1
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
3
|
McCarthy CI, Chou-Freed C, Rodríguez SS, Yaneff A, Davio C, Raingo J. Constitutive activity of dopamine receptor type 1 (D1R) increases CaV2.2 currents in PFC neurons. J Gen Physiol 2021; 152:151624. [PMID: 32259196 PMCID: PMC7201881 DOI: 10.1085/jgp.201912492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023] Open
Abstract
Alterations in dopamine receptor type 1 (D1R) density are associated with cognitive deficits of aging and schizophrenia. In the prefrontal cortex (PFC), D1R plays a critical role in the regulation of working memory, which is impaired in these cognitive deficit states, but the cellular events triggered by changes in D1R expression remain unknown. A previous report demonstrated that interaction between voltage-gated calcium channel type 2.2 (CaV2.2) and D1R stimulates CaV2.2 postsynaptic surface location in medial PFC pyramidal neurons. Here, we show that in addition to the occurrence of the physical receptor-channel interaction, constitutive D1R activity mediates up-regulation of functional CaV2.2 surface density. We performed patch-clamp experiments on transfected HEK293T cells and wild-type C57BL/6 mouse brain slices, as well as imaging experiments and cAMP measurements. We found that D1R coexpression led to ∼60% increase in CaV2.2 currents in HEK293T cells. This effect was occluded by preincubation with a D1/D5R inverse agonist, chlorpromazine, and by replacing D1R with a D1R mutant lacking constitutive activity. Moreover, D1R-induced increase in CaV2.2 currents required basally active Gs protein, as well as D1R-CaV2.2 interaction. In mice, intraperitoneal administration of chlorpromazine reduced native CaV currents’ sensitivity to ω-conotoxin-GVIA and their size by ∼49% in layer V/VI pyramidal neurons from medial PFC, indicating a selective effect on CaV2.2. Additionally, we found that reducing D1/D5R constitutive activity correlates with a decrease in the agonist-induced D1/D5R inhibitory effect on native CaV currents. Our results could be interpreted as a stimulatory effect of D1R constitutive activity on the number of CaV2.2 channels available for dopamine-mediated modulation. Our results contribute to the understanding of the physiological role of D1R constitutive activity and may explain the noncanonical postsynaptic distribution of functional CaV2.2 in PFC neurons.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Cambria Chou-Freed
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Poulet C, Sanchez-Alonso J, Swiatlowska P, Mouy F, Lucarelli C, Alvarez-Laviada A, Gross P, Terracciano C, Houser S, Gorelik J. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovasc Res 2021; 117:149-161. [PMID: 32053184 PMCID: PMC7797210 DOI: 10.1093/cvr/cvaa033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
AIM In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR membrane. T-tubule remodelling in cardiac diseases is associated with downregulation of JPH2 expression suggesting that JPH2 plays a crucial role in T-tubule stability. Furthermore, increasing evidence indicate that JPH2 might additionally act as a modulator of calcium signalling by directly regulating RyR and LTCCs. This study aimed at determining whether JPH2 overexpression restores normal T-tubule structure and LTCC function in cultured cardiomyocytes. METHODS AND RESULTS Rat ventricular myocytes kept in culture for 4 days showed extensive T-tubule remodelling with impaired JPH2 localization and relocation of the scaffolding protein Caveolin3 (Cav3) from the T-tubules to the outer membrane. Overexpression of JPH2 restored T-tubule structure and Cav3 relocation. Depletion of membrane cholesterol by chronic treatment with methyl-β-cyclodextrin (MβCD) countered the stabilizing effect of JPH2 overexpression on T-tubules and Cav3. Super-resolution scanning patch-clamp showed that JPH2 overexpression greatly increased the number of functional LTCCs at the plasma membrane. Treatment with MβCD reduced LTCC open probability and activity. Proximity ligation assays showed that MβCD did not affect JPH2 interaction with RyR and the pore-forming LTCC subunit Cav1.2, but strongly impaired JPH2 association with Cav3 and the accessory LTCC subunit Cavβ2. CONCLUSIONS JPH2 promotes T-tubule structural stability and recruits functional LTCCs to the membrane, most likely by directly binding to the channel. Cholesterol is involved in the binding of JPH2 to T-tubules as well as in the modulation of LTCC activity. We propose a model where cholesterol and Cav3 support the assembly of lipid rafts which provide an anchor for JPH2 to form JMCs and a platform for signalling complexes to regulate LTCC activity.
Collapse
Affiliation(s)
- Claire Poulet
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jose Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Florence Mouy
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Carla Lucarelli
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Cardiac Surgery, School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Polina Gross
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Steven Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
5
|
Ye Y, Barghouth M, Luan C, Kazim A, Zhou Y, Eliasson L, Zhang E, Hansson O, Thevenin T, Renström E. The TCF7L2-dependent high-voltage activated calcium channel subunit α2δ-1 controls calcium signaling in rodent pancreatic beta-cells. Mol Cell Endocrinol 2020; 502:110673. [PMID: 31805307 DOI: 10.1016/j.mce.2019.110673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
The transcription factor TCF7L2 remains the most important diabetes gene identified to date and genetic risk carriers exhibit lower insulin secretion. We show that Tcf7l2 regulates the auxiliary subunit of voltage-gated Ca2+ channels, Cacna2d1 gene/α2δ-1 protein levels. Furthermore, suppression of α2δ-1 decreased voltage-gated Ca2+ currents and high glucose/depolarization-evoked Ca2+ signaling which mimicked the effect of silencing of Tcf7l2. This appears to be the result of impaired voltage-gated Ca2+ channel trafficking to the plasma membrane, as Cav1.2 channels accumulated in the recycling endosomes after α2δ-1 suppression, in clonal as well as primary rodent beta-cells. This impaired the capacity for glucose-induced insulin secretion in Cacna2d1-silenced cells. Overexpression of α2δ-1 increased high-glucose/K+-stimulated insulin secretion. Furthermore, overexpression of α2δ-1 in Tcf7l2-silenced cells rescued the Tcf7l2-dependent impairment of Ca2+ signaling, but not the reduced insulin secretion. Taken together, these data clarify the connection between Tcf7l2, α2δ-1 in Ca2+-dependent insulin secretion.
Collapse
Affiliation(s)
- Yingying Ye
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Mohammad Barghouth
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Cheng Luan
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Abdulla Kazim
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Yuedan Zhou
- Lund University, Department of Clinical Sciences, Diabetes and Endocrinology Group, Sweden
| | - Lena Eliasson
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Enming Zhang
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Ola Hansson
- Lund University, Department of Clinical Sciences, Diabetes and Endocrinology Group, Sweden
| | - Thomas Thevenin
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden
| | - Erik Renström
- Lund University, Department of Clinical Sciences, Islet Pathophysiology Group, Sweden.
| |
Collapse
|
6
|
El-Awaad E, Pryymachuk G, Fried C, Matthes J, Isensee J, Hucho T, Neiss WF, Paulsson M, Herzig S, Zaucke F, Pietsch M. Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit α 2δ-1 with thrombospondin-4. Sci Rep 2019; 9:16272. [PMID: 31700036 PMCID: PMC6838084 DOI: 10.1038/s41598-019-52655-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The α2δ‐1 subunit of voltage-gated calcium channels binds to gabapentin and pregabalin, mediating the analgesic action of these drugs against neuropathic pain. Extracellular matrix proteins from the thrombospondin (TSP) family have been identified as ligands of α2δ‐1 in the CNS. This interaction was found to be crucial for excitatory synaptogenesis and neuronal sensitisation which in turn can be inhibited by gabapentin, suggesting a potential role in the pathogenesis of neuropathic pain. Here, we provide information on the biochemical properties of the direct TSP/α2δ-1 interaction using an ELISA-style ligand binding assay. Our data reveal that full-length pentameric TSP-4, but neither TSP-5/COMP of the pentamer-forming subgroup B nor TSP-2 of the trimer-forming subgroup A directly interact with a soluble variant of α2δ-1 (α2δ-1S). Interestingly, this interaction is not inhibited by gabapentin on a molecular level and is not detectable on the surface of HEK293-EBNA cells over-expressing α2δ‐1 protein. These results provide biochemical evidence that supports a specific role of TSP-4 among the TSPs in mediating the binding to neuronal α2δ‐1 and suggest that gabapentin does not directly target TSP/α2δ-1 interaction to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ehab El-Awaad
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Galyna Pryymachuk
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Cora Fried
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jan Matthes
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jörg Isensee
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Tim Hucho
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Mats Paulsson
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, D-50931, Cologne, Germany
| | - Stefan Herzig
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,President of TH Köln, TH Köln (University of Applied Sciences), Claudiusstr. 1, D-50678, Cologne, Germany
| | - Frank Zaucke
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Marienburgstr. 2, D-60528, Frankfurt/Main, Germany
| | - Markus Pietsch
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.
| |
Collapse
|
7
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
8
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
9
|
Small-molecule Ca Vα 1⋅Ca Vβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc Natl Acad Sci U S A 2018; 115:E10566-E10575. [PMID: 30355767 DOI: 10.1073/pnas.1813157115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.
Collapse
|
10
|
Rosa N, Triffaux E, Robert V, Mars M, Klein M, Bouchaud G, Canivet A, Magnan A, Guéry JC, Pelletier L, Savignac M. The β and α2δ auxiliary subunits of voltage-gated calcium channel 1 (Ca v1) are required for T H2 lymphocyte function and acute allergic airway inflammation. J Allergy Clin Immunol 2017; 142:892-903.e8. [PMID: 29129580 DOI: 10.1016/j.jaci.2017.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/04/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND T lymphocytes express not only cell membrane ORAI calcium release-activated calcium modulator 1 but also voltage-gated calcium channel (Cav) 1 channels. In excitable cells these channels are composed of the ion-forming pore α1 and auxiliary subunits (β and α2δ) needed for proper trafficking and activation of the channel. Previously, we disclosed the role of Cav1.2 α1 in mouse and human TH2 but not TH1 cell functions and showed that knocking down Cav1 α1 prevents experimental asthma. OBJECTIVE We investigated the role of β and α2δ auxiliary subunits on Cav1 α1 function in TH2 lymphocytes and on the development of acute allergic airway inflammation. METHODS We used Cavβ antisense oligonucleotides to knock down Cavβ and gabapentin, a drug that binds to and inhibits α2δ1 and α2δ2, to test their effects on TH2 functions and their capacity to reduce allergic airway inflammation. RESULTS Mouse and human TH2 cells express mainly Cavβ1, β3, and α2δ2 subunits. Cavβ antisense reduces T-cell receptor-driven calcium responses and cytokine production by mouse and human TH2 cells with no effect on TH1 cells. Cavβ is mainly involved in restraining Cav1.2 α1 degradation through the proteasome because a proteasome inhibitor partially restores the α1 protein level. Gabapentin impairs the T-cell receptor-driven calcium response and cytokine production associated with the loss of α2δ2 protein in TH2 cells. CONCLUSIONS These results stress the role of Cavβ and α2δ2 auxiliary subunits in the stability and activation of Cav1.2 channels in TH2 lymphocytes both in vitro and in vivo, as demonstrated by the beneficial effect of Cavβ antisense and gabapentin in allergic airway inflammation.
Collapse
Affiliation(s)
- Nicolas Rosa
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Emily Triffaux
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Virginie Robert
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Marion Mars
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Martin Klein
- Institut du Thorax, INSERM CNRS, UNIV Nantes, France
| | | | - Astrid Canivet
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Antoine Magnan
- Institut du Thorax, INSERM CNRS, UNIV Nantes, France; Centre Hospitalier Universitaire de Nantes, Service de Pneumologie, Nantes, France
| | - Jean-Charles Guéry
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Lucette Pelletier
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France.
| | - Magali Savignac
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France.
| |
Collapse
|
11
|
Margas W, Ferron L, Nieto-Rostro M, Schwartz A, Dolphin AC. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0430. [PMID: 27377724 PMCID: PMC4938030 DOI: 10.1098/rstb.2015.0430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Wojciech Margas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Arnold Schwartz
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0557, USA
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Allen SE, Toro CP, Andrade A, López-Soto EJ, Denome S, Lipscombe D. Cell-Specific RNA Binding Protein Rbfox2 Regulates Ca V2.2 mRNA Exon Composition and Ca V2.2 Current Size. eNeuro 2017; 4:ENEURO.0332-16.2017. [PMID: 29067356 PMCID: PMC5633781 DOI: 10.1523/eneuro.0332-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of multiexon mammalian genes contain alternatively spliced exons that have unique expression patterns in different cell populations and that have important cell functions. The expression profiles of alternative exons are controlled by cell-specific splicing factors that can promote exon inclusion or exon skipping but with few exceptions we do not know which specific splicing factors control the expression of alternatively spliced exons of known biological function. Many ion channel genes undergo extensive alternative splicing including Cacna1b that encodes the voltage-gated CaV2.2 α1 subunit. Alternatively spliced exon 18a in Cacna1b RNA encodes 21 amino acids in the II-III loop of CaV2.2, and its expression differs across the nervous system and over development. Genome-wide, protein-RNA binding analyses coupled to high-throughput RNA sequencing show that RNA binding Fox (Rbfox) proteins associate with CaV2.2 (Cacna1b) pre-mRNAs. Here, we link Rbfox2 to suppression of e18a. We show increased e18a inclusion in CaV2.2 mRNAs: (1) after siRNA knockdown of Rbfox2 in a neuronal cell line and (2) in RNA from sympathetic neurons of adult compared to early postnatal mice. By immunoprecipitation of Rbfox2-RNA complexes followed by qPCR, we demonstrate reduced Rbfox2 binding upstream of e18a in RNA from sympathetic neurons of adult compared to early postnatal mice. CaV2.2 currents in cell lines and in sympathetic neurons expressing only e18a-CaV2.2 are larger compared to currents from those expressing only Δ18a-CaV2.2. We conclude that Rbfox2 represses e18a inclusion during pre-mRNA splicing of CaV2.2, limiting the size of CaV2.2 currents early in development in certain neuronal populations.
Collapse
MESH Headings
- Action Potentials/genetics
- Animals
- Animals, Newborn
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Exons/genetics
- Female
- Gene Expression Regulation, Developmental/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Neurons/physiology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Superior Cervical Ganglion/cytology
Collapse
Affiliation(s)
- Summer E. Allen
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Cecilia P. Toro
- Department of Biology, Linfield College, McMinnville, OR 97128
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824
| | - Eduardo J. López-Soto
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Sylvia Denome
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Diane Lipscombe
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| |
Collapse
|
13
|
Tong XJ, López-Soto EJ, Li L, Liu H, Nedelcu D, Lipscombe D, Hu Z, Kaplan JM. Retrograde Synaptic Inhibition Is Mediated by α-Neurexin Binding to the α2δ Subunits of N-Type Calcium Channels. Neuron 2017; 95:326-340.e5. [PMID: 28669545 DOI: 10.1016/j.neuron.2017.06.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. In C. elegans, post-synaptic Neurexin (NRX-1) and pre-synaptic Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits acetylcholine (ACh) release at neuromuscular junctions. Here, we show that the retrograde signal decreases ACh release by inhibiting the function of pre-synaptic UNC-2/CaV2 calcium channels. Post-synaptic NRX-1 binds to an auxiliary subunit of pre-synaptic UNC-2/CaV2 channels (UNC-36/α2δ), decreasing UNC-36 abundance at pre-synaptic elements. Retrograde inhibition is mediated by a soluble form of NRX-1's ectodomain, which is released from the post-synaptic membrane by the SUP-17/ADAM10 protease. Mammalian Neurexin-1α binds α2δ-3 and decreases CaV2.2 current in transfected cells, whereas Neurexin-1α has no effect on CaV2.2 reconstituted with α2δ-1 and α2δ-2. Collectively, these results suggest that α-Neurexin binding to α2δ is a conserved mechanism for regulating synaptic transmission.
Collapse
Affiliation(s)
- Xia-Jing Tong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Javier López-Soto
- Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Lei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haowen Liu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Nedelcu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Lipscombe
- Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Sala-Rabanal M, Yurtsever Z, Berry KN, Nichols CG, Brett TJ. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 2017; 292:9164-9174. [PMID: 28420732 DOI: 10.1074/jbc.m117.788232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Zeynep Yurtsever
- Biochemistry Program.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kayla N Berry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Medical Scientist Training Program, and
| | - Colin G Nichols
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Tom J Brett
- From the Center for the Investigation of Membrane Excitability Diseases, .,Department of Cell Biology and Physiology.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Smith CL, Abdallah S, Wong YY, Le P, Harracksingh AN, Artinian L, Tamvacakis AN, Rehder V, Reese TS, Senatore A. Evolutionary insights into T-type Ca 2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue. J Gen Physiol 2017; 149:483-510. [PMID: 28330839 PMCID: PMC5379919 DOI: 10.1085/jgp.201611683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
The role of T-type calcium channels in animals without nervous systems is unknown. Smith et al. characterize TCav3 from Trichoplax adhaerens, finding expression in neurosecretory-like cells and preference for Ca2+ over Na+ via strong extracellular Ca2+ block, despite low selectivity for Ca2+ in the pore. Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology.
Collapse
Affiliation(s)
- Carolyn L Smith
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Salsabil Abdallah
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yuen Yan Wong
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Phuong Le
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | | - Thomas S Reese
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Adriano Senatore
- University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
16
|
Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain 2017; 157:2068-2080. [PMID: 27168360 DOI: 10.1097/j.pain.0000000000000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
|
17
|
Trafficking of neuronal calcium channels. Neuronal Signal 2017; 1:NS20160003. [PMID: 32714572 PMCID: PMC7373241 DOI: 10.1042/ns20160003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/20/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.
Collapse
|
18
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Park J, Yu YP, Zhou CY, Li KW, Wang D, Chang E, Kim DS, Vo B, Zhang X, Gong N, Sharp K, Steward O, Vitko I, Perez-Reyes E, Eroglu C, Barres B, Zaucke F, Feng G, Luo ZD. Central Mechanisms Mediating Thrombospondin-4-induced Pain States. J Biol Chem 2016; 291:13335-48. [PMID: 27129212 DOI: 10.1074/jbc.m116.723478] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli. In dorsal spinal cord, TSP4/Cavα2δ1-dependent processes lead to increased frequency of miniature and amplitude of evoked excitatory post-synaptic currents in second-order neurons as well as increased VGlut2- and PSD95-positive puncta, indicative of increased excitatory synapses. Blockade of TSP4/Cavα2δ1-dependent processes with Cavα2δ1 ligand gabapentin or genetic Cavα2δ1 knockdown blocks TSP4 induced nociception and its pathological correlates. Conversely, TSP4 antibodies or genetic ablation blocks nociception and changes in synaptic transmission in mice overexpressing Cavα2δ1 Importantly, TSP4/Cavα2δ1-dependent processes also lead to similar behavioral and pathological changes in a neuropathic pain model of peripheral nerve injury. Thus, a TSP4/Cavα2δ1-dependent pathway activated by TSP4 or peripheral nerve injury promotes exaggerated presynaptic excitatory input and evoked sensory neuron hyperexcitability and excitatory synaptogenesis, which together lead to central sensitization and pain state development.
Collapse
Affiliation(s)
- John Park
- From the Department of Pharmacology and
| | | | | | - Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Dongqing Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eric Chang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Benjamin Vo
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Xia Zhang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Nian Gong
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Cagla Eroglu
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ben Barres
- Department of Neurobiology, Stanford University, Stanford, California 94305, and
| | - Frank Zaucke
- Center for Biochemistry and Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, D50931 Cologne, Germany
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Z David Luo
- From the Department of Pharmacology and Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697, Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697,
| |
Collapse
|
20
|
Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect 2016; 4:e00205. [PMID: 27069626 PMCID: PMC4804325 DOI: 10.1002/prp2.205] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
The gabapentinoid drugs gabapentin and pregabalin are key front‐line therapies for various neuropathies of peripheral and central origin. Originally designed as analogs of GABA, the gabapentinoids bind to the α2δ‐1 and α2δ‐2 auxiliary subunits of calcium channels, though only the former has been implicated in the development of neuropathy in animal models. Transgenic approaches also identify α2δ‐1 as key in mediating the analgesic effects of gabapentinoids, however the precise molecular mechanisms remain unclear. Here we review the current understanding of the pathophysiological role of the α2δ‐1 subunit, the mechanisms of analgesic action of gabapentinoid drugs and implications for efficacy in the clinic. Despite widespread use, the number needed to treat for gabapentin and pregabalin averages from 3 to 8 across neuropathies. The failure to treat large numbers of patients adequately necessitates a novel approach to treatment selection. Stratifying patients by sensory profiles may imply common underlying mechanisms, and a greater understanding of these mechanisms could lead to more direct targeting of gabapentinoids.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| |
Collapse
|
21
|
Naranjo D, Wen H, Brehm P. Zebrafish CaV2.1 calcium channels are tailored for fast synchronous neuromuscular transmission. Biophys J 2015; 108:578-84. [PMID: 25650925 DOI: 10.1016/j.bpj.2014.11.3484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions.
Collapse
Affiliation(s)
- David Naranjo
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Hua Wen
- Oregon Health and Science University, Portland, Oregon
| | - Paul Brehm
- Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
22
|
Lee A, Wang S, Williams B, Hagen J, Scheetz TE, Haeseleer F. Characterization of Cav1.4 complexes (α11.4, β2, and α2δ4) in HEK293T cells and in the retina. J Biol Chem 2014; 290:1505-21. [PMID: 25468907 DOI: 10.1074/jbc.m114.607465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In photoreceptor synaptic terminals, voltage-gated Cav1.4 channels mediate Ca(2+) signals required for transmission of visual stimuli. Like other high voltage-activated Cav channels, Cav1.4 channels are composed of a main pore-forming Cav1.4 α1 subunit and auxiliary β and α2δ subunits. Of the four distinct classes of β and α2δ, β2 and α2δ4 are thought to co-assemble with Cav1.4 α1 subunits in photoreceptors. However, an understanding of the functional properties of this combination of Cav subunits is lacking. Here, we provide evidence that Cav1.4 α1, β2, and α2δ4 contribute to Cav1.4 channel complexes in the retina and describe their properties in electrophysiological recordings. In addition, we identified a variant of β2, named here β2X13, which, along with β2a, is present in photoreceptor terminals. Cav1.4 α1, β2, and α2δ4 were coimmunoprecipitated from lysates of transfected HEK293 cells and mouse retina and were found to interact in the outer plexiform layer of the retina containing the photoreceptor synaptic terminals, by proximity ligation assays. In whole-cell patch clamp recordings of transfected HEK293T cells, channels (Cav1.4 α1 + β2X13) containing α2δ4 exhibited weaker voltage-dependent activation than those with α2δ1. Moreover, compared with channels (Cav1.4 α1 + α2δ4) with β2a, β2X13-containing channels exhibited greater voltage-dependent inactivation. The latter effect was specific to Cav1.4 because it was not seen for Cav1.2 channels. Our results provide the first detailed functional analysis of the Cav1.4 subunits that form native photoreceptor Cav1.4 channels and indicate potential heterogeneity in these channels conferred by β2a and β2X13 variants.
Collapse
Affiliation(s)
- Amy Lee
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Shiyi Wang
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Brittany Williams
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Jussara Hagen
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | - Todd E Scheetz
- the Departments of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, and
| | - Françoise Haeseleer
- the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
23
|
Ubiquitin-specific protease USP2-45 acts as a molecular switch to promote α2δ-1-induced downregulation of Cav1.2 channels. Pflugers Arch 2014; 467:1919-29. [PMID: 25366495 PMCID: PMC4537497 DOI: 10.1007/s00424-014-1636-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/20/2022]
Abstract
Availability of voltage-gated calcium channels (Cav) at the plasma membrane is paramount to maintaining the calcium homeostasis of the cell. It is proposed that the ubiquitylation/de-ubiquitylation balance regulates the density of ion channels at the cell surface. Voltage-gated calcium channels Cav1.2 have been found to be ubiquitylated under basal conditions both in vitro and in vivo. In a previous study, we have shown that Cav1.2 channels are ubiquitylated by neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4-1) ubiquitin ligases, but the identity of the counterpart de-ubiquitylating enzyme remained to be elucidated. Regarding sodium and potassium channels, it has been reported that the action of the related isoform Nedd4-2 is counteracted by the ubiquitin-specific protease (USP) 2-45. In this study, we show that USP 2-45 also de-ubiquitylates Cav channels. We co-expressed USPs and Cav1.2 channels together with the accessory subunits β2 and α2δ-1, in tsA-201 and HEK-293 mammalian cell lines. Using whole-cell current recordings and surface biotinylation assays, we show that USP2-45 specifically decreases both the amplitude of Cav currents and the amount of Cav1.2 subunits inserted at the plasma membrane. Importantly, co-expression of the α2δ-1 accessory subunit is necessary to support the effect of USP2-45. We further show that USP2-45 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits. Remarkably, α2δ-1, but not Cav1.2 nor β2, co-precipitated with USP2-45. These results suggest that USP2-45 binding to α2δ-1 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits, in order to regulate the expression of Cav1.2 channels at the plasma membrane.
Collapse
|
24
|
Abstract
In this article, we focus on a refinement of the traditional voltage-clamp methods that are used to measure current from whole cells, or relatively large areas of membrane, called the patch-clamp technique. Although this technique has extended the application of voltage-clamp methods to the recording of ionic currents flowing through single channels, in its whole-cell configuration it has become the most widely used method for recording ionic currents. We give particular attention to the study of voltage-gated (CaV) Ca(2+) channels using the patch-clamp technique and discuss some aspects of the molecular physiology of these proteins.
Collapse
|
25
|
Spahn V, Stein C, Zöllner C. Modulation of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1. Mol Pharmacol 2013; 85:335-44. [PMID: 24275229 DOI: 10.1124/mol.113.088997] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective ligand-gated cation channel responding to noxious heat, protons, and chemicals such as capsaicin. TRPV1 is expressed in sensory neurons and plays a critical role in pain associated with tissue injury, inflammation, and nerve lesions. Transient receptor potential ankyrin 1 (TRPA1) is coexpressed with TRPV1. It is activated by compounds that cause a burning sensation (e.g., mustard oil) and, indirectly, by components of the inflammatory milieu eliciting nociceptor excitation and pain hypersensitivity. Previous studies indicate an interaction of TRPV1 and TRPA1 signaling pathways. Here we sought to examine the molecular mechanisms underlying such interactions in nociceptive neurons. We first excluded physical interactions of both channels using radioligand binding studies. By microfluorimetry, electrophysiological experiments, cAMP measurements, and site-directed mutagenesis we found a sensitization of TRPV1 after TRPA1 stimulation with mustard oil in a calcium and cAMP/protein kinase A (PKA)-dependent manner. TRPA1 stimulation enhanced TRPV1 phosphorylation via the putative PKA phosphorylation site serine 116. We also detected calcium-sensitive increased TRPV1 activity after TRPA1 activation in dorsal root ganglion neurons. The inhibition of TRPA1 by HC-030031 (1,2,3,6-tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7H-purine-7-acetamide, 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide) after its initial stimulation (and the calcium-insensitive TRPA1 mutant D477A) still showed increased capsaicin-induced TRPV1 activity. This excludes a calcium-induced additive TRPA1 current after TRPV1 stimulation. Our study shows sensitization of TRPV1 via activation of TRPA1, which involves adenylyl cyclase, increased cAMP, subsequent translocation and activation of PKA, and phosphorylation of TRPV1 at PKA phosphorylation residues. This suggests that cross-sensitization of TRP channels contributes to enhanced pain sensitivity in inflamed tissues.
Collapse
Affiliation(s)
- Viola Spahn
- Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie und Operative Intensivmedizin, Berlin, Germany (V.S., C.S., C.Z.); and Universitätsklinikum Hamburg, Eppendorf, Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und Intensivmedizin, Hamburg, Germany (C.Z.)
| | | | | |
Collapse
|
26
|
Felix R, Calderón-Rivera A, Andrade A. Regulation of high-voltage-activated Ca 2+ channel function, trafficking, and membrane stability by auxiliary subunits. ACTA ACUST UNITED AC 2013; 2:207-220. [PMID: 24949251 DOI: 10.1002/wmts.93] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Voltage-gated Ca2+ (CaV) channels mediate Ca2+ ions influx into cells in response to depolarization of the plasma membrane. They are responsible for initiation of excitation-contraction and excitation-secretion coupling, and the Ca2+ that enters cells through this pathway is also important in the regulation of protein phosphorylation, gene transcription, and many other intracellular events. Initial electrophysiological studies divided CaV channels into low-voltage-activated (LVA) and high-voltage-activated (HVA) channels. The HVA CaV channels were further subdivided into L, N, P/Q, and R-types which are oligomeric protein complexes composed of an ion-conducting CaVα1 subunit and auxiliary CaVα2δ, CaVβ, and CaVγ subunits. The functional consequences of the auxiliary subunits include altered functional and pharmacological properties of the channels as well as increased current densities. The latter observation suggests an important role of the auxiliary subunits in membrane trafficking of the CaVα1 subunit. This includes the mechanisms by which CaV channels are targeted to the plasma membrane and to appropriate regions within a given cell. Likewise, the auxiliary subunits seem to participate in the mechanisms that remove CaV channels from the plasma membrane for recycling and/or degradation. Diverse studies have provided important clues to the molecular mechanisms involved in the regulation of CaV channels by the auxiliary subunits, and the roles that these proteins could possibly play in channel targeting and membrane Stabilization.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Aida Calderón-Rivera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Arturo Andrade
- Department of Neuroscience, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Tyson JR, Snutch TP. Molecular nature of voltage‐gated calcium channels: structure and species comparison. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John R. Tyson
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| |
Collapse
|
28
|
The α2δ subunits of voltage-gated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013. [DOI: 10.1016/j.bbamem.2012.11.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Nasca C, Orlando R, Marchiafava M, Boldrini P, Battaglia G, Scaccianoce S, Matrisciano F, Pittaluga A, Nicoletti F. Exposure to predator odor and resulting anxiety enhances the expression of the α2 δ subunit of voltage-sensitive calcium channels in the amygdala. J Neurochem 2013; 125:649-56. [PMID: 22849384 DOI: 10.1111/j.1471-4159.2012.07895.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
The α2 δ subunit of voltage-sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2 δ subunit is up-regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2 δ subunit are associated with pathological states. Here, we examined the expression of the α2 δ-1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety-like behavior in the following 72 h, as shown by the light-dark test. Anxiety was associated with an increased expression of the α2 δ-1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2 δ-1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety-like behavior in TMT-exposed mice, but not in control mice. These data offer the first demonstration that the α2 δ-1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease-dependent drug in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Carla Nasca
- Department of Physiology and Pharmacology, University Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Isolation and characterization of the 5´-upstream region of the human voltage-gated Ca2+ channel α2δ-1 auxiliary subunit gene: promoter analysis and regulation by transcription factor Sp1. Pflugers Arch 2012; 465:819-28. [DOI: 10.1007/s00424-012-1194-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/07/2012] [Accepted: 11/29/2012] [Indexed: 01/07/2023]
|
31
|
Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 2012; 13:542-55. [PMID: 22805911 DOI: 10.1038/nrn3311] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The voltage-gated calcium channel α(2)δ and β subunits are traditionally considered to be auxiliary subunits that enhance channel trafficking, increase the expression of functional calcium channels at the plasma membrane and influence the channels' biophysical properties. Accumulating evidence indicates that these subunits may also have roles in the nervous system that are not directly linked to calcium channel function. For example, β subunits may act as transcriptional regulators, and certain α(2)δ subunits may function in synaptogenesis. The aim of this Review is to examine both the classic and novel roles for these auxiliary subunits in voltage-gated calcium channel function and beyond.
Collapse
|
32
|
Simms BA, Zamponi GW. Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci 2012; 69:843-56. [PMID: 21964928 PMCID: PMC11115007 DOI: 10.1007/s00018-011-0843-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.
Collapse
Affiliation(s)
- Brett A. Simms
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| |
Collapse
|
33
|
Calderón-Rivera A, Andrade A, Hernández-Hernández O, González-Ramírez R, Sandoval A, Rivera M, Gomora JC, Felix R. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca(2+) channel α(2)δ-1 auxiliary subunit. Cell Calcium 2011; 51:22-30. [PMID: 22054663 DOI: 10.1016/j.ceca.2011.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/26/2023]
Abstract
Voltage-gated calcium (Ca(V)) channels are transmembrane proteins that form Ca(2+)-selective pores gated by depolarization and are essential regulators of the intracellular Ca(2+) concentration. By providing a pathway for rapid Ca(2+) influx, Ca(V) channels couple membrane depolarization to a wide array of cellular responses including neurotransmission, muscle contraction and gene expression. Ca(V) channels fall into two major classes, low voltage-activated (LVA) and high voltage-activated (HVA). The ion-conducting pathway of HVA channels is the α(1) subunit, which typically contains associated β and α(2)δ ancillary subunits that regulate the properties of the channel. Although it is widely acknowledged that α(2)δ-1 is post-translationally cleaved into an extracellular α(2) polypeptide and a membrane-anchored δ protein that remain covalently linked by disulfide bonds, to date the contribution of different cysteine (Cys) residues to the formation of disulfide bridges between these proteins has not been investigated. In the present report, by predicting disulfide connectivity with bioinformatics, molecular modeling and protein biochemistry experiments we have identified two Cys residues involved in the formation of an intermolecular disulfide bond of critical importance for the structure and function of the α(2)δ-1 subunit. Site directed-mutagenesis of Cys404 (located in the von Willebrand factor-A region of α(2)) and Cys1047 (in the extracellular domain of δ) prevented the association of the α(2) and δ peptides upon proteolysis, suggesting that the mature protein is linked by a single intermolecular disulfide bridge. Furthermore, co-expression of mutant forms of α(2)δ-1 Cys404Ser and Cys1047Ser with recombinant neuronal N-type (Ca(V)2.2α(1)/β(3)) channels, showed decreased whole-cell patch-clamp currents indicating that the disulfide bond between these residues is required for α(2)δ-1 function.
Collapse
Affiliation(s)
- Aida Calderón-Rivera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Robinson P, Etheridge S, Song L, Shah R, Fitzgerald EM, Jones OT. Targeting of voltage-gated calcium channel α2δ-1 subunit to lipid rafts is independent from a GPI-anchoring motif. PLoS One 2011; 6:e19802. [PMID: 21695204 PMCID: PMC3112168 DOI: 10.1371/journal.pone.0019802] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/14/2011] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated calcium channels (Cav) exist as heteromultimers comprising a pore-forming α1 with accessory β and α2δ subunits which modify channel trafficking and function. We previously showed that α2δ-1 (and likely the other mammalian α2δ isoforms - α2δ-2, 3 and 4) is required for targeting Cavs to lipid rafts, although the mechanism remains unclear. Whilst originally understood to have a classical type I transmembrane (TM) topology, recent evidence suggests the α2δ subunit contains a glycosylphosphatidylinositol (GPI)-anchor that mediates its association with lipid rafts. To test this notion, we have used a strategy based on the expression of chimera, where the reported GPI-anchoring sequences in the gabapentinoid-sensitive α2δ-1 subunit have been substituted with those of a functionally inert Type I TM-spanning protein – PIN-G. Using imaging, electrophysiology and biochemistry, we find that lipid raft association of PIN-α2δ is unaffected by substitution of the GPI motif with the TM domain of PIN-G. Moreover, the presence of the GPI motif alone is not sufficient for raft localisation, suggesting that upstream residues are required. GPI-anchoring is susceptible to phosphatidylinositol-phospholipase C (PI-PLC) cleavage. However, whilst raft localisation of PIN-α2δ is disrupted by PI-PLC treatment, this is assay-dependent and non-specific effects of PI-PLC are observed on the distribution of the endogenous raft marker, caveolin, but not flotillin. Taken together, these data are most consistent with a model where α2δ-1 retains its type I transmembrane topology and its targeting to lipid rafts is governed by sequences upstream of the putative GPI anchor, that promote protein-protein, rather than lipid-lipid interactions.
Collapse
Affiliation(s)
- Philip Robinson
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
| | - Sarah Etheridge
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
| | - Lele Song
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
| | - Riddhi Shah
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
| | - Elizabeth M. Fitzgerald
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
- * E-mail: (OTJ); (EMF)
| | - Owen T. Jones
- Faculty of Life Sciences,University of Manchester,Core Technology Facility, Manchester, United Kingdom
- * E-mail: (OTJ); (EMF)
| |
Collapse
|
35
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
36
|
Martínez-Hernández E, Sandoval A, González-Ramírez R, Zoidis G, Felix R. Inhibition of recombinant N-type and native high voltage-gated neuronal Ca2+ channels by AdGABA: mechanism of action studies. Toxicol Appl Pharmacol 2010; 250:270-7. [PMID: 21059371 DOI: 10.1016/j.taap.2010.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
High-voltage activated Ca(2+) (Ca(V)) channels play a key role in the regulation of numerous physiological events by causing transient changes in the intracellular Ca(2+) concentration. These channels consist of a pore-forming Ca(V)α(1) protein and three auxiliary subunits (Ca(V)β, Ca(V)α(2)δ and Ca(V)γ). Ca(V)α(2)δ is an important component of Ca(V) channels in many tissues and of great interest as a drug target. It is well known that anticonvulsant agent gabapentin (GBP) binds to Ca(V)α(2)δ and reduces Ca(2+) currents by modulating the expression and/or function of the Ca(V)α(1) subunit. Recently, we showed that an adamantane derivative of GABA, AdGABA, has also inhibitory effects on Ca(V) channels. However, the importance of the interaction of AdGABA with the Ca(V)α(2)δ subunit has not been conclusively demonstrated and the mechanism of action of the drug has yet to be elucidated. Here, we describe studies on the mechanism of action of AdGABA. Using a combined approach of patch-clamp recordings and molecular biology we show that AdGABA inhibits Ca(2+) currents acting on Ca(V)α(2)δ only when applied chronically, both in a heterologous expression system and in dorsal root-ganglion neurons. AdGABA seems to require uptake and be acting intracellularly given that its effects are prevented by an inhibitor of the L-amino acid transport system. Interestingly, a mutation in the Ca(V)α(2)δ that abolishes GBP binding did not affect AdGABA actions, revealing that its mechanism of action is similar but not identical to that of GBP. These results indicate that AdGABA is an important Ca(V)α(2)δ ligand that regulates Ca(V) channels.
Collapse
Affiliation(s)
- Elizabeth Martínez-Hernández
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | | | | | | | | |
Collapse
|
37
|
The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci 2010; 30:12856-67. [PMID: 20861389 DOI: 10.1523/jneurosci.2700-10.2010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The α2δ subunits of voltage-gated calcium channels are important modulatory subunits that enhance calcium currents and may also have other roles in synaptogenesis. The antiepileptic and antiallodynic drug gabapentin (GBP) binds to the α2δ-1 and α2δ-2 isoforms of this protein, and its binding may disrupt the binding of an endogenous ligand, required for their correct function. We have shown previously that GBP produces a chronic inhibitory effect on calcium currents by causing a reduction in the total number of α2δ and α1 subunits at the cell surface. This action of GBP is likely to be attributable to a disruption of the trafficking of α2δ subunits, either to or from the plasma membrane. We studied the effect of GBP on the internalization of, and insertion into the plasma membrane of α2δ-2 using an α-bungarotoxin binding site-tagged α2δ-2 subunit, and a fluorescent derivative of α-bungarotoxin. We found that GBP specifically disrupts the insertion of α2δ-2 from post-Golgi compartments to the plasma membrane, and this effect was prevented by a mutation of α2δ-2 that abolishes its binding to GBP. The coexpression of the GDP-bound Rab11 S25N mutant prevented the GBP-induced decrease in α2δ-2 cell surface levels, both in cell lines and in primary neurons, and the GBP-induced reduction in calcium channel currents. In contrast, the internalization of α2δ-2 was unaffected by GBP. We conclude that GBP acts by preventing the recycling of α2δ-2 from Rab11-positive recycling endosomes to the plasma membrane.
Collapse
|
38
|
Formation of N-type (Cav2.2) voltage-gated calcium channel membrane microdomains: Lipid raft association and clustering. Cell Calcium 2010; 48:183-94. [DOI: 10.1016/j.ceca.2010.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 12/29/2022]
|
39
|
The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A 2010; 107:1654-9. [PMID: 20080692 DOI: 10.1073/pnas.0908735107] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated calcium channels are thought to exist in the plasma membrane as heteromeric proteins, in which the alpha1 subunit is associated with two auxiliary subunits, the intracellular beta subunit and the alpha(2)delta subunit; both of these subunits influence the trafficking and properties of Ca(V)1 and Ca(V)2 channels. The alpha(2)delta subunits have been described as type I transmembrane proteins, because they have an N-terminal signal peptide and a C-terminal hydrophobic and potentially transmembrane region. However, because they have very short C-terminal cytoplasmic domains, we hypothesized that the alpha(2)delta proteins might be associated with the plasma membrane through a glycosylphosphatidylinositol (GPI) anchor attached to delta rather than a transmembrane domain. Here, we provide biochemical, immunocytochemical, and mutational evidence to show that all of the alpha(2)delta subunits studied, alpha(2)delta-1, alpha(2)delta-2, and alpha(2)delta-3, show all of the properties expected of GPI-anchored proteins, both when heterologously expressed and in native tissues. They are substrates for prokaryotic phosphatidylinositol-phospholipase C (PI-PLC) and trypanosomal GPI-PLC, which release the alpha(2)delta proteins from membranes and intact cells and expose a cross-reacting determinant epitope. PI-PLC does not affect control transmembrane or membrane-associated proteins. Furthermore, mutation of the predicted GPI-anchor sites markedly reduced plasma membrane and detergent-resistant membrane localization of alpha(2)delta subunits. We also show that GPI anchoring of alpha(2)delta subunits is necessary for their function to enhance calcium currents, and PI-PLC treatment only reduces calcium current density when alpha(2)delta subunits are coexpressed. In conclusion, this study redefines our understanding of alpha(2)delta subunits, both in terms of their role in calcium-channel function and other roles in synaptogenesis.
Collapse
|
40
|
Kurshan PT, Oztan A, Schwarz TL. Presynaptic alpha2delta-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nat Neurosci 2009; 12:1415-23. [PMID: 19820706 DOI: 10.1038/nn.2417] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/08/2009] [Indexed: 12/14/2022]
Abstract
Synaptogenesis involves the transformation of a growth cone into synaptic boutons specialized for transmitter release. In Drosophila embryos lacking the alpha(2)delta-3 subunit of presynaptic, voltage-dependent Ca(2+) channels, we found that motor neuron terminals failed to develop synaptic boutons and cytoskeletal abnormalities arose, including the loss of ankyrin2. Nevertheless, functional presynaptic specializations were present and apposed to clusters of postsynaptic glutamate receptors. The alpha(2)delta-3 protein has been thought to function strictly as an auxiliary subunit of the Ca(2+) channel, but the phenotype of alpha(2)delta-3 (also known as stj) mutations cannot be explained by a channel defect; embryos lacking the pore-forming alpha(1) subunit cacophony formed boutons. The synaptogenic function of alpha(2)delta-3 required only the alpha(2) peptide, whose expression sufficed to rescue bouton formation. Our results indicate that alpha(2)delta proteins have functions that are independent of their roles in the biophysics and localization of Ca(2+) channels and that synaptic architecture depends on these functions.
Collapse
Affiliation(s)
- Peri T Kurshan
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
41
|
Boroujerdi A, Kim HK, Lyu YS, Kim DS, Figueroa KW, Chung JM, Luo ZD. Injury discharges regulate calcium channel alpha-2-delta-1 subunit upregulation in the dorsal horn that contributes to initiation of neuropathic pain. Pain 2008; 139:358-366. [PMID: 18571852 PMCID: PMC2613852 DOI: 10.1016/j.pain.2008.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/09/2008] [Accepted: 05/06/2008] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that peripheral nerve injury in rats induces increased expression of the voltage gated calcium channel (VGCC) alpha-2-delta-1 subunit (Ca v alpha2 delta1) in spinal dorsal horn and sensory neurons in dorsal root ganglia (DRG) that correlates to established neuropathic pain states. To determine if injury discharges trigger Ca v alpha2 delta1 induction that contributes to neuropathic pain initiation, we examined allodynia onset and Ca v alpha2 delta1 levels in DRG and spinal dorsal horn of spinal nerve ligated rats after blocking injury induced neural activity with a local brief application of lidocaine on spinal nerves before the ligation. The lidocaine pretreatment blocked ligation-induced discharges in a dose-dependent manner. Similar pretreatment with the effective concentration of lidocaine diminished injury-induced increases of the Ca v alpha2 delta1 in DRG and abolished that in spinal dorsal horn specifically, and resulted in a delayed onset of tactile allodynia post-injury. Both dorsal horn Ca v alpha2 delta1 upregulation and tactile allodynia in the lidocaine pretreated rats returned to levels similar to that in saline pretreated controls 2 weeks post the ligation injury. In addition, preemptive intrathecal Ca v alpha2 delta1 antisense treatments blocked concurrently injury-induced allodynia onset and Ca v alpha2 delta1 upregulation in dorsal spinal cord. These findings indicate that injury induced discharges regulate Ca v alpha2 delta1 expression in the spinal dorsal horn that is critical for neuropathic allodynia initiation. Thus, preemptive blockade of injury-induced neural activity or Ca v alpha2 delta1 upregulation may be a beneficial option in neuropathic pain management.
Collapse
Affiliation(s)
- Amin Boroujerdi
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697
| | - Hee Kee Kim
- Department of Anesthesiology, University of California Irvine, Irvine, CA 92697
| | - Yeoung Su Lyu
- Department of Anesthesiology, University of California Irvine, Irvine, CA 92697
| | - Doo-Sik Kim
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Jin Mo Chung
- Department of Anesthesiology, University of California Irvine, Irvine, CA 92697
| | - Z. David Luo
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
42
|
Liu G, Zakharov SI, Yang L, Deng SX, Landry DW, Karlin A, Marx SO. Position and role of the BK channel alpha subunit S0 helix inferred from disulfide crosslinking. ACTA ACUST UNITED AC 2008; 131:537-48. [PMID: 18474637 PMCID: PMC2391248 DOI: 10.1085/jgp.200809968] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The position and role of the unique N-terminal transmembrane (TM) helix, S0, in large-conductance, voltage- and calcium-activated potassium (BK) channels are undetermined. From the extents of intra-subunit, endogenous disulfide bond formation between cysteines substituted for the residues just outside the membrane domain, we infer that the extracellular flank of S0 is surrounded on three sides by the extracellular flanks of TM helices S1 and S2 and the four-residue extracellular loop between S3 and S4. Eight different double cysteine-substituted alphas, each with one cysteine in the S0 flank and one in the S3-S4 loop, were at least 90% disulfide cross-linked. Two of these alphas formed channels in which 90% cross-linking had no effect on the V(50) or on the activation and deactivation rate constants. This implies that the extracellular ends of S0, S3, and S4 are close in the resting state and move in concert during voltage sensor activation. The association of S0 with the gating charge bearing S3 and S4 could contribute to the considerably larger electrostatic energy required to activate the BK channel compared with typical voltage-gated potassium channels with six TM helices.
Collapse
Affiliation(s)
- Guoxia Liu
- 1 Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A 2008; 105:3628-33. [PMID: 18299583 DOI: 10.1073/pnas.0708930105] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of alpha(2)delta subunits to enhance voltage-gated Ca(2+)channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of alpha(2)delta only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish GBP binding, and is not observed for alpha(2)delta-3, which does not bind GBP. Furthermore, the trafficking of alpha(2)delta-2 and Ca(V)2 channels is disrupted both by GBP and by the mutation in alpha(2)delta-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of alpha(2)delta-2 and Ca(V)2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of alpha(2)delta subunit function, thereby impairing the trafficking function of the alpha(2)delta subunits to which it binds.
Collapse
|
44
|
Mutations in a Drosophila alpha2delta voltage-gated calcium channel subunit reveal a crucial synaptic function. J Neurosci 2008; 28:31-8. [PMID: 18171920 DOI: 10.1523/jneurosci.4498-07.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-dependent calcium channels regulate many aspects of neuronal biology, including synaptic transmission. In addition to their alpha1 subunit, which encodes the essential voltage gate and selective pore, calcium channels also contain auxiliary alpha2delta, beta, and gamma subunits. Despite progress in understanding the biophysical properties of calcium channels, the in vivo functions of these auxiliary subunits remain unclear. We have isolated mutations in the gene encoding an alpha2delta calcium channel subunit (d alpha2delta-3) using a forward genetic screen in Drosophila. Null mutations in this gene are embryonic lethal and can be rescued by expression in the nervous system, demonstrating that the essential function of this subunit is neuronal. The photoreceptor phenotype of d alpha2delta-3 mutants resembles that of the calcium channel alpha1 mutant cacophony (cac), suggesting shared functions. We have examined in detail genotypes that survive to the third-instar stage. Electrophysiological recordings demonstrate that synaptic transmission is severely impaired in these mutants. Thus the alpha2delta calcium channel subunit is critical for calcium-dependent synaptic function. As such, this Drosophila isoform is the likely partner to the presynaptic calcium channel alpha1 subunit encoded by the cac locus. Consistent with this hypothesis, cacGFP fluorescence at the neuromuscular junction is reduced in d alpha2delta-3 mutants. This is the first characterization of an alpha2delta-3 mutant in any organism and indicates a necessary role for alpha2delta-3 in presynaptic vesicle release and calcium channel expression at active zones.
Collapse
|
45
|
|
46
|
Jarvis SE, Zamponi GW. Trafficking and regulation of neuronal voltage-gated calcium channels. Curr Opin Cell Biol 2007; 19:474-82. [PMID: 17624753 DOI: 10.1016/j.ceb.2007.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/17/2022]
Abstract
The importance of voltage-gated calcium channels is underscored by the multitude of intracellular processes that depend on calcium, notably gene regulation and neurotransmission. Given their pivotal roles in calcium (and hence, cellular) homeostasis, voltage-gated calcium channels have been the subject of intense research, much of which has focused on channel regulation. While ongoing research continues to delineate the myriad of interactions that govern calcium channel regulation, an increasing amount of work has focused on the trafficking of voltage-gated calcium channels. This includes the mechanisms by which calcium channels are targeted to the plasma membrane, and, more specifically, to their appropriate loci within a given cell. In addition, we are beginning to gain some insights into the mechanisms by which calcium channels can be removed from the plasma membrane for recycling and/or degradation. Here we highlight recent advances in our understanding of these fundamentally important mechanisms.
Collapse
Affiliation(s)
- Scott E Jarvis
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary T2N 4N1, Canada
| | | |
Collapse
|
47
|
Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 2007; 583:175-93. [PMID: 17584831 PMCID: PMC2277224 DOI: 10.1113/jphysiol.2007.133231] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pharmacological desensitization of receptors is a fundamental mechanism for regulating the activity of neuronal systems. The TRPA1 channel plays a key role in the processing of noxious information and can undergo functional desensitization by unknown mechanisms. Here we show that TRPA1 is desensitized by homologous (mustard oil; a TRPA1 agonist) and heterologous (capsaicin; a TRPV1 agonist) agonists via Ca2+-independent and Ca2+-dependent pathways, respectively, in sensory neurons. The pharmacological desensitization of TRPA1 by capsaicin and mustard oil is not influenced by activation of protein phosphatase 2B. However, it is regulated by phosphatidylinositol-4,5-bisphosphate depletion after capsaicin, but not mustard oil, application. Using a biosensor, we establish that capsaicin, unlike mustard oil, consistently activates phospholipase C in sensory neurons. We next demonstrate that TRPA1 desensitization is regulated by TRPV1, and it appears that mustard oil-induced TRPA1 internalization is prevented by coexpression with TRPV1 in a heterologous expression system and in sensory neurons. In conclusion, we propose novel mechanisms whereby TRPA1 activity undergoes pharmacological desensitization through multiple cellular pathways that are agonist dependent and modulated by TRPV1.
Collapse
Affiliation(s)
- Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
48
|
Andrade A, Sandoval A, Oviedo N, De Waard M, Elias D, Felix R. Proteolytic cleavage of the voltage-gated Ca2+ channel alpha2delta subunit: structural and functional features. Eur J Neurosci 2007; 25:1705-10. [PMID: 17408426 PMCID: PMC2698445 DOI: 10.1111/j.1460-9568.2007.05454.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By mediating depolarization-induced Ca(2+) influx, high-voltage-activated Ca(2+) channels control a variety of cellular events. These heteromultimeric proteins are composed of an ion-conducting (alpha(1)) and three auxiliary (alpha(2)delta, beta and gamma) subunits. The alpha(2)delta subunit enhances the trafficking of the channel complex to the cell surface and increases channel open probability. To exert these effects, alpha(2)delta must undergo important post-translational modifications, including a proteolytic cleavage that separates the extracellular alpha(2) from its transmembrane delta domain. After this proteolysis both domains remain linked by disulfide bonds. In spite of its central role in determining the final conformation of the fully mature alpha(2)delta, almost nothing is known about the physiological implications of this structural modification. In the current report, by using site-directed mutagenesis, the proteolytic site of alpha(2)delta was mapped to amino acid residues Arg-941 and Val-946. Substitution of these residues renders the protein insensitive to proteolytic cleavage as evidenced by the lack of molecular weight shift upon treatment with a disulfide-reducing agent. Interestingly, these mutations significantly decreased whole-cell patch-clamp currents without affecting the voltage dependence or kinetics of the channels, suggesting a reduction in the number of channels targeted to the plasma membrane.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
| | - Alejandro Sandoval
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
- School of Medicine FES Iztacala
University of MexicoUNAM, Mexico,MX
| | - Norma Oviedo
- Department of Physiology, Biophysics and Neuroscience
CINVESTAV-IPNCinvestav, Mexico City,MX
- Department of Molecular Biology and Biotechnology
Biomedical Research InstituteUniversity of MexicoUnam, Mexico City,MX
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs
38054 Grenoble,FR
| | - David Elias
- Bioelectronics Section
CINVESTAV-IPNMexico City,MX
| | - Ricardo Felix
- Department of Cell Biology
CINVESTAV-IPNMexico City,MX
- * Correspondence should be adressed to: Ricardo Felix
| |
Collapse
|
49
|
Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC. Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 2007; 28:220-8. [PMID: 17403543 DOI: 10.1016/j.tips.2007.03.005] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/22/2007] [Accepted: 03/21/2007] [Indexed: 01/11/2023]
Abstract
In this review, we examine what is known about the mechanism of action of the auxiliary alpha2delta subunits of voltage-gated Ca(2+) (Ca(v)) channels. First, to provide some background on the alpha2delta proteins, we discuss the genes encoding these channels, in addition to the topology and predicted structure of the alpha2delta subunits. We then describe the effects of alpha2delta subunits on the biophysical properties of Ca(v) channels and their physiological function. All alpha2delta subunits increase the density at the plasma membrane of Ca(2+) channels activated by high voltage, and we discuss what is known about the mechanism underlying this trafficking. Finally, we consider the link between alpha2delta subunits and disease, both in terms of spontaneous and engineered mouse mutants that show cerebellar ataxia and spike-wave epilepsy, and in terms of neuropathic pain and the mechanism of action of the gabapentinoid drugs - small-molecule ligands of the alpha2delta-1 and alpha2delta-2 subunits.
Collapse
Affiliation(s)
- Anthony Davies
- Laboratory of Cellular and Molecular Neuroscience, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|