1
|
Shrwani KJ, Mahallawi WH, Mohana AI, Algaissi A, Dhayhi N, Sharwani NJ, Gadour E, Aldossari SM, Asiri H, Kameli N, Asiri AY, Asiri AM, Sherwani AJ, Cunliffe N, Zhang Q. Mucosal immunity in upper and lower respiratory tract to MERS-CoV. Front Immunol 2024; 15:1358885. [PMID: 39281686 PMCID: PMC11392799 DOI: 10.3389/fimmu.2024.1358885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV can cause severe respiratory tract disease and multiorgan failure. Therefore, therapeutic vaccines are urgently needed. This intensive review explores the human immune responses and their immunological mechanisms during MERS-CoV infection in the mucosa of the upper and lower respiratory tracts (URT and LRT, respectively). Objective The aim of this study is to provide a valuable, informative, and critical summary of the protective immune mechanisms against MERS-CoV infection in the URT/LRT for the purpose of preventing and controlling MERS-CoV disease and designing effective therapeutic vaccines. Methods In this review, we focus on the immune potential of the respiratory tract following MERS-CoV infection. We searched PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar using the following terms: "MERS-CoV", "B cells", "T cells", "cytokines", "chemokines", "cytotoxic", and "upper and lower respiratory tracts". Results We found and included 152 studies in this review. We report that the cellular innate immune response, including macrophages, dendritic cells, and natural killer cells, produces antiviral substances such as interferons and interleukins to prevent the virus from spreading. In the adaptive and humoral immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and plasma cells protect against MERS-CoV infection in URT and LRT. Conclusion The human nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) could successfully limit the spread of several respiratory pathogens. However, in the case of MERS-CoV infection, limited research has been conducted in humans with regard to immunopathogenesis and mucosal immune responses due to the lack of relevant tissues. A better understanding of the immune mechanisms of the URT and LRT is vital for the design and development of effective MERS-CoV vaccines.
Collapse
Affiliation(s)
- Khalid J Shrwani
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Public Health Authority, Saudi Center for Disease Prevention and Control (SCDC), Jazan, Saudi Arabia
| | - Waleed H Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdulrhman I Mohana
- Department of Antimicrobial Resistance, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Endemic Infectious Diseases Research Unit, Health Sciences Research Center, Jazan University, Jazan, Saudi Arabia
| | - Nabil Dhayhi
- Department of Pediatrics, King Fahad Central Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nouf J Sharwani
- Department of Surgery, Mohammed bin Nasser Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa, Saudi Arabia
- Department of Medicine, Faculty of Medicine, Zamzam University College, Khartoum, Sudan
| | - Saeed M Aldossari
- Medical Laboratory Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Asiri
- Medical Laboratory Department, Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ayad Y Asiri
- Intensive Care Unit Department, Al Inma Medical Group, Al Hayat National Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah M Asiri
- Preventive Medicine Assistant Deputyship, Ministry of Health, Riyadh, Saudi Arabia
| | - Alaa J Sherwani
- Department of Pediatrics, Abu-Arish General Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qibo Zhang
- Academic and Research Departments, Section of Immunology, School of Biosciences, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
2
|
Samrat SK, Kumar P, Liu Y, Chen K, Lee H, Li Z, Chen Y, Li H. An ISG15-Based High-Throughput Screening Assay for Identification and Characterization of SARS-CoV-2 Inhibitors Targeting Papain-like Protease. Viruses 2024; 16:1239. [PMID: 39205213 PMCID: PMC11359932 DOI: 10.3390/v16081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules. Subsequently, we assessed the PLpro enzymatic activity in the presence of screened molecules. We identified three potential PLpro inhibitors, namely, NSC338106, 651084, and 679525, with IC50 values in the range from 3.3 to 6.0 µM. These molecules demonstrated in vitro inhibition of the enzyme activity and exhibited antiviral activity against SARS-CoV-2, with EC50 values ranging from 0.4 to 4.6 µM. The molecular docking of all three small molecules to PLpro suggested their specificity towards the enzyme's active site. Overall, our study contributes promising prospects for further developing potential antivirals to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Prashant Kumar
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Biophysics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yin Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Das S, Nath S, Shahjahan, Dey SK. Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: a bottleneck for its eradication. Daru 2024:10.1007/s40199-024-00524-z. [PMID: 39026019 DOI: 10.1007/s40199-024-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic has turned our world upside down by meddling with our normal lives. While there is no definitive drug against SARS-CoV-2, antiviral drugs that are already in the market, are being repurposed against it, could now complete long-term as well as all age-specific investigations, and they are successful in saving millions of lives. Nevertheless, side-effects are emergingly seen in the patients undergoing treatment, and ineffectiveness is increasingly found due to the emerging notorious variants of the virus. Many of them are also facing serious co-infections including black fungus, Zika, and H1N1 virus to name a few. OBJECTIVES Therefore, this review highlights both drug resistance, their side-effects, and the significance for proper and long-term clinical trials of all age groups including children. METHODS We have explored and proposed the mechanisms of drug resistance that may arise due to the misuse or overuse of drugs based on available experimental reports. RESULTS The review provides solutions to the aforesaid issues of drug-resistance and side-effects by providing combination therapies, ancillary treatments, and other preventive strategies that can be useful in preventing drawbacks thereby curbing COVID-19 or similar future infections to maintain our normal lives. CONCLUSION COVID-19 and its long-term effects, if any, can be eradicated with strategic and mindful use of related therapeutics in a controlled manner.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Sreyashi Nath
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Alatawi A, Gumel AB. Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6425-6470. [PMID: 39176403 DOI: 10.3934/mbe.2024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV coronavirus (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {\mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {\mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.
Collapse
Affiliation(s)
- Adel Alatawi
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abba B Gumel
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
5
|
Kummer RL, Marini JJ. The Respiratory Mechanics of COVID-19 Acute Respiratory Distress Syndrome-Lessons Learned? J Clin Med 2024; 13:1833. [PMID: 38610598 PMCID: PMC11012401 DOI: 10.3390/jcm13071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a well-defined clinical entity characterized by the acute onset of diffuse pulmonary injury and hypoxemia not explained by fluid overload. The COVID-19 pandemic brought about an unprecedented volume of patients with ARDS and challenged our understanding and clinical approach to treatment of this clinical syndrome. Unique to COVID-19 ARDS is the disruption and dysregulation of the pulmonary vascular compartment caused by the SARS-CoV-2 virus, which is a significant cause of hypoxemia in these patients. As a result, gas exchange does not necessarily correlate with respiratory system compliance and mechanics in COVID-19 ARDS as it does with other etiologies. The purpose of this review is to relate the mechanics of COVID-19 ARDS to its underlying pathophysiologic mechanisms and outline the lessons we have learned in the management of this clinic syndrome.
Collapse
Affiliation(s)
- Rebecca L. Kummer
- Department of Pulmonary and Critical Care Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - John J. Marini
- Department of Pulmonary and Critical Care Medicine, Regions Hospital, St. Paul, MN 55101, USA
| |
Collapse
|
6
|
Liu X, Yang X, Wang C, Liu Q, Ding Y, Xu S, Wang G, Xiao R. A nanogap-enhanced SERS nanotag-based lateral flow assay for ultrasensitive and simultaneous monitoring of SARS-CoV-2 S and NP antigens. Mikrochim Acta 2024; 191:104. [PMID: 38236334 DOI: 10.1007/s00604-023-06126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024]
Abstract
A lateral flow assay (LFA) strip based on dual 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB)-encoded satellite Fe3O4@Au (Mag@Au) SERS tags with nanogap is reported for ultrasensitive and simultaneous diagnosis of two SARS-CoV-2 functional proteins. Composed of Fe3O4 core, satellite gold shell with nanogaps, and double-layer DTNB, the Mag@Au nanoparticles with an average size of 238 nm were designed as multifunctional tags to efficiently enrich the target SARS-CoV-2 protein from complex samples, significantly enhancing the SERS signal of the LFA strip and provide quantitative SERS detection of analyte on test lines. The developed dual DTNB-encoded satellite Mag@Au-based LFA allowed simultaneous quantification of spike (S) protein and nucleocapsid (NP) protein with detection limits of 23 pg mL-1 and 2 pg mL-1, respectively, lower than commercial ELISA kits and reported SERS-LFA detection system-based Au NPs and Fe3O4@3 nm Au MNPs. This magnetic SERS-LFA also showed high performance of multi-variant strain detection and further distinguished clinical samples of Omicron variant infection, demonstrating the potential of in situ detection of respiratory virus diseases.
Collapse
Affiliation(s)
- Xiaoxian Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, People's Republic of China
| | - Xingsheng Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
- Bioinformatics Center of AMMS, Beijing, 100850, People's Republic of China
| | - Chongwen Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Qiqi Liu
- Bioinformatics Center of AMMS, Beijing, 100850, People's Republic of China
| | - Yanlei Ding
- Bioinformatics Center of AMMS, Beijing, 100850, People's Republic of China
| | - Shiping Xu
- GI Department, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100039, People's Republic of China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, People's Republic of China.
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
7
|
Chau CW, Sugimura R. Organoids in COVID-19: can we break the glass ceiling? J Leukoc Biol 2024; 115:85-99. [PMID: 37616269 DOI: 10.1093/jleuko/qiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
COVID-19 emerged in September 2020 as a disease caused by the virus SARS-CoV-2. The disease presented as pneumonia at first but later was shown to cause multisystem infections and long-term complications. Many efforts have been put into discovering the exact pathogenesis of the disease. In this review, we aim to discuss an emerging tool in disease modeling, organoids, in the investigation of COVID-19. This review will introduce some methods and breakthroughs achieved by organoids and the limitations of this system.
Collapse
Affiliation(s)
- Chiu Wang Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Rd, Pokfulam 99077, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Rd, Pokfulam 99077, Hong Kong
- Centre for Translational Stem Cell Biology, 17 Science Park W Ave, Science Park 999077, Hong Kong
| |
Collapse
|
8
|
Neto DD, da Silva AN. The Mental Health Impacts of a Pandemic: A Multiaxial Conceptual Model for COVID-19. Behav Sci (Basel) 2023; 13:912. [PMID: 37998659 PMCID: PMC10669338 DOI: 10.3390/bs13110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The COVID-19 pandemic substantially impacted the mental health of the general population and particularly vulnerable individuals and groups. A wealth of research allows for estimating this impact and identifying relevant factors contributing to or mitigating it. The current paper presents and synthesizes this evidence into a multiaxial model of COVID-19 mental health impacts. Based on existing research, we propose four axes: (1) Exposure to COVID-related events; (2) Personal and social vulnerability, such as previous mental health problems or belonging to a vulnerable group; (3) Time, which accounts for the differential impacts throughout the development of the pandemic; and (4) Context, including healthcare and public policies, and social representations of the illness influencing individual emotional reactions and relevant behaviors. These axes help acknowledge the complexity of communities' reactions and are pragmatic in identifying and prioritizing factors. The axes can provide individual information (i.e., more exposure is harmful) and account for interactions (e.g., exposure in an early phase of the pandemic differs from a later stage). This model contributes to the reflections of the evidence and informs the mental health response to the next pandemic.
Collapse
Affiliation(s)
- David Dias Neto
- School of Psychology, ISPA—Instituto Universitário, 1140-041 Lisbon, Portugal
- Applied Psychology Research Center Capabilities & Inclusion, ISPA—Instituto Universitário, 1149-041 Lisbon, Portugal
| | - Ana Nunes da Silva
- Faculdade de Psicologia, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
| |
Collapse
|
9
|
Slöcker Barrio M, Belda Hofheinz S, Guitart Pardellans C, García-Salido A, de Carlos Vicente JC, Cuervas-Mons Tejedor M, Hernández Yuste A, Jiménez Olmos A, Morteruel Arizcuren E, García-Besteiro M, Calvo Monge C, Rodríguez Rubio M, Roca Pascual D, Bermúdez Barrezueta L, Martínez Padilla C, Huidobro Labarga B, Oulego-Erroz I, Sanchíz Cárdenas S, Rey Galan C, Holanda Peña MS, González Navarro P, Cortés RG. Characteristics and management of patients with SARS-CoV2 infection admitted to pediatric intensive care units: Data analysis of the Spanish national multicenter registry. Pediatr Pulmonol 2023; 58:2916-2929. [PMID: 37493137 DOI: 10.1002/ppul.26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION The purpose of this study is to describe the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) disease characteristics and management in children admitted to the pediatric intensive care units (PICU). METHODS The present study was based on a national multicentric prospective registry including PICU patients with SARS-CoV2 infection or symptoms of multisystem inflammatory syndrome in children (MIS-C). RESULTS A total of 298 patients were admitted to 41 different Spanish PICUs. A total of 76% of them were previously healthy. The most frequent manifestation was MIS-C (69.8%). On admission, 59.4% of patients did not have respiratory distress, and only 17.4% needed conventional mechanical ventilation (MV). The need for MV was associated with age (incidence rate ratios [IRR] 1.21, p < .012), pediatric sequential organ failure assessment score (p-SOFA) Score (IRR 1.12, p = .001), and need for transfusion (IRR 4.5, p < .004) in MIS-C patients, and with vasoactive drug use (IRR 2.73, p = .022) and the diagnosis of acute respiratory distress syndrome (IRR 2.83, p = .018) in patients admitted for other reasons. During the first day of admission, 56% of patients met shock criteria and 50.7% needed vasoactive drugs. In MIS-C patients, their use was associated with higher p-SOFA score (IRR 1.06, p < .001) and with the diagnosis of shock (IRR 5.78, p < .001). In patients without MIS-C, it was associated with higher p-SOFA score (IRR 1.05, p = .022). The mortality rate was 3%, being lower in MIS-C patients compared to patients admitted for other reasons (0.5% vs. 9.4%, p < .001). It was also lower in previously healthy patients compared to patients with previous comorbidities (0.9% vs. 9.7%, p < .001). CONCLUSIONS Severe SARS-CoV2 infection is uncommon in the pediatric population. In our series, respiratory distress was rare, being MIS-C the most frequent cause of PICU admission related to SARS-CoV2. In most cases, the course of the disease was mild except in children with previous diseases.
Collapse
Affiliation(s)
- María Slöcker Barrio
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Public Health and Maternal and Child Department, Complutense University of Madrid, Madrid, Spain
| | - Sylvia Belda Hofheinz
- Public Health and Maternal and Child Department, Complutense University of Madrid, Madrid, Spain
- Pediatric Intensive Care Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | - Ainhoa Jiménez Olmos
- Pediatric Intensive Care Unit, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | | - Cristina Calvo Monge
- Pediatric Intensive Care Unit, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - David Roca Pascual
- Pediatric Intensive Care Unit, Campus Hospitalario Vall d'Hebron, Barcelona, Spain
| | | | | | | | - Ignacio Oulego-Erroz
- Pediatric Intensive Care Unit, Complejo Asistencial Universitario de León, León, Spain
| | - Sonia Sanchíz Cárdenas
- Pediatric Intensive Care Unit, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Corsino Rey Galan
- Pediatric Intensive Care Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Pablo González Navarro
- Methodology and Biostatistics Unit, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Rafael González Cortés
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Public Health and Maternal and Child Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
González-Ramírez J, Leija-Montoya AG, Serafín-Higuera N, Guzmán-Martín CA, Amezcua-Guerra LM, Olvera-Sandoval C, Machado-Contreras JR, Ruiz-Hernández A, Hernández-Díazcouder A, Estrada-Guzmán JD, Sánchez-Muñoz F. Increased Expression of lncRNA AC000120.7 and SENP3-EIF4A1 in Patients with Acute Respiratory Distress Syndrome Induced by SARS-CoV-2 Infection: A Pilot Study. Microorganisms 2023; 11:2342. [PMID: 37764186 PMCID: PMC10537196 DOI: 10.3390/microorganisms11092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19, a disease caused by the SARS-CoV-2 virus, poses significant threats to the respiratory system and other vital organs. Long non-coding RNAs have emerged as influential epigenetic regulators and promising biomarkers in respiratory ailments. The objective of this study was to identify candidate lncRNAs in SARS-CoV-2-positive individuals compared to SARS-CoV-2-negative individuals and investigate their potential association with ARDS-CoV-2 (acute respiratory distress syndrome). Employing qRT-PCR, we meticulously examined the expression profiles of a panel comprising 84 inflammation-related lncRNAs in individuals presenting upper respiratory infection symptoms, categorizing them into those testing negative or positive for SARS-CoV-2. Notably, first-phase PSD individuals exhibited significantly elevated levels of AC000120.7 and SENP3-EIF4A1. In addition, we measured the expression of two lncRNAs, AC000120.7 and SENP3-EIF4A1, in patients with ARDS unrelated to SARS-CoV-2 (n = 5) and patients with ARDS induced by SARS-CoV-2 (ARDS-CoV-2, n = 10), and interestingly, expression was also higher among patients with ARDS. Intriguingly, our interaction pathway analysis unveiled potential interactions between lncRNA AC000120.7, various microRNAs, and genes associated with inflammation. This study found higher expression levels of lncRNAs AC000120.7 and SENP3-EIF4A1 in the context of infection-positive COVID-19, particularly within the complex landscape of ARDS.
Collapse
Affiliation(s)
- Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, Baja California, Mexico;
- Laboratorio de Biología Celular, Unidad de Ciencias de la Salud Campus Mexicali, Universidad Autónoma de Baja California, Calle de la Claridad S/N, Col. Plutarco Elías Calles, Mexicali 21376, Baja California, Mexico
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca S/N, Fracc. Calafia, Mexicali 21040, Baja California, Mexico;
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| | - Carlos Olvera-Sandoval
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Jesús René Machado-Contreras
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Armando Ruiz-Hernández
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Calle Doctor Márquez 162, Cuauhtémoc, Mexico City 06720, Mexico
| | - Julia Dolores Estrada-Guzmán
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| |
Collapse
|
11
|
Fistera D, Kikull K, Risse J, Herrmann A, Brachmann M, Kill C. Point-of-care PCR testing of SARS-CoV-2 in the emergency department: Influence on workflow and efficiency. PLoS One 2023; 18:e0288906. [PMID: 37535577 PMCID: PMC10399729 DOI: 10.1371/journal.pone.0288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
PROBLEM Regarding transmissible viral diseases such as those caused by SARS-CoV-2 virus, one of the key challenges is isolation management until final diagnosis. This study investigates the influence of SARS-CoV-2 point-of-care (POC) PCR on workflow and efficiency in an emergency department (ED) of a tertiary university hospital. METHOD An analysis of 17,875 ED patients receiving either SARS-CoV-2 POC PCR (rapid PCR, 11,686 patients) or conventional laboratory SARS-CoV-2 PCR (conventional PCR, 6,189 patients) was performed. The pathways for both groups were mapped and compared, and process times from admission to diagnosis were measured. Effects on resource management within the ED were quantified. Direct costs due to isolation, loss of capacities, and revenues were calculated for inpatients. RESULTS The mean time from admission to result was 1.62 h with rapid PCR and 16.08 h with conventional PCR (p < 0.01), reducing the isolation time by 14.46 h. In the first 2 h after testing, test results were available for > 75% of the rapid PCR group and none of the conventional PCR group. Ninety percent of the results were available within 3 h for the rapid PCR and within 21 h for the conventional PCR group. For the conventional PCR group, an increase in direct costs of €35.74 and lost revenues of €421.06 for each inpatient case was detected. CONCLUSION Rapid PCR significantly reduces the time-to-results and time for isolation relative to conventional PCR. Although testing costs for rapid PCR are higher, it benefits workflow, reduces total costs, and frees up ward capacity.
Collapse
Affiliation(s)
- David Fistera
- Center of Emergency Medicine, Essen University Hospital, Essen, Germany
| | | | - Joachim Risse
- Center of Emergency Medicine, Essen University Hospital, Essen, Germany
| | - Anke Herrmann
- Institute for Virology, Essen University Hospital, Essen, Germany
| | | | - Clemens Kill
- Center of Emergency Medicine, Essen University Hospital, Essen, Germany
| |
Collapse
|
12
|
Silaghi-Dumitrescu R, Patrascu I, Lehene M, Bercea I. Comorbidities of COVID-19 Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1393. [PMID: 37629683 PMCID: PMC10456773 DOI: 10.3390/medicina59081393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease outbreak initiated in 2019 (COVID-19) has been shown to affect the health of infected patients in a manner at times dependent on pre-existing comorbidities. Reported here is an overview of the correlation between comorbidities and the exacerbation of the disease in patients with COVID-19, which may lead to poor clinical outcomes or mortality. General medical issues are also reviewed, such as the types of symptoms present in people infected with SARS-CoV-2, the long-term effects of COVID-19 disease, and the types of treatment that are currently used.
Collapse
Affiliation(s)
- Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania (M.L.)
| | - Iulia Patrascu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania (M.L.)
- Bistrita County Emergency Clinical Hospital, 42 General Grigore Bălan, Bld., 420094 Bistrita, Romania
| | - Maria Lehene
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania (M.L.)
| | - Iulia Bercea
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania (M.L.)
| |
Collapse
|
13
|
Piédrola I, Martínez S, Gradillas A, Villaseñor A, Alonso-Herranz V, Sánchez-Vera I, Escudero E, Martín-Antoniano IA, Varona JF, Ruiz A, Castellano JM, Muñoz Ú, Sádaba MC. Deficiency in the production of antibodies to lipids correlates with increased lipid metabolism in severe COVID-19 patients. Front Immunol 2023; 14:1188786. [PMID: 37426663 PMCID: PMC10327431 DOI: 10.3389/fimmu.2023.1188786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Background Antibodies to lipids are part of the first line of defense against microorganisms and regulate the pro/anti-inflammatory balance. Viruses modulate cellular lipid metabolism to enhance their replication, and some of these metabolites are proinflammatory. We hypothesized that antibodies to lipids would play a main role of in the defense against SARS-CoV-2 and thus, they would also avoid the hyperinflammation, a main problem in severe condition patients. Methods Serum samples from COVID-19 patients with mild and severe course, and control group were included. IgG and IgM to different glycerophospholipids and sphingolipids were analyzed using a high-sensitive ELISA developed in our laboratory. A lipidomic approach for studying lipid metabolism was performed using ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Mild and severe COVID-19 patients had higher levels of IgM to glycerophosphocholines than control group. Mild COVID-19 patients showed higher levels of IgM to glycerophosphoinositol, glycerophosphoserine and sulfatides than control group and mild cases. 82.5% of mild COVID-19 patients showed IgM to glycerophosphoinositol or glycerophosphocholines plus sulfatides or glycerophosphoserines. Only 35% of severe cases and 27.5% of control group were positive for IgM to these lipids. Lipidomic analysis identify a total of 196 lipids, including 172 glycerophospholipids and 24 sphingomyelins. Increased levels of lipid subclasses belonging to lysoglycerophospholipids, ether and/or vinyl-ether-linked glycerophospholipids, and sphingomyelins were observed in severe COVID-19 patients, when compared with those of mild cases and control group. Conclusion Antibodies to lipids are essential for defense against SARS-CoV-2. Patients with low levels of anti-lipid antibodies have an elevated inflammatory response mediated by lysoglycerophospholipids. These findings provide novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ignacio Piédrola
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Sara Martínez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Alma Villaseñor
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Vanesa Alonso-Herranz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Isabel Sánchez-Vera
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Esther Escudero
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Isabel A. Martín-Antoniano
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Felipe Varona
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Andrés Ruiz
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Jose María Castellano
- Servicio de Medicina Interna, Hospital Universitario Hospitales de Madrid (HM), Boadilla del Monte, Madrid, Spain
| | - Úrsula Muñoz
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - María C. Sádaba
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
14
|
Fuderer S, Kuttler C, Hoelscher M, Hinske LC, Castelletti N. Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10304-10338. [PMID: 37322934 DOI: 10.3934/mbe.2023452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
COVID-19 has been spreading widely since January 2020, prompting the implementation of non-pharmaceutical interventions and vaccinations to prevent overwhelming the healthcare system. Our study models four waves of the epidemic in Munich over two years using a deterministic, biology-based mathematical model of SEIR type that incorporates both non-pharmaceutical interventions and vaccinations. We analyzed incidence and hospitalization data from Munich hospitals and used a two-step approach to fit the model parameters: first, we modeled incidence without hospitalization, and then we extended the model to include hospitalization compartments using the previous estimates as a starting point. For the first two waves, changes in key parameters, such as contact reduction and increasing vaccinations, were enough to represent the data. For wave three, the introduction of vaccination compartments was essential. In wave four, reducing contacts and increasing vaccinations were critical parameters for controlling infections. The importance of hospitalization data was highlighted, as it should have been included as a crucial parameter from the outset, along with incidence, to avoid miscommunication with the public. The emergence of milder variants like Omicron and a significant proportion of vaccinated people has made this fact even more evident.
Collapse
Affiliation(s)
- Stefanie Fuderer
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Christina Kuttler
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Center for International Health (CIH), University Hospital, Munich, Germany
| | | | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- Institute of Radiation Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
15
|
Muralidharan A, Bauer CD, Katafiasz DM, Strah HM, Siddique A, Reid SP, Bailey KL, Wyatt TA. Synergistic Detrimental Effects of Cigarette Smoke, Alcohol, and SARS-CoV-2 in COPD Bronchial Epithelial Cells. Pathogens 2023; 12:498. [PMID: 36986420 PMCID: PMC10056639 DOI: 10.3390/pathogens12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Lung conditions such as COPD, as well as risk factors such as alcohol misuse and cigarette smoking, can exacerbate COVID-19 disease severity. Synergistically, these risk factors can have a significant impact on immunity against pathogens. Here, we studied the effect of a short exposure to alcohol and/or cigarette smoke extract (CSE) in vitro on acute SARS-CoV-2 infection of ciliated human bronchial epithelial cells (HBECs) collected from healthy and COPD donors. We observed an increase in viral titer in CSE- or alcohol-treated COPD HBECs compared to untreated COPD HBECs. Furthermore, we treated healthy HBECs accompanied by enhanced lactate dehydrogenase activity, indicating exacerbated injury. Finally, IL-8 secretion was elevated due to the synergistic damage mediated by alcohol, CSE, and SARS-CoV-2 in COPD HBECs. Together, our data suggest that, with pre-existing COPD, short exposure to alcohol or CSE is sufficient to exacerbate SARS-CoV-2 infection and associated injury, impairing lung defences.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of Medicine, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D. Bauer
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dawn M. Katafiasz
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heather M. Strah
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aleem Siddique
- Department of Surgery, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of Medicine, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kristina L. Bailey
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Todd A. Wyatt
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, College of Medicine, the University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Marascio N, Cilburunoglu M, Torun EG, Centofanti F, Mataj E, Equestre M, Bruni R, Quirino A, Matera G, Ciccaglione AR, Yalcinkaya KT. Molecular Characterization and Cluster Analysis of SARS-CoV-2 Viral Isolates in Kahramanmaraş City, Turkey: The Delta VOC Wave within One Month. Viruses 2023; 15:v15030802. [PMID: 36992510 PMCID: PMC10054778 DOI: 10.3390/v15030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 pandemic has seriously affected the population in Turkey. Since the beginning, phylogenetic analysis has been necessary to monitor public health measures against COVID-19 disease. In any case, the analysis of spike (S) and nucleocapsid (N) gene mutations was crucial in determining their potential impact on viral spread. We screened S and N regions to detect usual and unusual substitutions, whilst also investigating the clusters among a patient cohort resident in Kahramanmaraş city, in a restricted time span. Sequences were obtained by Sanger methods and genotyped by the PANGO Lineage tool. Amino acid substitutions were annotated comparing newly generated sequences to the NC_045512.2 reference sequence. Clusters were defined using phylogenetic analysis with a 70% cut-off. All sequences were classified as Delta. Eight isolates carried unusual mutations on the S protein, some of them located in the S2 key domain. One isolate displayed the unusual L139S on the N protein, while few isolates carried the T24I and A359S N substitutions able to destabilize the protein. Phylogeny identified nine monophyletic clusters. This study provided additional information about SARS-CoV-2 epidemiology in Turkey, suggesting local transmission of infection in the city by several transmission routes, and highlighting the necessity to improve the power of sequencing worldwide.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Merve Cilburunoglu
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Elif Gulsum Torun
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Federica Centofanti
- Department of Applied Clinical Sciences and Biotechnology, University of Aquila, 67100 L'Aquila, Italy
| | - Elida Mataj
- Instituti i Shendetit Publik (ISHP), 1000 Tirana, Albania
| | - Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Angela Quirino
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | | | - Kezban Tulay Yalcinkaya
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| |
Collapse
|
17
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Urra JM, Gortázar C, de la Fuente J. Serum biomarkers for nutritional status as predictors in COVID-19 patients before and after vaccination. J Funct Foods 2023; 101:105412. [PMID: 36644001 PMCID: PMC9829648 DOI: 10.1016/j.jff.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to characterize serum protein biomarkers for nutritional status that may be used as predictors for disease symptomatology in COVID-19 patients before and after vaccination. In pre-vaccine cohorts, proteomics analysis revealed significant differences between groups, with serum proteins alpha-1-acid glycoproteins (AGPs) 1 and 2, C-reactive protein (CRP) and retinol binding protein (RBP) increasing with COVID-19 severity, in contrast with serum albumin, transthyretin (TTR) and serotransferrin (TF) reduction as the symptomatology increased. Immunoassay reproduced and validated proteomics results of serum proteins albumin and RBP. In post-vaccine cohorts, the results showed the same pattern as in pre-vaccine cohorts for serum proteins AGPs, CRP, albumin and TTR. However, TF levels were similar between groups and RBP presented a slight reduction as COVID-19 symptomatology increased. In these cohorts, immunoassay validated proteomics results of serum proteins albumin, TTR and TF. Additionally, immune response to α-Gal in pre-vaccine cohorts varied in predominant immunoglobulin type profile, while post-vaccine groups presented mainly anti-α-Gal protective IgG antibodies. The study identified serum nutritional biomarkers that could potentially predict an accurate prognostic of COVID-19 disease to provide an appropriate nutritional care and guidance in non-vaccinated and vaccinated individuals against SARS-CoV-2. These results highlight the importance of designing personalized nutrition protocols to improve diet along with the application of prebiotics or probiotics for the control of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Margarita Villar
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Miguel Urra
- Immunology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain,Medicine School, Universidad de Castilla la Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Christian Gortázar
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - José de la Fuente
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA,Corresponding author at: SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| |
Collapse
|
18
|
Piqué B, Peña K, Riu F, Acosta JC, Torres-Royo L, Malave B, Araguas P, Benavides R, de Febrer G, Camps J, Joven J, Arenas M, Parada D. SARS-CoV-2 Serum Viral Load and Prognostic Markers Proposal for COVID-19 Pneumonia in Low-Dose Radiation Therapy Treated Patients. J Clin Med 2023; 12:jcm12030798. [PMID: 36769445 PMCID: PMC9918037 DOI: 10.3390/jcm12030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Several studies have shown that the plasma RNA of SARS-CoV-2 seems to be associated with a worse prognosis of COVID-19. In the present study, we investigated plasma RNA in COVID-19 patients treated with low-dose radiotherapy to determine its prognostic value. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 46 patients with COVID-19 pneumonia treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as laboratory variables, and SARS-CoV-2 serum viral load, were analyzed before LDRT, at 24 h, and one week after treatment. The mean age of the patients was 85 years, and none received any of the SARS-CoV-2 vaccine doses. The mortality ratio during the course of treatment was 33%. RT-qPCR showed amplification in 23 patients. Higher mortality rate was associated with detectable viremia. Additionally, C-reactive protein, lactate dehydrogenase, and aspartate aminotransferase were significant risk factors associated with COVID-19 mortality. Our present findings show that detectable SARS-CoV-2 plasma viremia 24 h before LDRT is significantly associated with increased mortality rates post-treatment, thus downsizing the treatment success.
Collapse
Affiliation(s)
- Berta Piqué
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Karla Peña
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Francesc Riu
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Johana C. Acosta
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Laura Torres-Royo
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Barbara Malave
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Pablo Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Rocío Benavides
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Gabriel de Febrer
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
- Correspondence: (M.A.); (D.P.)
| | - David Parada
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitàri Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain
- Correspondence: (M.A.); (D.P.)
| |
Collapse
|
19
|
Hajimoradi M, Sharif Kashani B, Dastan F, Aghdasi S, Abedini A, Naghashzadeh F, Mohamadifar A, Keshmiri MS, Noorali S, Lookzadeh S, Alizadeh N, Siri MA, Tavasolpanahi M, Abdolmohammadi Y, Shafaghi M, Rouhani ZS, Shafaghi S. Remdesivir associated sinus bradycardia in patients with COVID-19: A prospective longitudinal study. Front Pharmacol 2023; 13:1107198. [PMID: 36733376 PMCID: PMC9888491 DOI: 10.3389/fphar.2022.1107198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Remdesivir is effective against SARS-Cov-2 with little evidence of its adverse effect on the cardiac system. The aim of the present study is investigating the incidence of bradycardia in COVID-19 patients treated with Remdesivir. Methods: This prospective longitudinal study was conducted in a tertiary center on COVID-19 patients for Remdesivir therapy. The objectives were to investigate the incidence of sinus bradycardia, and also the association between their demographics, underlying diseases, and the disease severity with developing bradycardia in COVID-19 patients treated with Remdesivir. Results: Of 177 patients, 44% were male. The mean (±standard deviation) age of patients was 49.79 ± 15.16 years old. Also, 33% were hospitalized due to more severe symptoms. Oxygen support was required for all hospitalized subjects. A total of 40% of the patients had comorbidities, with the most common comorbidity being hypertension. The overall incidence of bradycardia (heart rate<60 bpm) in patients receiving Remdesivir was 27%, of whom 70% had extreme bradycardia (heart rate <50 bpm). There was also a statistically significant reduction in heart rate after five doses of Remdesivir compared to the baseline heart rates. In the multivariable model, none of the covariates including age above 60 years, female sex, CRP>50 mg/L, O2 saturation<90%, underlying cardiovascular disease, hypertension and diabetes mellitus, and beta-blockers were associated with Remdesivir-induced bradycardia. No association was found between the COVID-19 severity indicators and bradycardia. Conclusion: As sinus bradycardia is a prevalent adverse cardiac effect of Remdesivir, it is recommended that all COVID-19 patients receiving Remdesivir, be evaluated for heart rate based on examination; and in the case of bradyarrhythmia, cardiac monitoring should be performed during administration to prevent adverse drug reactions.
Collapse
Affiliation(s)
- Maryam Hajimoradi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Sharif Kashani
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Aghdasi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Naghashzadeh
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Mohamadifar
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Keshmiri
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Noorali
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Alizadeh
- Department of Biostatistics, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Siri
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Tavasolpanahi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Abdolmohammadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Shafaghi
- Strategic Planning and Executive Office Manager of International Federation of Inventors' Associations-IFIA, Geneva, Switzerland
| | - Zahra Sadat Rouhani
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Shafaghi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shadi Shafaghi,
| |
Collapse
|
20
|
Majeed AY, Zulkafli NES, Ad'hiah AH. Interleukin-22 and interleukin-33 show up-regulated levels in the serum of patients with mild/moderate Coronavirus disease 2019. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:24. [PMID: 36875710 PMCID: PMC9968467 DOI: 10.1186/s43088-023-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Background This study analyzed serum concentrations of interleukin (IL)-22 and IL-33 (pro-inflammatory and anti-inflammatory cytokines) in 90 patients with mild/moderate coronavirus disease 2019 (COVID-19) and 90 healthy controls. Enzyme-linked immunosorbent assay kits were used to measure IL-22 and IL-33 concentrations. Results Median (interquartile range) concentrations of IL-22 and IL-33 were significantly higher in patients than in controls (IL-22: 18.6 [18.0-19.3] vs. 13.9 [12.1-14.9] pg/mL, probability [p] < 0.001; IL-33: 37.8 [35.3-43.0] vs. 24.1 [23.0-26.2] pg/mL, p < 0.001). As indicated by the area under the curve (AUC), IL-22 and IL-33 were excellent predictors of COVID-19 (AUC = 0.95 and 0.892, respectively). Multinomial logistic regression analysis demonstrated that individuals with high production (> control median) of IL-22 (odds ratio = 17.80 [95% CI: 6.48-48.90]; p = 0.001) and IL-33 (odds ratio = 19.0 [95% CI: 7.4-48.6]; p = 0.001) were more likely to develop COVID-19. A positive correlation was found between IL-22 and IL-33 and both cytokines also showed positive correlations with granulocyte-to-lymphocyte ratio and erythrocyte sedimentation rate in all participants. Conclusions IL-22 and IL-33 showed up-regulated concentrations in the serum of patients with mild/moderate COVID-19. Both cytokines may have prognostic value for COVID-19 along with their association with disease risk.
Collapse
Affiliation(s)
- Abdulraheem Y Majeed
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Penang, Malaysia
| | - Nor Effa S Zulkafli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Penang, Malaysia
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Al-Karrada, 10070 Baghdad, Iraq
| |
Collapse
|
21
|
Muralidharan A, Bauer C, Katafiasz DM, Pham D, Oyewole OO, Morwitzer MJ, Roy E, Bailey KL, Reid SP, Wyatt TA. Malondialdehyde acetaldehyde adduction of surfactant protein D attenuates SARS-CoV-2 spike protein binding and virus neutralization. Alcohol Clin Exp Res 2023; 47:95-103. [PMID: 36352814 PMCID: PMC9878066 DOI: 10.1111/acer.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher Bauer
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Danielle Pham
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Opeoluwa O. Oyewole
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - M. Jane Morwitzer
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Enakshi Roy
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kristina L. Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Environmental, Agricultural and Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
22
|
Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Mohaini MA, Alsalman AJ, Tuli HS, Chakraborty C, Harapan H. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023; 16:4-14. [PMID: 36446204 PMCID: PMC9675435 DOI: 10.1016/j.jiph.2022.11.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861, Indonesia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190006, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, India
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Microbiology, NYU Grossman School of Medicine, New York 10016, USA
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Biology Education Department, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Ar-Raniry, Jl. Syeikh Abdur Rauf, Kopelma Darussalaml, Banda Aceh 23111, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa 31982, Saudi Arabia; King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
23
|
AlHilali S, Al-Swailem SA, Albdaya N, Mousa A, Khandekar R. Impact and Determinants of COVID-19 Pandemic on the Cataract Surgery Rate at a Tertiary Referral Center. Risk Manag Healthc Policy 2022; 15:2335-2342. [PMID: 36531203 PMCID: PMC9747840 DOI: 10.2147/rmhp.s384456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/28/2022] [Indexed: 06/24/2024] Open
Abstract
PURPOSE Preventive measures to mitigate the spread of coronavirus, minimized workload on health-care systems and redirected resources to COVID-19 patients resulting in a reduction of elective procedures such as cataract surgery. We report the changes in monthly cataract surgery rate and its associated determinants at a tertiary eye hospital during different periods of the pandemic. Studying the impact of COVID-19 pandemic on cataract surgery rate will help health-care policymakers to better understand the barriers to overcome the expected surgical backlog. METHODS A retrospective review of medical records was performed for cataract surgeries from November 2018 to January 2022, five thousand and ninety-two eyes that underwent cataract surgery during different phases of the COVID-19 pandemic were included. The monthly cataract surgery rate (MCSR) was calculated and compared before (Phase 1), during (Phase 2) and after the COVID-19 pandemic (Phase 3 and 4). Changes in monthly cataract surgery rate during and after the pandemic were presented as ratios and compared pre- to post-pandemic levels to evaluate the impact of different determinants. RESULTS Of 9701 cataract patients, 5092 (52.5%) were operated in P1, 71 (0.73%) in P2, 116 (1.2%) in P3 and 4422 (45.6%) in P4. The MCSR varied significantly based on the degree of visual impairment in the operated and fellow eyes, and by the type of operating surgeon (P < 0.05). Age, gender, laterality, and place of residence were not significantly different throughout the study period. During phase 1135 (2.6%) eyes had rupture of the posterior capsule (PCR), while 6 eyes (8.4%) had PCR in phase 2. CONCLUSION The monthly cataract surgery rate declined during the pandemic and has not recovered to pre-pandemic levels. This should alert the key stakeholders to address the identified barriers to surpassing the baseline monthly surgical rate as this is crucial to eliminate the surgical backlog after the pandemic.
Collapse
Affiliation(s)
- Sara AlHilali
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Samar A Al-Swailem
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Norah Albdaya
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Ahmed Mousa
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rajiv Khandekar
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Van Delen M, Janssens I, Dams A, Roosens L, Ogunjimi B, Berneman ZN, Derdelinckx J, Cools N. Tolerogenic Dendritic Cells Induce Apoptosis-Independent T Cell Hyporesponsiveness of SARS-CoV-2-Specific T Cells in an Antigen-Specific Manner. Int J Mol Sci 2022; 23:15201. [PMID: 36499533 PMCID: PMC9740551 DOI: 10.3390/ijms232315201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.
Collapse
Affiliation(s)
- Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Amber Dams
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Laurence Roosens
- Laboratory of Clinical Biology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Benson Ogunjimi
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, 2650 Edegem, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), VAXINFECTIO, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
25
|
Kabbara A, Vialet B, Marquevielle J, Bonnafous P, Mackereth CD, Amrane S. RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses. Front Chem 2022; 10:1014663. [PMID: 36479439 PMCID: PMC9719988 DOI: 10.3389/fchem.2022.1014663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2023] Open
Abstract
COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir Amrane
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, Bordeaux, France
| |
Collapse
|
26
|
Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines (Basel) 2022; 10:vaccines10111805. [DOI: 10.3390/vaccines10111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The current century has witnessed infections of pandemic proportions caused by Coronaviruses (CoV) including severe acute respiratory syndrome-related CoV (SARS-CoV), Middle East respiratory syndrome-related CoV (MERS-CoV) and the recently identified SARS-CoV2. Significantly, the SARS-CoV2 outbreak, declared a pandemic in early 2020, has wreaked devastation and imposed intense pressure on medical establishments world-wide in a short time period by spreading at a rapid pace, resulting in high morbidity and mortality. Therefore, there is a compelling need to combat and contain the CoV infections. The current review addresses the unique features of the molecular virology of major Coronaviruses that may be tractable towards antiviral targeting and design of novel preventative and therapeutic intervention strategies. Plant-derived vaccines, in particular oral vaccines, afford safer, effectual and low-cost avenues to develop antivirals and fast response vaccines, requiring minimal infrastructure and trained personnel for vaccine administration in developing countries. This review article discusses recent developments in the generation of plant-based vaccines, therapeutic/drug molecules, monoclonal antibodies and phytochemicals to preclude and combat infections caused by SARS-CoV, MERS-CoV and SARS-CoV-2 viruses. Efficacious plant-derived antivirals could contribute significantly to combating emerging and re-emerging pathogenic CoV infections and help stem the tide of any future pandemics.
Collapse
|
27
|
Wittek M, Kiefer A, Voß H, Wiloth S. Versorgung pflegender Angehöriger von Menschen mit Demenz in der Kommune während der Pandemie. Pflege 2022; 36:129-138. [DOI: 10.1024/1012-5302/a000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Zusammenfassung. Hintergrund: Die Verfügbarkeit von Unterstützungsangeboten für pflegende Angehörige von Menschen mit Demenz in der Kommune weist durch die Corona-Pandemie Defizite auf und birgt somit eine veränderte Versorgung der Pflegenden. Fragestellung: Es stellen sich die Fragen, welche Veränderungen der Versorgung pflegender Angehöriger von Menschen mit Demenz Pflegende wahrnehmen, wie Akteur_innen aus der Kommune diese Versorgungssituation während der Pandemie erleben und inwiefern die Wahrnehmung der Gruppen übereinstimmt bzw. sich unterscheidet. Methode: Die Datengrundlage bilden Rathausgespräche und Fokusgruppen aus 13 Kommunen Deutschlands. Hieran nahmen pflegende Angehörige von Menschen mit Demenz sowie Akteur_innen aus der Kommune teil. Die Datenanalyse erfolgte mittels qualitativer Inhaltsanalyse. Ergebnis: Nachteilige Veränderungen der Versorgung Pflegender zeigen sich z.B. durch den Wegfall von Betreuungsangeboten oder Angehörigengruppen. V.a. Akteur_innen nehmen vorteilhafte Veränderungen wahr, wie eine voranschreitende Digitalisierung oder verstärkte Nachbarschaftshilfe. Die Wahrnehmung der Veränderungen der Versorgungssituation unterscheidet sich in mehreren Subkategorien zwischen Pflegenden und Akteur_innen. Schlussfolgerung: Obwohl durch die Pandemie große Versorgungslücken entstanden sind, ergeben sich durch aufkommende Herausforderungen neue Möglichkeiten der Unterstützung wie digitale Angehörigengruppen. Zukünftig müssen Möglichkeiten geschaffen werden, um bereits entwickelte Interventionen so zu implementieren, dass die Zielgruppe diese in Anspruch nehmen kann.
Collapse
Affiliation(s)
- Maren Wittek
- Institut für Gerontologie, Universität Heidelberg, Deutschland
| | - Anna Kiefer
- Institut für Gerontologie, Universität Heidelberg, Deutschland
| | - Henrike Voß
- Institut für Gerontologie, Universität Heidelberg, Deutschland
| | - Stefanie Wiloth
- Institut für Gerontologie, Universität Heidelberg, Deutschland
| |
Collapse
|
28
|
Park SW. A reflection on health and disease amid COVID-19 pandemic. J Eval Clin Pract 2022; 28:711-716. [PMID: 35262996 PMCID: PMC9114899 DOI: 10.1111/jep.13673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Coronavirus disease 2019 pandemic is persisting for more than a year and it's still far from being controlled. It is making a big impact not only on physical illness but also on mental and social aspects. In this situation, we need to reflect on current medical society's view of disease and health. The dominant paradigm in contemporary medicine is the reductionist view of disease and the biomedical model of health. As a result, the healthcare system seems to be more focused on virus eradication than on patient care. We need to look back on this position in view of humanities and ethics and broaden our perspective to an ecological view of disease and the sociomedical model of health. The quarantine and health care policy also needs to be re-built with more focus on patient care.
Collapse
Affiliation(s)
- Si-Woon Park
- Department of Rehabilitation Medicine, International St. Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| |
Collapse
|
29
|
Ahmad I, Abdullah S, Ahmed A. IoT-fog-based healthcare 4.0 system using blockchain technology. THE JOURNAL OF SUPERCOMPUTING 2022; 79:3999-4020. [PMID: 36157083 PMCID: PMC9483278 DOI: 10.1007/s11227-022-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Real-time tracking and surveillance of patients' health has become ubiquitous in the healthcare sector as a result of the development of fog, cloud computing, and Internet of Things (IoT) technologies. Medical IoT (MIoT) equipment often transfers health data to a pharmaceutical data center, where it is saved, evaluated, and made available to relevant stakeholders or users. Fog layers have been utilized to increase the scalability and flexibility of IoT-based healthcare services, by providing quick response times and low latency. Our proposed solution focuses on an electronic healthcare system that manages both critical and non-critical patients simultaneously. Fog layer is distributed into two halves: critical fog cluster and non-critical fog cluster. Critical patients are handled at critical fog clusters for quick response, while non-critical patients are handled using blockchain technology at non-critical fog cluster, which protects the privacy of patient health records. The suggested solution requires little modification to the current IoT ecosystem while decrease the response time for critical messages and offloading the cloud infrastructure. Reduced storage requirements for cloud data centers benefit users in addition to saving money on construction and operating expenses. In addition, we examined the proposed work for recall, accuracy, precision, and F-score. The results show that the suggested approach is successful in protecting privacy while retaining standard network settings. Moreover, suggested system and benchmark are evaluated in terms of system response time, drop rate, throughput, fog, and cloud utilization. Evaluated results clearly indicate the performance of proposed system is better than benchmark.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Computer Science and IT, The Islamia University of Bahawalpur, Punjab, 63100 Pakistan
| | - Saima Abdullah
- Department of Computer Science and IT, The Islamia University of Bahawalpur, Punjab, 63100 Pakistan
| | - Adeel Ahmed
- Department of Computer Science and IT, The Islamia University of Bahawalpur, Punjab, 63100 Pakistan
| |
Collapse
|
30
|
Piretto E, Selvaggio G, Bragantini D, Domenici E, Marchetti L. A novel logical model of COVID-19 intracellular infection to support therapies development. PLoS Comput Biol 2022; 18:e1010443. [PMID: 36037223 PMCID: PMC9462742 DOI: 10.1371/journal.pcbi.1010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/09/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
In this paper, a logical-based mathematical model of the cellular pathways involved in the COVID-19 infection has been developed to study various drug treatments (single or in combination), in different illness scenarios, providing insights into their mechanisms of action. Drug simulations suggest that the effects of single drugs are limited, or depending on the scenario counterproductive, whereas better results appear combining different treatments. Specifically, the combination of the anti-inflammatory Baricitinib and the anti-viral Remdesivir showed significant benefits while a stronger efficacy emerged from the triple combination of Baricitinib, Remdesivir, and the corticosteroid Dexamethasone. Together with a sensitivity analysis, we performed an analysis of the mechanisms of the drugs to reveal their impact on molecular pathways. The paper introduces a logical-based mathematical model of the cellular pathways involved in the COVID-19 infection. The aim of the model is to study, in a qualitative but comprehensive way, the cellular mechanisms developed during the virus infection with the principal focus on drug treatments. The model is able to reproduce various illness scenarios: from the early infection stages to the late illness stages characterized by strong immune reaction usually evolving in the so-called cytokine storm. Different drug effects have been tested singularly and in combination treatments. Computational sensitivity analysis was performed on the model along with the analysis of the mechanisms of the drugs to reveal their impact on molecular pathways. The results show that the effect of single drugs may be limited or counterproductive, depending on the illness stage. The highest predicted efficacy is obtained by combining three different treatments: the anti-inflammatory Baricitinib, the anti-viral Remdesivir and the corticosteroid Dexamethasone. This triple combination therapy has been analyzed not only in terms of global cellular effect but also in function of the involved internal pathways, suggesting the rational mechanisms for its successfulness.
Collapse
Affiliation(s)
| | - Gianluca Selvaggio
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
| | - Damiano Bragantini
- Infectious Diseases Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Enrico Domenici
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Luca Marchetti
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
- * E-mail: ;
| |
Collapse
|
31
|
Long MD, Weaver KN, Zhang X, Chun K, Kappelman MD. Strong Response to SARS-CoV-2 Vaccine Additional Doses Among Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2022; 20:1881-1883.e1. [PMID: 35150924 PMCID: PMC8826602 DOI: 10.1016/j.cgh.2022.01.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has disrupted health care and has resulted in high mortality rates.1 Vaccination is an international priority to mitigate the risks of SARS-CoV-2. The initial trials for development of SARS-CoV-2 vaccines excluded individuals with immunocompromising conditions.2.
Collapse
Affiliation(s)
- Millie D. Long
- Reprint requests Address requests for reprints to: Millie D. Long, MD, MPH, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Campus Box #7080, Chapel Hill, North Carolina 27599-7080. fax: (919) 843-6899
| | - K N Weaver
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - X Zhang
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - K Chun
- Esoterix Specialty Laboratory, LabCorp, Calabasas, CA
| | - M D Kappelman
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
32
|
SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life. Biomedicines 2022; 10:biomedicines10081775. [PMID: 35892675 PMCID: PMC9331824 DOI: 10.3390/biomedicines10081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction.
Collapse
|
33
|
Ngwe Tun MM, Luvai E, Nwe KM, Toume K, Mizukami S, Hirayama K, Komatsu K, Morita K. Anti-SARS-CoV-2 activity of various PET-bottled Japanese green teas and tea compounds in vitro. Arch Virol 2022; 167:1547-1557. [PMID: 35606466 PMCID: PMC9126694 DOI: 10.1007/s00705-022-05483-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to global public health. The emergence of SARS-CoV-2 variants is a significant concern regarding the continued effectiveness of vaccines and antiviral therapeutics. Thus, natural products such as foods, drinks, and other compounds should be investigated for their potential to treat COVID-19. Here, we examined the in vitro antiviral activity against SARS-CoV-2 of various polyethylene terephthalate (PET)-bottled green Japanese teas and tea compounds. Six types of PET-bottled green tea were shown to inhibit SARS-CoV-2 at half-maximal inhibitory concentrations (IC50) of 121- to 323-fold dilution. Our study revealed for the first time that a variety of PET-bottled Japanese green tea drinks inhibit SARS-CoV-2 infection in a dilution-dependent manner. The tea compounds epigallocatechin gallate (EGCG) and epicatechin gallate showed virucidal activity against SARS-CoV-2, with IC50 values of 6.5 and 12.5 µM, respectively. The investigated teas and tea compounds inactivated SARS-CoV-2 in a dose-dependent manner, as demonstrated by the viral RNA levels and infectious titers. Furthermore, the green teas and EGCG showed significant inhibition at the entry and post-entry stages of the viral life cycle and inhibited the activity of the SARS-CoV-2 3CL-protease. These findings indicate that green tea drinks and tea compounds are potentially useful in prophylaxis and COVID-19 treatment.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan.
| | - Elizabeth Luvai
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan.
| |
Collapse
|
34
|
The Possible Impact of COVID-19 on Respiratory Muscles Structure and Functions: A Literature Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of SARS-CoV-2 infection on respiratory muscle functions is an important area of recent enquiry. COVID-19 has effects on the respiratory muscles. The diaphragm muscle is perturbed indirectly due to the mechanical-ventilation-induced-disuse, but also by direct mechanisms linked with SARS-CoV-2 viral infection. In this sense, a deeper understanding of the possible links between COVID-19 and alterations in structure and functions of the respiratory muscles may increase the success rate of preventive and supportive strategies. Ultrasound imaging alongside respiratory muscle strength tests and pulmonary function assessment are valid approaches to the screening and monitoring of disease, for mild to severe patients. The aim of the present review is to highlight the current literature regarding the links between COVID-19 and respiratory muscle functions. We examine from the pathophysiological aspects of disease, up to approaches taken to monitor and rehabilitate diseased muscle. We hope this work will add to a greater understanding of the pathophysiology and disease management of respiratory muscle pathology subsequent to SARS-CoV-2 infection.
Collapse
|
35
|
Histopathological and molecular links of COVID-19 with novel clinical manifestations for the management of coronavirus-like complications. Inflammopharmacology 2022; 30:1219-1257. [PMID: 35637319 PMCID: PMC9150634 DOI: 10.1007/s10787-022-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) causes transmissible viral illness of the respiratory tract prompted by the SARS-CoV-2 virus. COVID-19 is one of the worst global pandemics affecting a large population worldwide and causing catastrophic loss of life. Patients having pre-existing chronic disorders are more susceptible to contracting this viral infection. This pandemic virus is known to cause notable respiratory pathology. Besides, it can also cause extra-pulmonary manifestations. Multiple extra-pulmonary tissues express the SARS-CoV-2 entry receptor, hence causing direct viral tissue damage. This insightful review gives a brief description of the impact of coronavirus on the pulmonary system, extra-pulmonary systems, histopathology, multiorgan consequences, the possible mechanisms associated with the disease, and various potential therapeutic approaches to tackle the manifestations.
Collapse
|
36
|
Silva BRO, Rodrigues WF, Abadia DGP, Alves da Silva DA, Andrade e Silva LE, Desidério CS, Farnesi-de-Assunção TS, Costa-Madeira JC, Barbosa RM, Bernardes e Borges AV, Hortolani Cunha ACC, Pereira LQ, Helmo FR, Lemes MR, Barbosa LM, Trevisan RO, Obata MMS, Bueno GF, Mundim FV, Oliveira-Scussel ACM, Monteiro IB, Ferreira YM, Machado GH, Ferreira-Paim K, Moraes-Souza H, da Silva MV, Rodrigues Júnior V, Oliveira CJF. Clinical-Epidemiology Aspect of Inpatients With Moderate or Severe COVID-19 in a Brazilian Macroregion: Disease and Countermeasures. Front Cell Infect Microbiol 2022; 12:899702. [PMID: 35669120 PMCID: PMC9164138 DOI: 10.3389/fcimb.2022.899702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19, also known as coronavirus disease 2019, is an infectious viral disease caused by SARS-CoV-2, a novel coronavirus. Since its emergence, its epidemiology has been explored; however, for some regions of the world, COVID-19's behavior, incidence, and impact remain unclear. In continental nations like Brazil, this lack of knowledge results in nonuniform control, prevention, and treatment measures, which can be controversial in some locations. This study aimed to describe the epidemiological profile of patients with COVID-19 in the macroregion of Triângulo Sul in the state of Minas Gerais (MG), Brazil. Between March 25 and October 21, 2020, data were collected and statistically analyzed from 395 hospitalized patients in the city of Uberaba, MG, suspected to have moderate or severe forms of the disease. Of the 395 suspected cases, 82% were confirmed to be positive for COVID-19. The mean age of positive patients was 58.4 years, and 60.76% were male. Following these patients throughout their hospitalization, a mortality rate of 31.3% was observed. In the population positive for COVID-19, the risk of death increased by 4% for each year of the patient's age. Likewise, the older the patient, the longer their hospitalization and the higher the risk of developing acute respiratory failure. Among the treatments tested in patients, heparin was associated with protection against mortality, and the absence of anticoagulant use was linked to a more than six times greater risk of death. Finally, comorbidities in patients with COVID-19 were positively correlated with increased hospitalization time. In summary, this study revealed that age, presence of comorbidities, length of hospitalization, and drug treatment considerably altered COVID-19's lethality. To understand infection rates and the factors involved in COVID-19's lethality, knowledge of the local epidemiology is necessary.
Collapse
Affiliation(s)
| | | | - Daniela Gomes Pires Abadia
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Djalma A. Alves da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Leonardo E. Andrade e Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Chamberttan S. Desidério
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Juliana C. Costa-Madeira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rafaela M. Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Anna V. Bernardes e Borges
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Loren Q. Pereira
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba - Hemominas Foundation, Uberaba, Brazil
| | - Fernanda R. Helmo
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Laís M. Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rafael O. Trevisan
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Malu Mateus Santos Obata
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Giovanna F. Bueno
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Fabiano V. Mundim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Ivan B. Monteiro
- UNIMED São Domingos Hospital, Uberaba, MG, Brazil. José Alencar Gomes da Silva Regional Hospital, Uberaba, Brazil
- José Alencar Gomes da Silva Regional Hospital, Uberaba, Brazil
| | | | | | - Kennio Ferreira-Paim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Hélio Moraes-Souza
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba - Hemominas Foundation, Uberaba, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
37
|
Fitriawan AS, Achmad BF, Kurniawan D, Kafil RF, Natalia L, Setyaningsih WAW. Association between Online Learning Predictors and Psychological Distress among Nursing Students during the COVID-19 Pandemic. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The global coronavirus disease-2019 pandemic has forced nursing schools in Indonesia to implement online learning. The association between online learning variables and psychological distress among nursing students is not fully understood.
AIM: This study aimed to assess psychological distress among nursing students and the association between online learning variables and psychological distress.
MATERIALS AND METHODS: A cross-sectional study was conducted from November 2020 to February 2021. Six hundred and thirty-five nursing students from four universities in Indonesia participated in this study and were recruited through a consecutive sampling method. The measurement of psychological distress used the 10-item Kessler Psychological Distress Scale. Ordinal logistic regression was used to analyze the association between online learning predictors and psychological distress.
RESULTS: Most of the respondents had severe psychological distress (n = 194; 30.6%). Older age was found to act as a protective factor against psychological distress (adjusted odds ratio [aOR] = –0.159, p = 0.035; 95% confidence interval [CI]: (–0.307)–(–0.011)). Contrarily, not living at their own home during lockdown (aOR = 1.019, p = 0.001; 95% CI: 0.657–1.382), always feeling that online learning is expensive (aOR = 1.387, p = 0.001; 95% CI: 0.645–2.130), always experienced poor Internet connection during online learning (aOR = 3.380, p = 0.001; 95% CI: 1.935–4.826), and having no motivation toward online learning (aOR = 3.154, p = 0.001; 95% CI: 2.372–3.936) acted as risk factors for having psychological distress.
CONCLUSION: Cost and Internet access barriers as well as low motivation during the abrupt shift to implementation of online learning in the current pandemic situation acted as risk factors for psychological distress among nursing students.
Collapse
|
38
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
39
|
Factors Affecting Initial Humoral Immune Response to SARS-CoV-2 Vaccines Among Patients With Inflammatory Bowel Diseases. Am J Gastroenterol 2022; 117:462-469. [PMID: 35029167 DOI: 10.14309/ajg.0000000000001619] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Although an additional coronavirus disease 2019 vaccine dose for immunocompromised persons has been recommended in some countries, further data to guide vaccination strategies for patients with inflammatory bowel disease (IBD) are urgently needed. We sought to identify factors affecting initial humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines among patients with IBD. METHODS In this prospective cohort of SARS-CoV-2 immunized patients with IBD, we evaluated associations between participant age, sex, vaccine type, medication use, and the presence of a detectable antireceptor binding domain antibody and quantitative antibody level. RESULTS In total, 1,909 participants were included (1,123, 692, and 94 received BNT162b2, mRNA-1273, and Ad26.COV2.S, respectively) of whom 96% achieved a positive antibody response. On multivariable analysis, factors associated with lack of antibody response were older age (P = 0.043), BNT162b2 vs mRNA-1273 (odds ratio [OR] 2.1, 95% confidence interval [CI] 1.0-3.9), and combination therapy with anti-TNF and 6MP, azathioprine, or methotrexate (OR 4.2, 95% CI 2.4-7.3). The use of 5-aminosalicylate or sulfasalazine (OR 0.3, 95% CI 0.1-0.8) and ustekinumab (OR 0.2, 95% CI 0.05-0.8) was associated with decreased odds of lacking antibody response. DISCUSSION Most patients with IBD mount an initial response to SARS-CoV-2 vaccination; however, older patients and those treated with anti-TNF and immunomodulator have blunted responses and may benefit the most from an additional vaccine dose. Patients treated with other classes of immunosuppressive medications have more robust initial immune responses to vaccination. These data should inform key decisions about patient selection for additional coronavirus disease 2019 vaccine doses in patients with IBD.
Collapse
|
40
|
Silva LM, Riani LR, Silvério MS, Pereira-Júnior ODS, Pittella F. Comparison of Rapid Nucleic Acid Extraction Methods for SARS-CoV-2 Detection by RT-qPCR. Diagnostics (Basel) 2022; 12:diagnostics12030601. [PMID: 35328154 PMCID: PMC8946922 DOI: 10.3390/diagnostics12030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Since 2020, humanity has been facing the COVID-19 pandemic, a respiratory disease caused by the SARS-CoV-2. The world’s response to pandemic went through the development of diagnostics, vaccines and medicines. Regarding diagnostics, an enormous challenge was faced due to shortage of materials to collect and process the samples, and to perform reliable mass diagnosis by RT-qPCR. In particular, time-consuming and high cost of nucleic acid extraction procedures have hampered the diagnosis; moreover, several steps in the routine for the preparation of the material makes the extracted sample susceptible to contamination. Here two rapid nucleic acid extraction reagents were compared as extraction procedures for SARS-CoV-2 detection in clinical samples by singleplex and multiplex RT-qPCR analysis, using different transport media, samples with high and low viral load, and different PCR machines. As observed, rapid nucleic acid extraction procedures can be applied for reliable diagnosis using a TaqMan-based assay, over multiple platforms. Ultimately, prompt RNA extraction may reduce costs with reagents and plastics, the chances of contamination, and the overall time to diagnosis by RT-qPCR.
Collapse
|
41
|
Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell Mol Life Sci 2022; 79:142. [PMID: 35187617 PMCID: PMC8858603 DOI: 10.1007/s00018-021-04096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023]
Abstract
As a result of cross-species transmission in December 2019, the coronavirus disease 2019 (COVID-19) became a serious endangerment to human health and the causal agent of a global pandemic. Although the number of infected people has decreased due to effective management, novel methods to treat critical COVID-19 patients are still urgently required. This review describes the origins, pathogenesis, and clinical features of COVID-19 and the potential uses of mesenchymal stem cells (MSCs) in therapeutic treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. MSCs have previously been shown to have positive effects in the treatment of lung diseases, such as acute lung injury, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, lung cancer, asthma, and chronic obstructive pulmonary disease. MSC mechanisms of action involve differentiation potentials, immune regulation, secretion of anti-inflammatory factors, migration and homing, anti-apoptotic properties, antiviral effects, and extracellular vesicles. Currently, 74 clinical trials are investigating the use of MSCs (predominately from the umbilical cord, bone marrow, and adipose tissue) to treat COVID-19. Although most of these trials are still in their early stages, the preliminary data are promising. However, long-term safety evaluations are still lacking, and large-scale and controlled trials are required for more conclusive judgments regarding MSC-based therapies. The main challenges and prospective directions for the use of MSCs in clinical applications are discussed herein. In summary, while the clinical use of MSCs to treat COVID-19 is still in the preliminary stages of investigation, promising results indicate that they could potentially be utilized in future treatments.
Collapse
|
42
|
Tea Polyphenols Prevent and Intervene in COVID-19 through Intestinal Microbiota. Foods 2022; 11:foods11040506. [PMID: 35205982 PMCID: PMC8871045 DOI: 10.3390/foods11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
Although all countries have taken corresponding measures, the coronavirus disease 2019 (COVID-19) is still ravaging the world. To consolidate the existing anti-epidemic results and further strengthen the prevention and control measures against the new coronavirus, we are now actively pioneering a novel research idea of regulating the intestinal microbiota through tea polyphenols for reference. Although studies have long revealed the regulatory effect of tea polyphenols on the intestinal microbiota to various gastrointestinal inflammations, little is known about the prevention and intervention of COVID-19. This review summarizes the possible mechanism of the influence of tea polyphenols on COVID-19 mediated by the intestinal microbiota. In this review, the latest studies of tea polyphenols exhibiting their own antibacterial and anti-inflammatory activities and protective effects on the intestinal mucosal barrier are combed through and summarized. Among them, (−)-epigallocatechin-3-gallate (EGCG), one of the main monomers of catechins, may be activated as nuclear factor erythroid 2 p45-related factor 2 (Nrf2). The agent inhibits the expression of ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2 to inhibit SARS-CoV-2 infection, inhibiting the life cycle of SARS-CoV-2. Thus, preliminary reasoning and judgments have been made about the possible mechanism of the effect of tea polyphenols on the COVID-19 control and prevention mediated by the microbiota. These results may be of great significance to the future exploration of specialized research in this field.
Collapse
|
43
|
Muralidharan A, Wyatt TA, Reid SP. SARS-CoV-2 Dysregulates Neutrophil Degranulation and Reduces Lymphocyte Counts. Biomedicines 2022; 10:382. [PMID: 35203591 PMCID: PMC8962352 DOI: 10.3390/biomedicines10020382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the virus that causes COVID-19, has given rise to one of the largest pandemics, affecting millions worldwide. High neutrophil-to-lymphocyte ratios have been identified as an important correlate to poor recovery rates in severe COVID-19 patients. However, the mechanisms underlying this clinical outcome and the reasons for its correlation to poor prognosis are unclear. Furthermore, the mechanisms involved in healthy neutrophils acquiring a SARS-CoV-2-mediated detrimental role are yet to be fully understood. In this study, we isolated circulating neutrophils from healthy donors for treatment with supernates from infected epithelial cells and direct infection with SARS-CoV-2 in vitro. Infected epithelial cells induced a dysregulated degranulation of primary granules with a decrease in myeloperoxidase (MPO), but slight increase in neutrophil elastase release. Infection of neutrophils resulted in an impairment of both MPO and elastase release, even though CD16 receptor shedding was upregulated. Importantly, SARS-CoV-2-infected neutrophils had a direct effect on peripheral blood lymphocyte counts, with decreasing numbers of CD19+ B cells, CD8+ T cells, and CD4+ T cells. Together, this study highlights the independent role of neutrophils in contributing to the aberrant immune responses observed during SARS-CoV-2 infection that may be further dysregulated in the presence of other immune cells.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| | - Todd A. Wyatt
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| |
Collapse
|
44
|
Shao L, Cao Y, Jones T, Santosh M, Silva LFO, Ge S, da Boit K, Feng X, Zhang M, BéruBé K. COVID-19 mortality and exposure to airborne PM 2.5: A lag time correlation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151286. [PMID: 34743816 PMCID: PMC8553633 DOI: 10.1016/j.scitotenv.2021.151286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (μgm-3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies.
Collapse
Affiliation(s)
- Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geoscience Beijing, Beijing 100083, China; Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kátia da Boit
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
45
|
Alotaibi B, El-Masry TA, Seadawy MG, Farghali MH, El-Harty BE, Saleh A, Mahran YF, Fahim JS, Desoky MS, Abd El-Monsef MM, El-Bouseary MM. SARS-CoV-2 in Egypt: epidemiology, clinical characterization and bioinformatics analysis. Heliyon 2022; 8:e08864. [PMID: 35128118 PMCID: PMC8801622 DOI: 10.1016/j.heliyon.2022.e08864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2 and has spread globally, resulting in the ongoing coronavirus pandemic. The current study aimed to analyze the clinical and epidemiological features of COVID-19 in Egypt. Oropharyngeal swabs were collected from 197 suspected patients who were admitted to the Army Hospital and confirmation of the positivity was performed by rRT-PCR assay. Whole genomic sequencing was conducted using Illumina iSeq 100® System. The average age of the participants was 48 years, of which 132 (67%) were male. The main clinical symptoms were pneumonia (98%), fever (92%), and dry cough (66%). The results of the laboratory showed that lymphocytopenia (79.2%), decreased levels of haemoglobin (77.7%), increased levels of interleukin 6, C-reactive protein, serum ferritin, and D-dimer (77.2%, 55.3%, 55.3%, and 25.9%, respectively), and leukocytopenia (25.9%) were more common. The CT findings showed that scattered opacities (55.8%) and ground-glass appearance (27.9%) were frequently reported. The recovered validated sequences (n = 144) were submitted to NCBI Virus GenBank. All sequenced viruses have at least 99% identity to Wuhan-Hu-1. All variants were GH clade, B.1 PANGO lineage, and L.GP.YP.HT haplotype. The most predominant subclade was D614G/Q57H/V5F/G823S. Our findings have aided in a deep understanding of COVID-19 evolution and identifying strains with unique mutational patterns in Egypt. Isolation and clinical characterization of SARS-CoV-2 from Egyptian patients. Whole Genome Sequencing of recovered isolates revealed unique sequences. Egyptian SARS-CoV-2 variants in 2020 with at least 99% identity to Wuhan-Hu-1. Egyptian SARS-CoV-2 variants were GH clade and L.GP.YP.HT haplotype. A unique mutation (D614G/Q57H/V5F/G823S) pattern was predominant among SARS-CoV-2.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mahmoud H. Farghali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Yasmen F. Mahran
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Corresponding author.
| |
Collapse
|
46
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
47
|
Kostadinova T, Todorova T, Stoykova Z, Niyazi D, Bozhkova M, Bizheva S, Stoeva T. Dynamics of COVID-19 and demographic characteristics as predisposing risk factors for SARS-CoV-2 infection: a hospital-based, one-center retrospective study. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2026817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tsvetelina Kostadinova
- Laboratory of Virology, University Hospital “St. Marina”, Varna, Bulgaria
- Training Sector of Medical Laboratory Assistant, Medical College, Medical University Varna, Varna, Bulgaria
| | - Tatina Todorova
- Laboratory of Virology, University Hospital “St. Marina”, Varna, Bulgaria
- Department of Microbiology and Virology, Faculty of Medicine, Medical University Varna, Varna, Bulgaria
| | - Zhivka Stoykova
- Laboratory of Virology, University Hospital “St. Marina”, Varna, Bulgaria
- Department of Microbiology and Virology, Faculty of Medicine, Medical University Varna, Varna, Bulgaria
| | - Denis Niyazi
- Department of Microbiology and Virology, Faculty of Medicine, Medical University Varna, Varna, Bulgaria
- Laboratory of Microbiology, University Hospital “St. Marina”, Varna, Bulgaria
| | - Milena Bozhkova
- Department of Microbiology and Virology, Faculty of Medicine, Medical University Varna, Varna, Bulgaria
- Laboratory of Microbiology, University Hospital “St. Marina”, Varna, Bulgaria
| | - Svetomira Bizheva
- Laboratory of Microbiology, University Hospital “St. Marina”, Varna, Bulgaria
| | - Temenuga Stoeva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University Varna, Varna, Bulgaria
- Laboratory of Microbiology, University Hospital “St. Marina”, Varna, Bulgaria
| |
Collapse
|
48
|
Li PY, Li SQ, Gao SG, Dong DY. A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate SARS-CoV-2 virus for treatment of COVID-19 patients. Med Hypotheses 2022; 159:110754. [PMID: 35002020 PMCID: PMC8723761 DOI: 10.1016/j.mehy.2021.110754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and now spreads globally. Currently, therapeutics and effective treatment options remain scarce and there is no proven drug to treat COVID-19. Targeting the positive-sense RNA genome and viral mRNAs of SARS-CoV-2 to simultaneously degrade viral genome templates for replication and viral mRNAs for essential gene expression would be a strategy to completely realize virus elimination. Type VI CRISPR enzymes Cas13 have recently been identified as programmable RNA-guided, RNA-targeting Cas proteins with nuclease activity that allows for RNA cleavage and degradation. The precise viral RNA detection and antiviral application of the CRISPR/Cas13 system depend on high-efficient and minimal off-target crRNAs. Although a computer-based algorithm has been applied for the design of crRNAs targeting SRAS-CoV-2, the experimental screening system to identify optimal crRNA is not available. We develop a one-step experimental screening system to identify high-efficient crRNAs with minimal off-target effects for CRISPR/Cas13-based SARS-CoV-2 elimination. This platform provides the foundation for CRISPR/Cas13-based diagnostics and therapeutics for COVID-19. This platform is versatile and could also be applied for crRNAs screening for other RNA viruses.
Collapse
Affiliation(s)
- Pu-Yu Li
- Department of General Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - San-Qiang Li
- Henan Centre for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, College of Basic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - Dao-Yin Dong
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
49
|
Alhazmi A, Moafa W, Madkhali J, Saifain O, Alyahyawi F, Adhabi O, Alharbi A. Coronavirus disease 2019 in patients with sickle cell disease: A cross-sectional study from Jazan Province, Saudi Arabia. JOURNAL OF NATURE AND SCIENCE OF MEDICINE 2022. [DOI: 10.4103/jnsm.jnsm_49_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
An Overview of COVID-19 and Its Vaccines. BIOLOGY BULLETIN REVIEWS 2021. [PMCID: PMC8762443 DOI: 10.1134/s2079086421070069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronavirus pandemic, is a continuing catastrophe (COVID-19) triggered by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus passes into the target cells by attaching itself to a receptor i.e., Human Angiotensin-converting enzyme 2 (hACE2). It consists of Spike structures created from glycoproteins that promote the virus entry into the target cells of host. The RBD of the S1 subunit on Spike proteins binds to the hACE2 receptor, which is mostly found in the lungs, particularly type-2 pneumocytes, causing human ACE2 receptors to be downregulated. Apart from nausea, vomiting, and chest tightness, which are unusual symptoms of COVID-19, the most common causes of death and severity are respiratory failure (69.5%), sepsis or multi-organ failure (28%), cardiac failure (14.6%), and renal failure (14.6%). Viral antigen-based or viral nucleic acid-based real-time RT-PCR is recommended for the diagnosis of COVID-19 suspects. Vaccination is essential for antiviral treatment. The study was conducted on viruses based on live-attenuated or non-activated viruses, recombinant viral vectors, DNA, VLPs and soluble proteins. Vaccine from Pfizer and BioNTech was the first that showed promising data on effectiveness. 90% efficacy of the vaccine was reported. BNT-162b2 (Pfizer, BioNTech) & mRNA-1273 (Moderna) are mRNA based; AZD-1222 Ad5‑CoV (AstraZeneca; Oxford University); Ad26.COV2.S (Johnson & Johnson) are viral vector based and other vaccines have been granted emergency use authorization by FDA. Since RNA viruses are able to mutate readily and quickly the mutation in the existing strain can be Variants of concern (VOCs) that might diminish vaccine effectiveness. The latest Delta variant (B.1.671.2) has rapidly spread in India is emerging in the United States in mid-2021. It turns out to be the chief which is 6–8 fold more resistant to neutralization by sera from COVID-19 convalescent and mRNA vaccinated individuals.
Collapse
|