients treated with clopidogrel were recruited. The platelet reaction index (PRI) indicated by VASP-P level were detected in 12-24 h after clopidogrel loading dose or within 5-7 days after initiation of maintain dose clopidogrel. A total of 13 SNPs in relevant genes were genotyped in sample A (239 CHD patients). The SNPs which have significant differences in PRI will be validated in another sample (sample B, 300 CHD patients). RESULTS CYP2C19*2 increased the risk of clopidogrel resistance significantly. When CYP2C19*2 and CYP2C19*3 were considered, CYP2C19 loss of function (LOF) alleles were associated with more obviously increased the risk of clopidogrel resistance; P2RY12 rs6809699C > A polymorphism was also associated with increased risk of clopidogrel resistance (AA vs CC: P = 0.0398). This difference still existed after stratification by CYP2C19 genotypes. It was also validated in sample B. The association was also still significant even in the case of stratification by CYP2C19 genotypes in all patients (sample A + B). CONCLUSION Our data suggest that P2RY12 rs6809699 is associated with clopidogrel resistance in CHD patients. Meanwhile, the rs6809699 AA genotype can increase on-treatment platelet activity independent of CYP2C19 LOF polymorphisms.
Collapse
|
33
|
Onnis A, Andreano E, Cassioli C, Finetti F, Della Bella C, Staufer O, Pantano E, Abbiento V, Marotta G, D’Elios MM, Rappuoli R, Baldari CT. SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune synapse assembly. J Exp Med 2022; 220:213689. [PMID: 36378226 PMCID: PMC9671159 DOI: 10.1084/jem.20220906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Oskar Staufer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Elisa Pantano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, Siena, Italy,Correspondence to Cosima T. Baldari:
| |
Collapse
|
34
|
Integrin Conformational Dynamics and Mechanotransduction. Cells 2022; 11:cells11223584. [PMID: 36429013 PMCID: PMC9688440 DOI: 10.3390/cells11223584] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The function of the integrin family of receptors as central mediators of cell-extracellular matrix (ECM) and cell-cell adhesion requires a remarkable convergence of interactions and influences. Integrins must be anchored to the cytoskeleton and bound to extracellular ligands in order to provide firm adhesion, with force transmission across this linkage conferring tissue integrity. Integrin affinity to ligands is highly regulated by cell signaling pathways, altering affinity constants by 1000-fold or more, via a series of long-range conformational transitions. In this review, we first summarize basic, well-known features of integrin conformational states and then focus on new information concerning the impact of mechanical forces on these states and interstate transitions. We also discuss how these effects may impact mechansensitive cell functions and identify unanswered questions for future studies.
Collapse
|
35
|
Hou L, Yuki K. CD11c regulates late-stage T cell development in the thymus. Front Immunol 2022; 13:1040818. [PMID: 36439108 PMCID: PMC9684328 DOI: 10.3389/fimmu.2022.1040818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
CD11c, also named integrin αX, has been deemed solely as a dendritic cell marker for decades while the delineation of its biological function was limited. In the current study, we observed in mice that CD11c deficiency led to a defect in T cell development, demonstrated by the loss of CD4+CD8+ double positive (DP) T cells, CD4+CD8-, and CD4-CD8+ single positive (SP) T cells in the thymus and less mature T cells in the periphery. By using bone marrow chimera, we confirmed that CD11c regulated T cell development in the thymus. We further showed that CD11c deficiency led to an accelerated apoptosis of CD3 positive thymocytes, but not CD4-CD8- double negative (DN) T cells. Overall, this study added one more layer of knowledge on the regulatory mechanism of late-stage T cell development that the presence of CD11c in the thymus is critical for maintaining T cell survival.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Departments of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Departments of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Flow cytometry analysis of CD11c-positive peripheral blood mononuclear cells in horses. Vet Immunol Immunopathol 2022; 253:110504. [DOI: 10.1016/j.vetimm.2022.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
|
37
|
Hynes RO, Ruoslahti E, Springer TA. Reflections on Integrins-Past, Present, and Future: The Albert Lasker Basic Medical Research Award. JAMA 2022; 328:1291-1292. [PMID: 36170060 DOI: 10.1001/jama.2022.17005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This Viewpoint discusses the rapid advances in molecular cell biological approaches over the past 50 years and the many avenues for future advances that have been opened, including direct applications for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Richard O Hynes
- Koch Institute, Biology Department, Massachusetts Institute of Technology, Cambridge
| | - Erkki Ruoslahti
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Department of Biological Chemistry and Molecular Pharmacology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Bhattacharjya S. The structural basis of β2 integrin intra-cellular multi-protein complexes. Biophys Rev 2022; 14:1183-1195. [PMID: 36345283 PMCID: PMC9636337 DOI: 10.1007/s12551-022-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell adhesion is a pivotal physiological process which is essential for cell-cell communications, cell migration, and interactions with extracellular matrix. Integrins, a family of large hetero-dimeric type I membrane proteins, are known for driving cell adhesion functions. Among 24 different integrins, four β2 integrins, αL β2, αM β2, αX β2 and αD β2, are specific for cell adhesion and migration of leukocytes. Many cytosolic proteins interact with short cytosolic tails (CTs) of β2 and other integrins which are essential in bi-directional signaling processes. Further, phosphorylation of CTs of integrins regulates binding of intra-cellular proteins and signaling systems. In this review, recent advances in structures and interactions of multi-protein complexes of integrin tails, with a focus on β2 integrin, and cytosolic proteins are discussed along with a proposed future direction.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
39
|
Espie D, Donnadieu E. New insights into CAR T cell-mediated killing of tumor cells. Front Immunol 2022; 13:1016208. [PMID: 36189315 PMCID: PMC9521365 DOI: 10.3389/fimmu.2022.1016208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, CAR T-cell efficacy has been very limited in most solid tumors. In this context, it is of paramount importance to understand the determinants that condition CAR T-cell success versus failure. To control tumor growth, CAR T cells need to form conjugates with their targets via the assembly of an immunological synapse. Here, we review recent advances showing that the adhesion between CAR T cells and cancer cells from solid tumors strengthens over time in an IFNγ- and ICAM-1-dependent manner, resulting in CAR T cell-mediated killing. We discuss how these findings can be exploited to increase the efficacy of the CAR T-cell strategy against solid tumors.
Collapse
Affiliation(s)
- David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, Paris, France
- CAR-T Preclinical Development Department, Invectys, Paris, France
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, Paris, France
- *Correspondence: Emmanuel Donnadieu,
| |
Collapse
|
40
|
Song G, Meng F, Luo B. The β
8
integrin EGF domains support a constitutive extended conformation, and the cytoplasmic domain impairs outside‐in signaling. J Cell Physiol 2022; 237:4251-4261. [DOI: 10.1002/jcp.30871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Guannan Song
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Fei Meng
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Bing‐Hao Luo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
41
|
Duan Z, Lin X, Wang L, Zhen Q, Jiang Y, Chen C, Yang J, Lee CH, Qin Y, Li Y, Zhao B, Wang J, Zhang Z. Specificity of TGF-β1 signal designated by LRRC33 and integrin α Vβ 8. Nat Commun 2022; 13:4988. [PMID: 36008481 PMCID: PMC9411592 DOI: 10.1038/s41467-022-32655-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/03/2022] [Indexed: 12/20/2022] Open
Abstract
Myeloid lineage cells present the latent form of transforming growth factor-β1 (L-TGF-β1) to the membrane using an anchor protein LRRC33. Integrin αVβ8 activates extracellular L-TGF-β1 to trigger the downstream signaling functions. However, the mechanism designating the specificity of TGF-β1 presentation and activation remains incompletely understood. Here, we report cryo-EM structures of human L-TGF-β1/LRRC33 and integrin αVβ8/L-TGF-β1 complexes. Combined with biochemical and cell-based analyses, we demonstrate that LRRC33 only presents L-TGF-β1 but not the -β2 or -β3 isoforms due to difference of key residues on the growth factor domains. Moreover, we reveal a 2:2 binding mode of integrin αVβ8 and L-TGF-β1, which shows higher avidity and more efficient L-TGF-β1 activation than previously reported 1:2 binding mode. We also uncover that the disulfide-linked loop of the integrin subunit β8 determines its exquisite affinity to L-TGF-β1. Together, our findings provide important insights into the specificity of TGF-β1 signaling achieved by LRRC33 and integrin αVβ8.
Collapse
Affiliation(s)
- Zelin Duan
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Xuezhen Lin
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Lixia Wang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Qiuxin Zhen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Yuefeng Jiang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Chuxin Chen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yan Qin
- Parthenon Therapeutics, 40 Guest street, Boston, MA, 02135, USA
| | - Ying Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China
| | - Bo Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, Guangdong, China.
| | - Jianchuan Wang
- Center for Translational Research, Shenzhen Bay Laboratory, 518007, Shenzhen, Guangdong, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
42
|
Rossatti P, Redpath GMI, Ziegler L, Samson GPB, Clamagirand CD, Legler DF, Rossy J. Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation. BMC Biol 2022; 20:189. [PMID: 36002835 PMCID: PMC9400314 DOI: 10.1186/s12915-022-01386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. Results Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. Conclusions Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01386-0.
Collapse
Affiliation(s)
- Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Sydney, Australia
| | - Luca Ziegler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Camille D Clamagirand
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, University of Konstanz, Constance, Germany.
| |
Collapse
|
43
|
Heterotropic roles of divalent cations in the establishment of allostery and affinity maturation of integrin αXβ2. Cell Rep 2022; 40:111254. [PMID: 36001965 PMCID: PMC9440770 DOI: 10.1016/j.celrep.2022.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Allosteric activation and silencing of leukocyte β2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXβ2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXβ2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.
Collapse
|
44
|
Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. J Biol Chem 2022; 298:102323. [PMID: 35931112 PMCID: PMC9483561 DOI: 10.1016/j.jbc.2022.102323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Integrin α5β1 mediates cell adhesion to the extracellular matrix by binding fibronectin (Fn). Selectivity for Fn by α5β1 is achieved through recognition of an RGD motif in the 10th type III Fn domain (Fn10) and the synergy site in the ninth type III Fn domain (Fn9). However, details of the interaction dynamics are unknown. Here, we compared synergy-site and Fn-truncation mutations for their α5β1-binding affinities and stabilities. We also interrogated binding of the α5β1 ectodomain headpiece fragment to Fn using hydrogen-deuterium exchange (HDX) mass spectrometry to probe binding sites and sites of integrin conformational change. Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded domain. We found some residues considered important for synergy are required for stability. Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide containing contacting residues in two β-strands, an intervening loop in Fn9, and the RGD-containing loop in Fn10, indicative of binding sites. We also identified binding sites in the α5-subunit β-propeller domain for the Fn9 synergy site and in the β1-subunit βI domain for Fn10 based on decreases in α5β1 HDX. Interestingly, the dominant effect of Fn binding was an increase in α5β1 deuterium exchange distributed over multiple sites that undergo changes in conformation or solvent accessibility and appear to be sites where energy is stored in the higher-energy, open-integrin conformation. Together, our results highlight regions important for α5β1 binding to Fn and dynamics associated with this interaction.
Collapse
Affiliation(s)
- Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
45
|
Adherens junctions stimulate and spatially guide integrin activation and extracellular matrix deposition. Cell Rep 2022; 40:111091. [PMID: 35858563 DOI: 10.1016/j.celrep.2022.111091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Cadherins and integrins are intrinsically linked through the actin cytoskeleton and are largely responsible for the mechanical integrity and organization of tissues. We show that cadherin clustering stimulates and spatially guides integrin activation. Adherens junction (AJ)-associated integrin activation depends on locally generated tension and does not require extracellular matrix ligands. It leads to the creation of primed integrin clusters, which spatially determine where focal adhesions will form if ligands are present and where ligands will be deposited. AJs that display integrin activation are targeted by microtubules facilitating their disassembly via caveolin-based endocytosis, showing that integrin activation impacts the stability of the core cadherin complex. Thus, the interplay between cadherins and integrins is more intimate than what was once believed and is rooted in the capacity of active integrins to be stabilized via AJ-generated tension. Altogether, our data establish a mechanism of cross-regulation between cadherins and integrins.
Collapse
|
46
|
Dahal N, Sharma S, Phan B, Eis A, Popa I. Mechanical regulation of talin through binding and history-dependent unfolding. SCIENCE ADVANCES 2022; 8:eabl7719. [PMID: 35857491 DOI: 10.1126/sciadv.abl7719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Talin is a force-sensing multidomain protein and a major player in cellular mechanotransduction. Here, we use single-molecule magnetic tweezers to investigate the mechanical response of the R8 rod domain of talin. We find that under various force cycles, the R8 domain of talin can display a memory-dependent behavior: At the same low force (<10 pN), the same protein molecule shows vastly different unfolding kinetics. This history-dependent behavior indicates the evolution of a unique force-induced native state. We measure through mechanical unfolding that talin R8 domain binds one of its ligands, DLC1, with much higher affinity than previously reported. This strong interaction can explain the antitumor response of DLC1 by regulating inside-out activation of integrins. Together, our results paint a complex picture for the mechanical unfolding of talin in the physiological range and a new mechanism of function of DLC1 to regulate inside-out activation of integrins.
Collapse
Affiliation(s)
- Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Binh Phan
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Annie Eis
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| |
Collapse
|
47
|
Linehan JB, Zepeda JL, Mitchell TA, LeClair EE. Follow that cell: leukocyte migration in L-plastin mutant zebrafish. Cytoskeleton (Hoboken) 2022; 79:26-37. [PMID: 35811499 DOI: 10.1002/cm.21717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Actin assemblies are important in motile cells such as leukocytes which form dynamic plasma membrane extensions or podia. L-plastin (LCP1) is a leukocyte-specific calcium-dependent actin-bundling protein that, in mammals, is known to affect immune cell migration. Previously, we generated CRISPR/Cas9 engineered zebrafish lacking L-plastin (lcp1-/-) and reported that they had reduced survival to adulthood, suggesting that lack of this actin-bundler might negatively affect the immune system. To test this hypothesis, we examined the distribution and migration of neutrophils and macrophages in the transparent tail of early zebrafish larvae using cell-specific markers and an established wound-migration assay. Knockout larvae were similar to their heterozygous siblings in having equal body sizes and comparable numbers of neutrophils in caudal hematopoietic tissue at two days post-fertilization, indicating no gross defect in neutrophil production or developmental migration. When stimulated by a tail wound, all genotypes of neutrophils were equally migratory in a two-hour window. However for macrophages we observed both migration defects and morphological differences. L-plastin knockout macrophages (lcp1 -/-) still homed to wounds but were slower, less directional and had a star-like morphology with many leading and trailing projections. In contrast, heterozygous macrophages lcp1 (+/-) were faster, more directional, and had a streamlined, slug-like morphology. Overall, these findings show that in larval zebrafish L-plastin knockout primarily affects the macrophage response with possible consequences for organismal immunity. Consistent with our observations, we propose a model in which cytoplasmic L-plastin negatively regulates macrophage integrin adhesion by holding these transmembrane heterodimers in a 'clasped', inactive form and is a necessary part of establishing macrophage polarity during chemokine-induced motility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- J B Linehan
- Department of Biological Sciences, DePaul University, USA
| | - J L Zepeda
- Department of Biological Sciences, DePaul University, USA
| | - T A Mitchell
- Department of Biological Sciences, DePaul University, USA
| | - E E LeClair
- Department of Biological Sciences, DePaul University, USA
| |
Collapse
|
48
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022; 11:cells11111854. [PMID: 35681548 PMCID: PMC9180731 DOI: 10.3390/cells11111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.
Collapse
|
50
|
Sun H, Lagarrigue F, Ginsberg MH. The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Front Cell Dev Biol 2022; 10:908622. [PMID: 35721481 PMCID: PMC9198492 DOI: 10.3389/fcell.2022.908622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions. In this review, we summarize the mechanisms of integrin activation in blood cells with a focus on recent advances understanding of mechanisms whereby Rap1 regulates talin1-integrin interaction to trigger integrin activation in lymphocytes, platelets, and neutrophils.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|