1
|
Du Y, Kowada T, Sung E, Liu R, Soloviev A, Matsui T, Mizukami S. Quantification of lysosomal labile Zn 2+ and monitoring of Zn 2+ efflux using a small-molecule-protein hybrid fluorescent probe. J Inorg Biochem 2024; 264:112811. [PMID: 39674094 DOI: 10.1016/j.jinorgbio.2024.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Lysosomal labile Zn2+ levels have been unclear. By targeting a small-molecule fluorescent Zn2+ probe, ZnDA-3H, to lysosomes via VAMP7-Halo, the lysosomal labile Zn2+ concentration was determined to be 1.9 nM in HeLa cells. Furthermore, ZnDA-3H enabled direct visualization of the Zn2+ efflux from the lysosomes to cytosol upon TRPMLs activation.
Collapse
Affiliation(s)
- Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - EunHye Sung
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Rong Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Andrei Soloviev
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
2
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2024; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
3
|
Mo J, Kong P, Ding L, Fan J, Ren J, Lu C, Guo F, Chen L, Mo R, Zhong Q, Wen Y, Gu T, Wang Q, Li S, Guo T, Gao T, Cao X. Lysosomal TFEB-TRPML1 Axis in Astrocytes Modulates Depressive-like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403389. [PMID: 39264289 PMCID: PMC11538709 DOI: 10.1002/advs.202403389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.
Collapse
Affiliation(s)
- Jia‐Wen Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng‐Li Kong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Ding
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jun Fan
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Cheng‐Lin Lu
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Fang Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Liang‐Yu Chen
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiu‐Ling Zhong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - You‐Lu Wen
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Ting‐Ting Gu
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Qian‐Wen Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Shu‐Ji Li
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ting Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Tian‐Ming Gao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
Zhang M, Kang N, Yu X, Zhang X, Duan Q, Ma X, Zhao Q, Wang Z, Wang X, Liu Y, Zhang Y, Zhu C, Gao R, Min X, Li C, Jin J, Cao Q, Liu R, Bai X, Yang H, Zhao L, Liu J, Chen H, Zhang Y, Liu W, Zheng W. TNF inhibitors target a mevalonate metabolite/TRPM2/calcium signaling axis in neutrophils to dampen vasculitis in Behçet's disease. Nat Commun 2024; 15:9261. [PMID: 39461948 PMCID: PMC11513106 DOI: 10.1038/s41467-024-53528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
TNF inhibitors have been used to treat autoimmune and autoinflammatory diseases. Here we report an unexpected mechanism underlying the therapeutic effects of TNF inhibitors in Behçet's disease (BD), an autoimmune inflammatory disorder. Using serum metabolomics and peripheral immunocyte transcriptomics, we find that polymorphonuclear neutrophil (PMN) from patients with BD (BD-PMN) has dysregulated mevalonate pathway and subsequently increased farnesyl pyrophosphate (FPP) levels. Mechanistically, FPP induces TRPM2-calcium signaling for neutrophil extracellular trap (NET) and proinflammatory cytokine productions, leading to vascular endothelial inflammation and damage. TNF, but not IL-1β, IL-6, IL-18, or IFN-γ, upregulates TRPM2 expression on BD-PMN, while TNF inhibitors have opposite effects. Results from mice with PMN-specific FPP synthetase or TRPM2 deficiency show reduced experimental vasculitis. Meanwhile, analyses of public datasets correlate increased TRPM2 expressions with the clinical benefits of TNF inhibitors. Our results thus implicate FPP-TRPM2-TNF/NETs feedback loops for inflammation aggravation, and novel insights for TNF inhibitor therapies on BD.
Collapse
Affiliation(s)
- Menghao Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Qiancheng Zhao
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Zhimian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Xiao'ou Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yeling Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yuxiao Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ruiyu Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Min
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Cao
- Department of gastroenterology & Inflammatory bowel disease Center, Sir Run Run Shaw hospital, school of medicine, Zhejiang University, Hangzhou, China
| | - Rongbei Liu
- Department of gastroenterology & Inflammatory bowel disease Center, Sir Run Run Shaw hospital, school of medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China.
| |
Collapse
|
5
|
Gan N, Han Y, Zeng W, Jiang Y. TRPML1 gating modulation by allosteric mutations and lipids. eLife 2024; 13:RP100987. [PMID: 39400550 PMCID: PMC11473102 DOI: 10.7554/elife.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Transient Receptor Potential Mucolipin 1 (TRPML1) is a lysosomal cation channel whose loss-of-function mutations directly cause the lysosomal storage disorder mucolipidosis type IV (MLIV). TRPML1 can be allosterically regulated by various ligands including natural lipids and small synthetic molecules and the channel undergoes a global movement propagated from ligand-induced local conformational changes upon activation. In this study, we identified a functionally critical residue, Tyr404, at the C-terminus of the S4 helix, whose mutations to tryptophan and alanine yield gain- and loss-of-function channels, respectively. These allosteric mutations mimic the ligand activation or inhibition of the TRPML1 channel without interfering with ligand binding and both mutant channels are susceptible to agonist or antagonist modulation, making them better targets for screening potent TRPML1 activators and inhibitors. We also determined the high-resolution structure of TRPML1 in complex with the PI(4,5)P2 inhibitor, revealing the structural basis underlying this lipid inhibition. In addition, an endogenous phospholipid likely from sphingomyelin is identified in the PI(4,5)P2-bound TRPML1 structure at the same hotspot for agonists and antagonists, providing a plausible structural explanation for the inhibitory effect of sphingomyelin on agonist activation.
Collapse
Affiliation(s)
- Ninghai Gan
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
6
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Gan N, Han Y, Zeng W, Jiang Y. TRPML1 gating modulation by allosteric mutations and lipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602033. [PMID: 39005349 PMCID: PMC11245044 DOI: 10.1101/2024.07.04.602033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transient Receptor Potential Mucolipin 1 (TRPML1) is a lysosomal cation channel whose loss-of-function mutations directly cause the lysosomal storage disorder mucolipidosis type IV (MLIV). TRPML1 can be allosterically regulated by various ligands including natural lipids and small synthetic molecules and the channel undergoes a global movement propagated from ligand-induced local conformational changes upon activation. In this study, we identified a functionally critical residue, Tyr404, at the C-terminus of the S4 helix, whose mutations to tryptophan and alanine yield gain- and loss-of-function channels, respectively. These allosteric mutations mimic the ligand activation or inhibition of the TRPML1 channel without interfering with ligand binding and both mutant channels are susceptible to agonist or antagonist modulation, making them better targets for screening potent TRPML1 activators and inhibitors. We also determined the high-resolution structure of TRPML1 in complex with the PI(4,5)P2 inhibitor, revealing the structural basis underlying this lipid inhibition. In addition, an endogenous phospholipid likely from sphingomyelin is identified in the PI(4,5)P2-bound TRPML1 structure at the same hotspot for agonists and antagonists, providing a plausible structural explanation for the inhibitory effect of sphingomyelin on agonist activation.
Collapse
Affiliation(s)
- Ninghai Gan
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
9
|
Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, Pfalzgraf S, Schirmeister T, Hellmich UA, Hildt E. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antiviral Res 2024; 228:105940. [PMID: 38901736 DOI: 10.1016/j.antiviral.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
Collapse
Affiliation(s)
- Kerstin K Schwickert
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany; Department of Chemistry, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robin Murra
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Steffen Pfalzgraf
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University, Jena, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
10
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
11
|
Dai M, Lin B, Li H, Wang Y, Wu M, Wei Y, Zeng W, Qu L, Cang C, Wang X. Lysosomal cation channel TRPML1 suppression sensitizes acute myeloid leukemia cells to chemotherapeutics by inhibiting autophagy. Mol Cell Biochem 2024:10.1007/s11010-024-05054-5. [PMID: 38951379 DOI: 10.1007/s11010-024-05054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Despite the implementation of novel therapeutic regimens and extensive research efforts, chemoresistance remains a formidable challenge in the treatment of acute myeloid leukemia (AML). Notably, the involvement of lysosomes in chemoresistance has sparked interest in developing lysosome-targeted therapies to sensitize tumor cells to currently approved chemotherapy or as innovative pharmacological approaches. Moreover, as ion channels on the lysosomal membrane are critical regulators of lysosomal function, they present potential as novel targets for enhancing chemosensitivity. Here, we discovered that the expression of a lysosomal cation channel, namely transient receptor potential mucolipin 1 (TRPML1), was elevated in AML cells. Inhibiting TRPML1 individually does not impact the proliferation and apoptosis of AML cells. Importantly, inhibition of TRPML1 demonstrated the potential to modulate the sensitivity of AML cells to chemotherapeutic agents. Exploration of the underlying mechanisms revealed that suppression of TRPML1 impaired autophagy while concurrently increasing the production of reactive oxygen species (ROS) and ROS-mediated lipid peroxidation (Lipid-ROS) in AML cells. Finally, the knockdown of TRPML1 significantly reduced OCI-AML3 tumor growth following chemotherapy in a mouse model of human leukemia. In summary, targeting TRPML1 represents a promising approach for combination therapy aimed at enhancing chemosensitivity in treating AML.
Collapse
Affiliation(s)
- Meifang Dai
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingqian Lin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Youming Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Miaomiao Wu
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanan Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenping Zeng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Lili Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| | - Xingbing Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
13
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
14
|
Márquez-Nogueras KM, Kuo IY. Cardiovascular perspectives of the TRP channel polycystin 2. J Physiol 2024; 602:1565-1577. [PMID: 37312633 PMCID: PMC10716366 DOI: 10.1113/jp283835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Calcium release from the endoplasmic reticulum (ER) is predominantly driven by two key ion channel receptors, inositol 1, 4, 5-triphosphate receptor (InsP3R) in non-excitable cells and ryanodine receptor (RyR) in excitable and muscle-based cells. These calcium transients can be modified by other less-studied ion channels, including polycystin 2 (PC2), a member of the transient receptor potential (TRP) family. PC2 is found in various cell types and is evolutionarily conserved with paralogues ranging from single-cell organisms to yeasts and mammals. Interest in the mammalian form of PC2 stems from its disease relevance, as mutations in the PKD2 gene, which encodes PC2, result in autosomal dominant polycystic kidney disease (ADPKD). This disease is characterized by renal and liver cysts, and cardiovascular extrarenal manifestations. However, in contrast to the well-defined roles of many TRP channels, the role of PC2 remains unknown, as it has different subcellular locations, and the functional understanding of the channel in each location is still unclear. Recent structural and functional studies have shed light on this channel. Moreover, studies on cardiovascular tissues have demonstrated a diverse role of PC2 in these tissues compared to that in the kidney. We highlight recent advances in understanding the role of this channel in the cardiovascular system and discuss the functional relevance of PC2 in non-renal cells.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
15
|
Yuan Y, Jaślan D, Rahman T, Bracher F, Grimm C, Patel S. Coordinating activation of endo-lysosomal two-pore channels and TRP mucolipins. J Physiol 2024; 602:1623-1636. [PMID: 38598430 DOI: 10.1113/jp283829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London, UK
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| |
Collapse
|
16
|
Xia Z, Long D, Hong X, Lan Y, Xie L. Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro. J Vet Res 2024; 68:45-53. [PMID: 38525220 PMCID: PMC10960329 DOI: 10.2478/jvetres-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian463000, China
- Henan Topfond Pharmaceutical Company Limited, Zhumadian463000, China
| | - Denggao Long
- Sixteenth Middle School of Yiyang City, Yiyang413064, Hunan Province, China
| | - Xinyi Hong
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Ying Lan
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| |
Collapse
|
17
|
Lee D, Lee PCW, Hong JH. UBA6 Inhibition Accelerates Lysosomal TRPML1 Depletion and Exosomal Secretion in Lung Cancer Cells. Int J Mol Sci 2024; 25:2843. [PMID: 38474091 PMCID: PMC10932338 DOI: 10.3390/ijms25052843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
18
|
Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol 2024; 964:176302. [PMID: 38154767 DOI: 10.1016/j.ejphar.2023.176302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid β, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
20
|
Zhang K, Huang L, Cai Y, Zhong Y, Chen N, Gao F, Zhang L, Li Q, Liu Z, Zhang R, Zhang L, Yue J. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. FEBS J 2023; 290:5353-5372. [PMID: 37528513 DOI: 10.1111/febs.16920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a β-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natual Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yang Cai
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| |
Collapse
|
21
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
22
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell 2023; 83:2524-2539.e7. [PMID: 37390818 PMCID: PMC10528928 DOI: 10.1016/j.molcel.2023.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Rather MA, Khan A, Wang L, Jahan S, Rehman MU, Makeen HA, Mohan S. TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon 2023; 9:e16910. [PMID: 37332910 PMCID: PMC10272313 DOI: 10.1016/j.heliyon.2023.e16910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
TRP (Transient receptor potential) channels are integral membrane proteins consisting of a superfamily of cation channels that allow permeability of both monovalent and divalent cations. TRP channels are subdivided into six subfamilies: TRPC, TRPV, TRPM, TRPP, TRPML, and TRPA, and are expressed in almost every cell and tissue. TRPs play an instrumental role in the regulation of various physiological processes. TRP channels are extensively represented in brain tissues and are present in both prokaryotes and eukaryotes, exhibiting responses to several mechanisms, including physical, chemical, and thermal stimuli. TRP channels are involved in the perturbation of Ca2+ homeostasis in intracellular calcium stores, both in neuronal and non-neuronal cells, and its discrepancy leads to several neuronal disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). TRPs participate in neurite outgrowth, receptor signaling, and excitotoxic cell death in the central nervous system. Understanding the mechanism of TRP channels in neurodegenerative diseases may extend to developing novel therapies. Thus, this review articulates TRP channels' physiological and pathological role in exploring new therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Pharmacy Practice, College of Pharmacy, Jazan University, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
25
|
Gene expression of TRPMLs and its regulation by pathogen stimulation. Gene 2023; 864:147291. [PMID: 36813061 DOI: 10.1016/j.gene.2023.147291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The transient receptor potential mucolipin (TRPML) subfamily in mammalian has three members, namely TRPML1, TRPML2, and TRPML3, who play key roles in regulating intracellular Ca2+ homeostasis, endosomal pH, membrane trafficking and autophagy. Previous studies had shown that three TRPMLs are closely related to the occurrence of pathogen invasion and immune regulation in some immune tissues or cells, but the relationship between TRPMLs expression and pathogen invasion in lung tissue or cell remains elusive. Here, we investigated the expression distribution of three TRPML channels in mouse different tissues by qRT-PCR, and then found that all three TRPMLs were highly expressed in the mouse lung tissue, as well as mouse spleen and kidney tissues. The expression of TRPML1 or TRPML3 in all three mouse tissues had a significant down-regulation after the treatment of Salmonella or LPS, but TRPML2 expression showed a remarkable increase. Consistently, TRPML1 or TRPML3 but not TRPML2 in A549 cells also displayed a decreased expression induced by LPS stimulation, which shared a similar regulation pattern in the mouse lung tissue. Furthermore, the treatment of the TRPML1 or TRPML3 specific activator induced a dose-dependent up-regulation of inflammatory factors IL-1β, IL-6 and TNFα, suggesting that TRPML1 and TRPML3 are likely to play an important role in immune and inflammatory regulation. Together, our study identified the gene expression of TRPMLs induced by pathogen stimulation in vivo and in vitro, which may provide novel targets for innate immunity or pathogen regulation.
Collapse
|
26
|
Cunha MR, Catta-Preta CMC, Takarada JE, Moreira GA, Massirer KB, Couñago RM. A novel BRET-based assay to investigate binding and residence times of unmodified ligands to the human lysosomal ion channel TRPML1 in intact cells. J Biol Chem 2023:104807. [PMID: 37172730 DOI: 10.1016/j.jbc.2023.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Here we report a Bioluminescence Resonance Energy Transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human Transient Receptor Potential Mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically-relevant environment of lysosomes.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Carolina M C Catta-Preta
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Current address: Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Gabriela A Moreira
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| |
Collapse
|
27
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
28
|
Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, Anderson KE, Hawkins PT, Gardiner SE, Waller-Evans H, Sims R, Boland B, O'Neill C. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J Cell Sci 2023; 136:jcs259875. [PMID: 36825945 PMCID: PMC10112969 DOI: 10.1242/jcs.259875] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE ε4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Somogyi
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Emily D Kirkham
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Jincy Winston
- UK Dementia Research Institute, Hadyn Ellis Building, Cardiff University, CF24 4HQ Cardiff, UK
| | - Nicholas D Allen
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 YT20 Cork, Ireland
| | - Karen E Anderson
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Phillip T Hawkins
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Helen Waller-Evans
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, C14 4XN Cardiff, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
29
|
Abstract
This chapter explores the existing structural and functional studies on the endo-lysosomal channel TRPML1 and its analogs TRPML2, TRPML3. These channels represent the mucolipin subfamily of the TRP channel superfamily comprising important roles in sensory physiology, ion homeostasis, and signal transduction. Since 2016, numerous structures have been determined for all three members using either cryo-EM or X-ray crystallography. These studies along with recent functional analysis have considerably strengthened our knowledge on TRPML channels and its related endo-lysosomal function. This chapter, together with relevant reports in other chapters from this handbook, provides an informative and detailed tool to study the endo-lysosomal cation channels.
Collapse
Affiliation(s)
- Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Kim B, Kim G, Jeon S, Cho WS, Jeon HP, Jung J. Zinc oxide nanoparticles trigger autophagy-mediated cell death through activating lysosomal TRPML1 in normal kidney cells. Toxicol Rep 2023; 10:529-536. [PMID: 37152410 PMCID: PMC10160241 DOI: 10.1016/j.toxrep.2023.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in various materials including sunscreens, cosmetics, over-the-counter topical skin products, and pigments. As traces of the used ZnO NPs have been found in the kidney, it is crucial to uncover their potential risks. The aim of this study is to elucidate detrimental effects of ZnO NPs and the molecular mechanism behind their renal toxicity. Cytotoxic effects were measured by MTT assay after HK2 cells were exposed to ZnO NPs for 24 h and IC50 value was determined. ROS and intracellular Zn2+ levels were detected by flow cytometry, and localization of Zn2+ and lysosome was determined by confocal microscopy. Occurrence of autophagy and detection of autophagic flux were determined by Western blot and confocal microscopy, respectively. We performed unpaired student t test for two groups, and one-way ANOVA with Tukey's post hoc for over three groups. ZnO NPs induced cell death in human renal proximal tubule epithelial cells, HK2. Cytosolic Zn2+ caused autophagy-mediated cell death rather than apoptosis. Cytosolic Zn2+ processed in lysosome was released by TRPML1, and inhibition of TRPML1 significantly decreased autophagic flux and cell death. The findings of this study suggest that ZnO NPs strongly induce autophagy-mediated cell death in human kidney cells. Controlling TRPML1 can be potentially used to prevent the kidney from ZnO NPs-induced toxicity.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
| | - Soyeon Jeon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, the Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, the Republic of Korea
| | - Hyun Pyo Jeon
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
- Correspondence to: Department of SmartBio, College of Life and Health Science, Kyungsung University, 309 Suyeong-ro Room 507-2, Nam-gu, Busan 48434, the Republic of Korea.
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
- Correspondence to: Department of SmartBio, College of Life and Health Science, Kyungsung University, 309 Suyeong-ro Room 507-2, Nam-gu, Busan 48434, the Republic of Korea.
| |
Collapse
|
31
|
Abstract
Lysosomes are acidic membrane-bound organelles that use hydrolytic enzymes to break down material through pathways such as endocytosis, phagocytosis, mitophagy, and autophagy. To function properly, intralysosomal environments are strictly controlled by a set of integral membrane proteins such as ion channels and transporters. Potassium ion (K+) channels are a large and diverse family of membrane proteins that control K+ flux across both the plasma membrane and intracellular membranes. In the plasma membrane, they are essential in both excitable and non-excitable cells for the control of membrane potential and cell signaling. However, our understanding of intracellular K+ channels is very limited. In this review, we summarize the recent development in studies of K+ channels in the lysosome. We focus on their characterization, potential roles in maintaining lysosomal membrane potential and lysosomal function, and pathological implications.
Collapse
Affiliation(s)
- Peng Huang
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Yi Wu
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| |
Collapse
|
32
|
Li G, Huang D, Zou Y, Kidd J, Gehr TWB, Li N, Ritter JK, Li PL. Impaired autophagic flux and dedifferentiation in podocytes lacking Asah1 gene: Role of lysosomal TRPML1 channel. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119386. [PMID: 36302466 PMCID: PMC9869931 DOI: 10.1016/j.bbamcr.2022.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Podocytopathy and associated nephrotic syndrome have been reported in a mouse strain (Asah1fl/fl/Podocre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy in these mice remains unclear. The present study tested whether Ac deficiency impairs autophagic flux in podocytes through blockade of transient receptor potential mucolipin 1 (TRPML1) channel as a potential pathogenic mechanism of podocytopathy in Asah1fl/fl/Podocre mice. We first demonstrated that impairment of autophagic flux occurred in podocytes lacking Asah1 gene, which was evidenced by autophagosome accumulation and reduced lysosome-autophagosome interaction. TRPML1 channel agonists recovered lysosome-autophagosome interaction and attenuated autophagosome accumulation in podocytes from Asah1fl/fl/Podocre mice, while TRPML1 channel inhibitors impaired autophagic flux in WT/WT podocytes and worsened autophagic deficiency in podocytes lacking Asah1 gene. The effects of TRPML1 channel agonist were blocked by dynein inhibitors, indicating a critical role of dynein activity in the control of lysosome movement due to TRPML1 channel-mediated Ca2+ release. It was also found that there is an enhanced phenotypic transition to dedifferentiation status in podocytes lacking Asah1 gene in vitro and in vivo. Such podocyte phenotypic transition was inhibited by TRPML1 channel agonists but enhanced by TRPML1 channel inhibitors. Moreover, we found that TRPML1 gene silencing induced autophagosome accumulation and dedifferentiation in podocytes. Based on these results, we conclude that Ac activity is essential for autophagic flux and maintenance of differentiated status of podocytes. Dysfunction or deficiency of Ac may impair autophagic flux and induce podocyte dedifferentiation, which may be an important pathogenic mechanism of podocytopathy and associated nephrotic syndrome.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell Death Dis 2022; 13:1047. [PMID: 36522443 PMCID: PMC9755144 DOI: 10.1038/s41419-022-05504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.
Collapse
|
35
|
Spix B, Castiglioni AJ, Remis NN, Flores EN, Wartenberg P, Wyatt A, Boehm U, Gudermann T, Biel M, García-Añoveros J, Grimm C. Whole-body analysis of TRPML3 (MCOLN3) expression using a GFP-reporter mouse model reveals widespread expression in secretory cells and endocrine glands. PLoS One 2022; 17:e0278848. [PMID: 36520788 PMCID: PMC10045552 DOI: 10.1371/journal.pone.0278848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
TRPML3 (mucolipin 3, MCOLN3) is an endolysosomal cation channel belonging to the TRPML subfamily of transient receptor potential channels. Gain-of-function mutations in the Trpml3 gene cause deafness, circling behavior and coat color dilution in mice due to cell death of TRPML3-expressing hair cells of the inner ear or skin melanocytes, respectively. Furthermore, TRPML3 was found to play a role in the long term survival of cochlear hair cells (its absence contributing to presbycusis), in specialized giant lysosomes that neonatal (birth to weaning) enterocytes used for the uptake and digestion of maternal milk nutrients, and in the expulsion of exosome-encased bacteria such as uropathogenic E. coli, infecting bladder epithelial cells. Recently, TRPML3 was found to be expressed at high levels in alveolar macrophages and loss of TRPML3 results in a lung emphysema phenotype, confirmed in two independently engineered Trpml3 knockout lines. TRPML3 is not ubiquitously expressed like its relative TRPML1 and thus cellular expression of TRPML3 on a whole-tissue level remains, with the exceptions mentioned above, largely elusive. To overcome this problem, we generated a τGFP reporter mouse model for TRPML3 and compared expression data obtained from this model by immunofluorescence on tissue sections with immunohistochemistry using TRPML3 antibodies and in situ hybridization. We thus uncovered expression in several organs and distinct cell types. We confirmed TRPML3 expression in both neonatal and adult alveolar macrophages, in melanocytes of hair follicles and glabrous skin, in principle cells of the collecting duct of the neonatal and adult kidney, and in olfactory sensory neurons of the olfactory epithelium, including its fibres protruding to the glomeruli of the olfactory bulb. Additionally, we localized TRPML3 in several glands including parathyroid, thyroid, salivary, adrenal, and pituitary gland, testes and ovaries, suggestive of potential roles for the channel in secretion or uptake of different hormones.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andrew J. Castiglioni
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Natalie N. Remis
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Emma N. Flores
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Amanda Wyatt
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
- Departments of Neurology and Neuroscience, and Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
36
|
Zhang W, Yang X, Li Y, Yu L, Zhang B, Zhang J, Cho WJ, Venkatarangan V, Chen L, Burugula BB, Bui S, Wang Y, Duan C, Kitzman JO, Li M. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat Commun 2022; 13:5351. [PMID: 36096887 PMCID: PMC9468337 DOI: 10.1038/s41467-022-33025-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.
Collapse
Affiliation(s)
- Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Woo Jung Cho
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bala Bharathi Burugula
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sarah Bui
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
38
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
39
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
40
|
Siow WX, Kabiri Y, Tang R, Chao YK, Plesch E, Eberhagen C, Flenkenthaler F, Fröhlich T, Bracher F, Grimm C, Biel M, Zischka H, Vollmar AM, Bartel K. Lysosomal TRPML1 regulates mitochondrial function in hepatocellular carcinoma cells. J Cell Sci 2022; 135:274242. [PMID: 35274126 PMCID: PMC8977057 DOI: 10.1242/jcs.259455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Liver cancers, including hepatocellular carcinoma (HCC), are the second most lethal cancers worldwide and novel therapeutic strategies are still highly needed. Recently, the endolysosomal cation channel TRPML1 has gained focus in cancer research representing an interesting novel target. We utilized the recently developed isoform-selective TRPML1 activator ML1-SA1 and the CRISPR/Cas9 system to generate tools for over-activation and loss-of-function studies on TRPML1 in HCC. After verification of our tools, we investigated the role of TRPML1 in HCC by studying proliferation, apoptosis, and proteomic alterations. Further, we analyzed mitochondrial function in detail, facilitating confocal and transmission electron microscopy, combined with SeahorseTM and Oroboros® functional analysis. We report that TRPML1 over-activation by a novel, isoform-selective, low-molecular activator induces apoptosis by impairing mitochondrial function calcium dependently. Additionally, TRPML1 loss-of-function deregulates mitochondrial renewal, which leads to proliferation impairment. Thus, our study reveals a novel role for TRPML1 as regulator of mitochondrial function and its modulators as promising molecules for novel therapeutic options in HCC therapy.
Collapse
Affiliation(s)
- Wei Xiong Siow
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yaschar Kabiri
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, D-80802 Munich, Germany
| | - Rachel Tang
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yu-Kai Chao
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eva Plesch
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Florian Flenkenthaler
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Pharmacology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Zischka
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, D-80802 Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
41
|
Misko AL, Wood LB, DeBono M, Oberman R, Raas-Rothschild A, Grishchuk Y, Eichler F. Cross-sectional Observations on the Natural History of Mucolipidosis Type IV. Neurol Genet 2022; 8:e662. [PMID: 35425852 PMCID: PMC9005048 DOI: 10.1212/nxg.0000000000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Background and Objectives Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal disorder initially described as a static neurodevelopmental condition. However, patient caregivers frequently report progressive muscular hypertonicity and functional decline. We evaluated a cohort of patients with MLIV to determine whether neurologic disability correlates with age. Methods We performed a cross-sectional, observational study of 26 patients with MLIV in the United States and Israel ranging in age from 2 to 40 years. Medical history was obtained from caregivers, and patients underwent a full neurologic examination. The Brief Assessment of Motor Function (BAMF), Gross Motor Function Classification System, and modified Ashworth scales were applied. Caregivers identified developmental skills on the Oregon Project for Visually Impaired and Blind Children checklist that their child had lost the ability to perform. Results Three patients were clinically classified as mildly affected and the remaining 23 patients as typical, severely affected cases. Timing of first symptom onset ranged from 1.5 months to 8 years of age (median 7.25 months). Across typical patients, modified Ashworth scores demonstrated a positive age dependence illustrating worsening spasticity across the lifespan. Signs of extrapyramidal motor dysfunction were also qualitatively observed. In parallel, gross and fine motor function assessed with the BAMF and Gross Motor Function Classification System scales declined across age. All typical patients had restricted tongue mobility and lacked rotary jaw movement when chewing, but BAMF scores for deglutition declined only in the oldest patients. In contrast, scores for articulation were low in all patients and did not correlate with age. Finally, loss of developmental skills frequently occurred in early adolescence. Discussion This cross-sectional natural history study of MLIV demonstrates worse motor function in older patients. These data support a neurodegenerative component of MLIV that manifests as developmental regression in the second decade of life. Whether the emergence of functional decline results from the cumulative, nonlinear interactions of steadily progressive neurodegenerative processes or reflects an inflection from impaired CNS development to degeneration is uncertain. However, understanding the relationship between CNS pathology and clinical course of disease will be imperative to guiding future interventional trials and optimizing patient care.
Collapse
|
42
|
Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells 2022; 11:cells11060921. [PMID: 35326372 PMCID: PMC8946281 DOI: 10.3390/cells11060921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.
Collapse
|
43
|
Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P 2 and rapamycin. Proc Natl Acad Sci U S A 2022; 119:2120404119. [PMID: 35131932 PMCID: PMC8851561 DOI: 10.1073/pnas.2120404119] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Rapamycin is a specific inhibitor of mammalian target of rapamycin (mTOR). Rapamycin can also activate transient receptor potential mucolipin 1 (TRPML1), a phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]–gated lysosomal cation channel whose loss-of-function mutations directly cause mucolipidosis type IV disease. We determined the high-resolution cryoelectron microscopy structures of TRPML1 in various ligand-bound states, including the open TRPML1 in complex with PI(3,5)P2 and a rapamycin analog at 2.1 Å. These structures reveal how rapamycin and PI(3,5)P2 bind at two distinct sites and allosterically activate the channel. Considering the high potency of TRPML1 activation by rapamycin and PI(3,5)P2, it is conceivable that some pharmacological effects from the therapeutic use of rapamycin may come from the TRPML1-dependent mechanism rather than mTOR inhibition. Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-permeable, nonselective cation channel ubiquitously expressed in the endolysosomes of mammalian cells and its loss-of-function mutations are the direct cause of type IV mucolipidosis (MLIV), an autosomal recessive lysosomal storage disease. TRPML1 is a ligand-gated channel that can be activated by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] as well as some synthetic small-molecule agonists. Recently, rapamycin has also been shown to directly bind and activate TRPML1. Interestingly, both PI(3,5)P2 and rapamycin have low efficacy in channel activation individually but together they work cooperatively and activate the channel with high potency. To reveal the structural basis underlying the synergistic activation of TRPML1 by PI(3,5)P2 and rapamycin, we determined the high-resolution cryoelectron microscopy (cryo-EM) structures of the mouse TRPML1 channel in various states, including apo closed, PI(3,5)P2-bound closed, and PI(3,5)P2/temsirolimus (a rapamycin analog)-bound open states. These structures, combined with electrophysiology, elucidate the molecular details of ligand binding and provide structural insight into how the TRPML1 channel integrates two distantly bound ligand stimuli and facilitates channel opening.
Collapse
|
44
|
Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal Cation Channels and Lung Disease. Cells 2022; 11:304. [PMID: 35053420 PMCID: PMC8773812 DOI: 10.3390/cells11020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| | - Aicha Jeridi
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Meshal Ansari
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Ali Önder Yildirim
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Herbert B. Schiller
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
45
|
Gan N, Jiang Y. Structural biology of cation channels important for lysosomal calcium release. Cell Calcium 2022; 101:102519. [PMID: 34952412 PMCID: PMC8752501 DOI: 10.1016/j.ceca.2021.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023]
Abstract
Calcium is one of the most important second messengers in cells. The uptake and release of calcium ions are conducted by channels and transporters. Inside a eukaryotic cell, calcium is stored in intracellular organelles including the endoplasmic reticulum (ER), mitochondrion, and lysosome. Lysosomes are acid membrane-bounded organelles serving as the crucial degradation and recycling center of the cell. Lysosomes involve in multiple important signaling events, including nutrient sensing, lipid metabolism, and trafficking. Hitherto, two lysosomal cation channel families have been suggested to function as calcium release channels, namely the Two-pore Channel (TPC) family, and the Transient Receptor Potential Channel Mucolipin (TRPML) family. Additionally, a few plasma membrane calcium channels have also been found in the lysosomal membrane under certain circumstances. In this review, we will discuss the structural mechanism of the cation channels that may be important for lysosomal calcium release, primarily focusing on the TPCs and TRPMLs.
Collapse
Affiliation(s)
- Ninghai Gan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
46
|
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 2021; 298:101487. [PMID: 34915027 PMCID: PMC8808176 DOI: 10.1016/j.jbc.2021.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+, and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homo-tetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.
Collapse
Affiliation(s)
- Xiaojing Song
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huaiyi Zhu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yanru Cao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heyang Ye
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
47
|
Wang H, Dong Y, Wan B, Ji Y, Xu Q. Identification and Characterization Analysis of Transient Receptor Potential Mucolipin Protein of Laodelphax striatellus Fallén. INSECTS 2021; 12:insects12121107. [PMID: 34940195 PMCID: PMC8706664 DOI: 10.3390/insects12121107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022]
Abstract
Transient receptor potential mucolipin (TRPML) protein in flies plays a pivotal role in Ca2+ ions release, resulting in membrane trafficking, autophagy and ion homeostasis. However, to date, the characterization of TRPML in agricultural pests remains unknown. Here, we firstly reported the TRPML of a destructive pest of gramineous crops, Laodelphax striatellus. The L. striatellus TRPML (Ls-TRPML) has a 1818 bp open reading frame, encoding 605 amino acid. TRPML in agricultural pests is evolutionarily conserved, and the expression of Ls-TRPML is predominately higher in the ovary than in other organs of L. striatellus at the transcript and protein level. The Bac-Bac system showed that Ls-TRPML localized in the plasma membrane, nuclear membrane and nucleus and co-localized with lysosome in Spodoptera frugiperda cells. The immunofluorescence microscopy analysis showed that Ls-TRPML localized in the cytoplasm and around the nuclei of the intestine cells or ovary follicular cells of L. striatellus. The results from the lipid-binding assay revealed that Ls-TRPML strongly bound to phosphatidylinositol-3,5-bisphosphate, as compared with other phosphoinositides. Overall, our results helped is identify and characterize the TRPML protein of L. striatellus, shedding light on the function of TRPML in multiple cellular processes in agricultural pests.
Collapse
Affiliation(s)
- Haitao Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
- Correspondence: (H.W.); (Q.X.); Tel.: +86-134-5181-6249 (H.W.); +86-133-2781-7381 (Q.X.)
| | - Yan Dong
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
| | - Baijie Wan
- Institute of Agricultural Sciences in Jiangsu Coastal Area, Yancheng 224002, China;
| | - Yinghua Ji
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
| | - Qiufang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (H.W.); (Q.X.); Tel.: +86-134-5181-6249 (H.W.); +86-133-2781-7381 (Q.X.)
| |
Collapse
|
48
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
49
|
Kriegler K, Leser C, Mayer P, Bracher F. Effective chiral pool synthesis of both enantiomers of the TRPML inhibitor trans-ML-SI3. Arch Pharm (Weinheim) 2021; 355:e2100362. [PMID: 34738656 DOI: 10.1002/ardp.202100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Abstract
Two independent chiral pool syntheses of both enantiomers of the TRPML inhibitor, trans-ML-SI3, were developed, starting from commercially available (1S,2R)- and (1R,2S)-configured cis-2-aminocyclohexanols. Both routes lead to the target compounds in excellent enantiomeric purity and good overall yields. For the most attractive (-)-trans-enantiomer, the R,R-configuration was identified by these unambiguous syntheses, and the results were confirmed by single-crystal X-ray structure analysis. These effective synthetic approaches further allow flexible variation of prominent residues in ML-SI3 for future in-depth analysis of structure-activity relationships as both the piperazine and the N-sulfonyl residues are introduced into the molecule at late stages of the synthesis.
Collapse
Affiliation(s)
- Katharina Kriegler
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Charlotte Leser
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
50
|
Xia Z, Ren Y, Li S, Xu J, Wu Y, Cao Z. ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Res 2021; 195:105193. [PMID: 34687820 DOI: 10.1016/j.antiviral.2021.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Transient receptor potential mucolipin 2 and 3 (TRPML2 and TRPML3), as key channels in the endosomal-lysosomal system, are associated with many different cellular processes, including ion release, membrane trafficking and autophagy. In particular, they can also facilitate viral entry into host cells and enhance viral infection. We previously identified that two selective TRPML agonists, ML-SA1 and SN-2, that showed antiviral activities against dengue virus type 2 (DENV2) and Zika virus (ZIKV) in vitro, but their antiviral mechanisms are still elusive. Here, we reported that ML-SA1 could inhibit DENV2 replication by downregulating the expression of both TRPML2 and TRPML3, while the other TRPML activator, SN-2, suppressed DENV2 infection by reducing only TRPML3 expression. Consistently, the channel activities of both TRPML2 and TRPML3 were also found to be associated with the antiviral activity of ML-SA1 on DENV2 and ZIKV, but SN-2 relied only on TRPML3 channel activity. Further mechanistic experiments revealed that ML-SA1 and SN-2 decreased the expression of the late endosomal marker Rab7, dependent on TRPML2 and TRPML3, indicating that these two compounds likely inhibit viral infection by promoting vesicular trafficking from late endosomes to lysosomes and then accelerating lysosomal degradation of the virus. As expected, neither ML-SA1 nor SN-2 inhibited herpes simplex virus type I (HSV-1), whose entry is independent of the endolysosomal network. Together, our work reveals the antiviral mechanisms of ML-SA1 and SN-2 in targeting TRPML channels, possibly leading to the discovery of new drug candidates to inhibit endocytosed viruses.
Collapse
Affiliation(s)
- Zhiqiang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yingying Ren
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Songryong Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Department of Biotechnology, Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, North Korea
| | - Jiyuan Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|