1
|
Sup ME, Abraham AC, Kim MKM, Thomopoulos S. Development of a Mouse Model of Enthesis-Specific NF-κB Activation. J Orthop Res 2025; 43:719-727. [PMID: 39789822 PMCID: PMC11903135 DOI: 10.1002/jor.26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies. Therefore, we developed a murine model of inducible enthesis-specific inflammation by constitutively activating the NF-κB pathway in Gli1+ cells. Gli1CreERT mice were crossed with IKKβ-overexpression mice and given tamoxifen injections 5 days postnatally to induce enthesitis. Sixteen weeks of IKKβ overexpression in enthesis cells led to impaired mechanical properties, subtle histologic changes, and changes to expression of extracellular matrix- and inflammation-related genes. Increased loading from treadmill overuse activity did not exacerbate this phenotype. Clinical significance: The new murine model may have utility for studying the pathogenesis of enthesitis and approaches to treat the condition.
Collapse
Affiliation(s)
- McKenzie E Sup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Kyu M Kim
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
3
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Dang K, Singh A, Chen X, Cotton JL, Guo S, Hu X, Tao Z, Liu H, Zhu LJ, Ip YT, Wu X, Mao J. Mesenchymal Hippo signaling regulates intestinal homeostasis in adult mice. iScience 2025; 28:111847. [PMID: 39981512 PMCID: PMC11841074 DOI: 10.1016/j.isci.2025.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Intestinal homeostasis is tightly regulated by the reciprocal interaction between the gut epithelium and adjacent mesenchyme. The Hippo pathway is intimately associated with intestinal epithelial homeostasis and regeneration; however, its role in postnatal gut mesenchyme remains poorly defined. Here, we find that removal of the core Hippo kinases Lats1/2 or activation of YAP in adult intestinal smooth muscle layers has largely no effect; however, Hippo-YAP signaling in the niche-forming Gli1+ mesenchymal cells plays intrinsic roles in regulating intestinal homeostasis. We find that Lats1/2 deletion drives robust mesenchymal over-proliferation, and YAP activation in Gli1+ pericryptal cells disrupts the intestinal epithelial-mesenchymal crosstalk via promoting Wnt ligand production. We show that YAP is upregulated in the stroma during dextran sodium sulfate (DSS)-induced injury, and mesenchymal YAP activation facilitates intestinal epithelial regeneration. Altogether, our data suggest an important role for mesenchymal Hippo-YAP signaling in the stem cell niche during intestinal homeostasis and pathogenesis.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alka Singh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xin Chen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susu Guo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua J. Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Palacio V, Pancho A, Morabito A, Malkmus J, He Z, Soussi G, Zeller R, Treutlein B, Zuniga A. Single-cell profiling of penta- and tetradactyl mouse limb buds identifies mesenchymal progenitors controlling digit numbers and identities. Nat Commun 2025; 16:1226. [PMID: 39890843 PMCID: PMC11785988 DOI: 10.1038/s41467-025-56221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The cellular interactions controlling digit numbers and identities have remained largely elusive. Here, we leverage the anterior digit and identity loss in Grem1 tetradactyl mouse limb buds to identify early specified limb bud mesenchymal progenitor (LMP) populations whose size and distribution is governed by spatial modulation of BMP activity and SHH signaling. Distal-autopodial LMPs (dLMP) express signature genes required for autopod and digit development, and alterations affecting the dLMP population size prefigure the changes in digit numbers that characterize specific congenital malformations. A second, peripheral LMP (pLMP) population is anteriorly biased and reduction/loss of its asymmetric distribution underlies the loss of middle digit asymmetry and identities in Grem1 tetradactyl and pig limb buds. pLMPs depend on BMP activity, while dLMPs require GREM1-mediated BMP antagonism. Taken together, the spatial alterations in GREM1 antagonism in mouse mutant and evolutionarily diversified pig limb buds tunes BMP activity, which impacts dLMP and pLMP populations in an opposing manner.
Collapse
Affiliation(s)
- Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anna Pancho
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Panganiban RP, McAninch C, Chulkina M, Pinchuk IV. Telocytes in inflammatory bowel diseases: contributions to pathology and therapeutic potentials. Front Cell Dev Biol 2025; 12:1452258. [PMID: 39872845 PMCID: PMC11770051 DOI: 10.3389/fcell.2024.1452258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Telocytes, a novel mesenchymal cell population, are characterized by their distinctive long and slender projections known as telopodes and have garnered significant interest since their formal introduction to the literature in 2010. These cells have been identified in various tissues, including the gastrointestinal (GI) tract, where they are suggested to play important roles in maintaining structural integrity, immune modulation, and barrier function. Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic inflammation and fibrosis. While limited information is available on the fate of telocytes in this group of diseases, it has been suggested that loss/plasticity of telocytes can be among the key factors contributing to their pathogenesis. This review focuses on the current understanding of telocytes, their structural features, and their distribution within the GI tract under gut homeostasis and IBD. We also discuss the roles of these cells in immune regulation and intestinal repair. We highlight evidence implicating telocytes in the pathogenesis of IBD and other chronic inflammatory diseases that share similar pathophysiological processes with IBD. Lastly, we discuss the current challenges in gut telocyte biology and the potential therapeutic implications of telocytes in IBD.
Collapse
Affiliation(s)
| | | | | | - Irina V. Pinchuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Wu F, Ge C, Pan H, Han Y, Mishina Y, Kaartinen V, Franceschi RT. Discoidin domain receptor 2 is an important modulator of BMP signaling during heterotopic bone formation. Bone Res 2025; 13:7. [PMID: 39746922 PMCID: PMC11696679 DOI: 10.1038/s41413-024-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity. As will be shown, induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice. In addition, Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva. In cells migrating into BMP2 implants, DDR2 is co-expressed with GLI1, a skeletal stem cell marker, and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages. Consistent with this distribution, conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals. This response was explained by selective inhibition of Gli1+ cell proliferation without changes in apoptosis. The basis for this DDR2 requirement was explored further using bone marrow stromal cells. Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo, bone formation, early BMP responses including SMAD phosphorylation remained largely intact. Instead, Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates, YAP and TAZ. This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix, which subsequently affect BMP responsiveness. In summary, DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
Collapse
Affiliation(s)
- Fashuai Wu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuanyuan Han
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekar S, Fox O, Turco AE, Cole C, Arendt LM, Strand DW, Vezina CM. Prostatic Escherichia coli infection drives CCR2-dependent recruitment of fibrocytes and collagen production. Dis Model Mech 2025; 18:DMM052012. [PMID: 39748675 PMCID: PMC11789281 DOI: 10.1242/dmm.052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation. E. coli increased collagen density and production in Gli1+, S100a4+, Lyz2+ and Cd2+ cell lineages, but not in Myh11+ or Srd5a2+ cell lineages, in the mouse prostate. Molecular phenotyping revealed GLI1+LYZ+S100A4+ cells (fibrocytes) in histologically inflamed human prostate. These fibrocytes colocalized with regions of increased collagen in men with LUTD. Fibrocyte recruitment and collagen synthesis was impaired in Ccr2 null mice but restored by allotransplantation of Rosa-GFP donor bone marrow-derived cells. These results suggest that bone marrow-derived fibrocytes are a mediator of prostatic collagen accumulation.
Collapse
Affiliation(s)
- Brandon R. Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle A. Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Olivia Fox
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anne E. Turco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clara Cole
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas W. Strand
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification. eLife 2024; 13:RP94425. [PMID: 39660606 PMCID: PMC11634066 DOI: 10.7554/elife.94425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S Khan
- Division of Neonatology, Department of Pediatrics, UCSFSan FranciscoUnited States
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
| | - Christopher Molina
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Xin Ren
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Vincent C Auyeung
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| |
Collapse
|
10
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
11
|
Zhang L, Wang J, Xu N, Guo J, Lin Y, Zhang X, Ji R, Ji Y, Li H, Han X, Li W, Cheng X, Qin J, Tian M, Xu M, Zhang X. POU3F4 up-regulates Gli1 expression and promotes neuronal differentiation and synaptic development of hippocampal neural stem cells. Stem Cell Res Ther 2024; 15:440. [PMID: 39563384 PMCID: PMC11577835 DOI: 10.1186/s13287-024-04043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are considered to be the most promising cell type for cell replacement therapy in neurodegenerative diseases. However, their low neuronal differentiation ratio impedes their application in such conditions. Elucidating the molecular mechanism of NSC differentiation may provide the necessary experimental basis for expanding their application. Previous studies have indicated that POU3F4 can induce neuronal differentiation of NSCs, this study aims to underly the possible exact mechanism of POU3F4 on the NSC differentiation and development. METHODS NSCs were isolated and cultured from the hippocampus of neonatal mice. The frozen hippocampal sections were prepared for immunohistochemical staining. Synaptic development was assessed using electron microscopy. High-throughput sequencing was employed to analyze the gene expression profile following the overexpression of Brn4. Gene expression levels were determined through Western blotting and qRT-PCR. Cell cycle and differentiation were evaluated using flow cytometry and immunofluorescent staining. RESULTS It was found that POU3F4 promoted the neuronal differentiation of hippocampal NSCs and synapse development, and inhibited NSC proliferation. POU3F4-deficient mice exhibited impairments in learning and memory. RNA sequencing and ChIP assays confirmed that Gli1 was downstream of POU3F4. Loss and gain function experiments indicated that Gli1 mediated POU3F4 promoting neuronal differentiation and synapse development. Forced expression of Gli1 in hippocampus improved learning and memory function of animal models. CONCLUSIONS The results suggest that POU3F4 and Gli1 promote neuronal differentiation and synaptic development of NSCs, and that Gli1 partially mediates the effects of POU3F4.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Jue Wang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Naijuan Xu
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jingjing Guo
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yujian Lin
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xunrui Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruijie Ji
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yaya Ji
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Haoming Li
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Xiao Han
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wen Li
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Jianbing Qin
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Meiling Tian
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Min Xu
- Department of Neurosurgery, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
| | - Xinhua Zhang
- Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Central Lab, Clinical Trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
| |
Collapse
|
12
|
Wang J, Dong X, Lei J, Zhang Y, Chen S, He Y. β-catenin Orchestrates Gli1+ Cell Fate in Condylar Development and TMJOA. J Dent Res 2024; 103:1291-1301. [PMID: 39400124 DOI: 10.1177/00220345241274354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The fibrocartilage stem cells (FCSCs) on the surface of the condyle play an essential role in cartilage homeostasis and regeneration. However, few well-defined stem cell markers have been identified for the analysis of FCSCs' cell fate and regulation mechanism. In this study, we first mapped the transcriptional landscape of the condylar cartilage and identified a Gli1+ subset. Label-retaining cells and our lineage-tracing study showed that Gli1 labeled a group of FCSCs. Conditional knockout β-catenin inhibited Gli1+ cells differentiating into hypertrophic chondrocytes. In discectomy-induced temporomandibular joint osteoarthritis (TMJOA), Gli1+ cells were further activated, and their differentiation into hypertrophic chondrocytes was accelerated, which induced stem cell pool depletion. The deletion of β-catenin in Gli1+ cells preserved the FCSC pool and alleviated TMJOA cartilage degeneration. Collectively, we uncovered that a Gli1+ FCSC subpopulation and Wnt/β-catenin signaling orchestrate the Gli1+ cell fate in condyle postnatal development and TMJOA.
Collapse
Affiliation(s)
- J Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - X Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - J Lei
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Y Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - S Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Y He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
13
|
Yin B, Shen F, Ma Q, Liu Y, Han X, Cai X, Shi Y, Ye L. Identification of Postn+ periosteal progenitor cells with bone regenerative potential. JCI Insight 2024; 9:e182524. [PMID: 39377227 PMCID: PMC11466188 DOI: 10.1172/jci.insight.182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 10/09/2024] Open
Abstract
Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Qingge Ma
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | | | - Xianglong Han
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Orthodontics, West China School of Stomatology, and
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Ling Ye
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| |
Collapse
|
14
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired Myofibroblast Proliferation is a Central Feature of Pathologic Post-Natal Alveolar Simplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572766. [PMID: 38187712 PMCID: PMC10769348 DOI: 10.1101/2023.12.21.572766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S. Khan
- Division of Neonatology, Department of Pediatrics, UCSF
- Cardiovascular Research Institute, UCSF
| | - Christopher Molina
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Xin Ren
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Vincent C. Auyeung
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| |
Collapse
|
15
|
Kuroda Y, Yoda M, Kawaai K, Tatenuma M, Mizoguchi T, Ito S, Kasahara M, Wu Y, Takano H, Momose A, Matsuo K. Developing long bones respond to surrounding tissues by trans-pairing of periosteal osteoclasts and endocortical osteoblasts. Development 2024; 151:dev202194. [PMID: 39119717 PMCID: PMC11423808 DOI: 10.1242/dev.202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Motoharu Tatenuma
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
- JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
18
|
Oh JDH, Freem L, Saunders DDZ, McTeir L, Gilhooley H, Jackson M, Glover JD, Smith J, Schoenebeck JJ, Lettice LA, Sang HM, Davey MG. Insights into digit evolution from a fate map study of the forearm using Chameleon, a new transgenic chicken line. Development 2024; 151:dev202340. [PMID: 38828852 PMCID: PMC11234372 DOI: 10.1242/dev.202340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.
Collapse
Affiliation(s)
- Julia Dong Hwa Oh
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Lu Freem
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Dillan D. Z. Saunders
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Hazel Gilhooley
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Melany Jackson
- Genetics and Genomics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - James D. Glover
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jeffrey J. Schoenebeck
- Genetics and Genomics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Laura A. Lettice
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Helen M. Sang
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Megan G. Davey
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
19
|
Pei F, Guo T, Zhang M, Ma L, Jing J, Feng J, Ho TV, Wen Q, Chai Y. FGF signaling modulates mechanotransduction/WNT signaling in progenitors during tooth root development. Bone Res 2024; 12:37. [PMID: 38910207 PMCID: PMC11194271 DOI: 10.1038/s41413-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1+ progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-CreER;Fgfr1fl/fl mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
20
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
21
|
Zhang M, Guo T, Pei F, Feng J, Jing J, Xu J, Yamada T, Ho TV, Du J, Sehgal P, Chai Y. ARID1B maintains mesenchymal stem cell quiescence via inhibition of BCL11B-mediated non-canonical Activin signaling. Nat Commun 2024; 15:4614. [PMID: 38816354 PMCID: PMC11139927 DOI: 10.1038/s41467-024-48285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.
Collapse
Affiliation(s)
- Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
22
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
23
|
Wang H, Chen X, Meng X, Cao Y, Han S, Liu K, Zhao X, Zhao X, Zhang X. The pathogenic mechanism of syndactyly type V identified in a Hoxd13Q50R knock-in mice. Bone Res 2024; 12:21. [PMID: 38561387 PMCID: PMC10984994 DOI: 10.1038/s41413-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2-4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed Shh, Grem1 and Fgf8 and down-regulated Bmp2 in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the Hoxd13Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of Shh and Fgf8, in conjunction with the down-regulation of Bmp2, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of SHH, FGF8, and BMP2 induced by HOXD13Q50R may be responsible for the manifestation of human SDTY5.
Collapse
Affiliation(s)
- Han Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Orthopedics, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiumin Chen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yixuan Cao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ximeng Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiuli Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
24
|
Li B, Yang P, Shen F, You C, Wu F, Shi Y, Ye L. Gli1 labels progenitors during chondrogenesis in postnatal mice. EMBO Rep 2024; 25:1773-1791. [PMID: 38409269 PMCID: PMC11014955 DOI: 10.1038/s44319-024-00093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
26
|
Amano K, Okuzaki D, Kitaoka Y, Kato S, Fujiwara M, Tanaka S, Iida S. Pth1r in Neural Crest Cells Regulates Nasal Cartilage Differentiation. J Dent Res 2024; 103:308-317. [PMID: 38234039 DOI: 10.1177/00220345231221954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Neural crest cells (NCC) arise from the dorsal margin of the neural plate border and comprise a unique cell population that migrates to and creates the craniofacial region. Although factors including Shh, Fgf8, and bone morphogenetic proteins have been shown to regulate these biological events, the role of parathyroid hormone 1 receptor (Pth1r) has been less studied. We generated an NCC-specific mouse model for Pth1r and researched gene expression, function, and interaction focusing on nasal cartilage framework and midfacial development. Wnt1-Cre;Pth1rfl/fl;Tomatofl/+ mice had perinatal lethality, but we observed short snout and jaws, tongue protrusion, reduced NCC-derived cranial length, increased mineralization in nasal septum and hyoid bones, and less bone mineralization at interfrontal suture in mutants at E18.5. Importantly, the mutant nasal septum and turbinate cartilage histologically revealed gradual, premature accelerated hypertrophic differentiation. We then studied the underlying molecular mechanisms by performing RNA seq analysis and unexpectedly found that expression of Ihh and related signaling molecules was enhanced in mutant nasomaxillary tissues. To see if Pth1r and Ihh signaling are associated, we generated a Wnt1-Cre; Ihhfl/fl;Pth1rfl/fl;Tomatofl/+ (DKO) mouse and compared the phenotypes to those of each single knockout mouse: Wnt1-Cre; Ihhfl/fl;Pth1rfl/+;Tomatofl/+ (Ihh-CKO) and Wnt1-Cre;Ihhfl/+;Pth1rfl/fl;Tomatofl/+ (Pth1r-CKO). Ihh-CKO mice displayed a milder effect. Of note, the excessive hypertrophic conversion of the nasal cartilage framework observed in Pth1r-CKO was somewhat rescued DKO embryos. Further, a half cAMP responsive element and the 4 similar sequences containing 2 mismatches were identified from the promoter to the first intron in Ihh gene. Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+, a Pth1r-deficient model targeted in hedgehog responsive cells, demonstrated the enlarged hypertrophic layer and significantly more Tomato-positive chondrocytes accumulated in the nasal septum and ethmoidal endochondral ossification. Collectively, the data suggest a relevant Pth1r/Ihh interaction. Our findings obtained from novel mouse models for Pth1r signaling illuminate previously unknown aspects in craniofacial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Y Kitaoka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S Tanaka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
27
|
Doro D, Liu A, Lau JS, Rajendran AK, Healy C, Krstic M, Grigoriadis AE, Iseki S, Liu KJ. Cranial suture lineage and contributions to repair of the mouse skull. Development 2024; 151:dev202116. [PMID: 38345329 PMCID: PMC10911112 DOI: 10.1242/dev.202116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.
Collapse
Affiliation(s)
- Daniel Doro
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Annie Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Jia Shang Lau
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Arun Kumar Rajendran
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Marko Krstic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Agamemnon E. Grigoriadis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
28
|
Singh S, Budiman T, Redmond D, Gupta V. Modulation of canonical Wnt signaling regulates peribiliary mesenchymal identity during homeostasis and injury. Hepatol Commun 2024; 8:e0368. [PMID: 38251878 PMCID: PMC10805418 DOI: 10.1097/hc9.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The matrix and associated mesenchyme of the extrahepatic bile ducts are distinct, which could drive diseases with a predilection for these ducts, such as primary sclerosing cholangitis. We aimed to understand the molecular drivers of peribiliary mesenchymal cell (PMC) identity in the extrahepatic bile ducts and dissect how this changed in the context of injury using an entirely in vivo approach with transcriptomic analysis. METHODS AND RESULTS Single-cell sequencing with a receptor-ligand analysis showed that PMCs had the most interactions with surrounding cells. Wnt4, Wnt5a, and Wnt7b were identified as the major ligands secreted from PMCs and cholangiocytes that interacted in both paracrine and autocrine fashion. Bile duct ligation caused an increase in all 3 Wingless/Integrated ligands and Axin2 with an associated increase in the transcription factors T-box transcription factor (Tbx)2 and Tbx3. Conversely, Indian hedgehog secretion decreased without an associated decrease in hedgehog signaling effectors. Loss of smoothened within PMCs did not impact hedgehog signaling effectors or cellular identity, whereas smoothened gain of function led to myofibroblast transdifferentiation with upregulation of Tbx2 and Tbx3 without injury. Loss of β-catenin caused a decrease in expression of all 3 Gli transcription factors and associated mesenchymal gene expression, which was phenocopied with compound Gli2 and Gli3 loss in uninjured PMCs. With injury, loss of β-catenin resulted in decreased myofibroblast transdifferentiation with reduced Tbx2 and Tbx3 expression. CONCLUSIONS Our results show how modulation of canonical Wingless/Integrated signaling in PMCs is important for regulating basal mesenchymal gene expression and initiating a myogenic gene transcriptional program during injury. They also highlight reciprocating interactions between the hedgehog and Wingless/Integrated signaling pathways within PMCs.
Collapse
Affiliation(s)
- Serrena Singh
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tifanny Budiman
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Redmond
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Vikas Gupta
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Nguyen MB, Flora P, Branch MC, Weber M, Zheng XY, Sivan U, Joost S, Annusver K, Zheng D, Kasper M, Ezhkova E. Tenascin-C expressing touch dome keratinocytes exhibit characteristics of all epidermal lineages. SCIENCE ADVANCES 2024; 10:eadi5791. [PMID: 38241368 PMCID: PMC10798558 DOI: 10.1126/sciadv.adi5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan C. Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Unnikrishnan Sivan
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Pei F, Ma L, Guo T, Zhang M, Jing J, Wen Q, Feng J, Lei J, He J, Janečková E, Ho TV, Chen JF, Chai Y. Sensory nerve regulates progenitor cells via FGF-SHH axis in tooth root morphogenesis. Development 2024; 151:dev202043. [PMID: 38108472 PMCID: PMC10820866 DOI: 10.1242/dev.202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573370. [PMID: 38234814 PMCID: PMC10793446 DOI: 10.1101/2023.12.28.573370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Debabrata Patra
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sabine Dietmann
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter Bayguinov
- Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Hagan
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
32
|
Noguchi H, Arela JC, Ngo T, Cocas L, Pleasure S. Shh from mossy cells contributes to preventing NSC pool depletion after seizure-induced neurogenesis and in aging. eLife 2023; 12:RP91263. [PMID: 38079471 PMCID: PMC10712957 DOI: 10.7554/elife.91263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Epileptic seizures induce aberrant neurogenesis from resident neural stem cells (NSCs) in the dentate gyrus of the adult mouse hippocampus, which has been implicated in depletion of the NSC pool and impairment of hippocampal function. However, the mechanisms regulating neurogenesis after seizures remain unknown. Here, we demonstrate that Sonic hedgehog (Shh) from mossy cells is a major source of Shh signaling activity after seizures, by which mossy cells contribute to seizure-induced neurogenesis and maintenance of the NSC pool. Deletion of Shh from mossy cells attenuates seizure-induced neurogenesis. Moreover, in the absence of Shh from mossy cells, NSCs pool are prematurely depleted after seizure-induced proliferation, and NSCs have impaired self-renewal. Likewise, lack of Shh from mossy cells accelerates age-related decline of the NSC pool with accompanying reduction of self-renewal of NSCs outside the context of pathology such as seizures. Together, our findings indicate that Shh from mossy cells is critical to maintain NSCs and to prevent exhaustion from excessive consumption in aging and after seizures.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica Chelsea Arela
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Thomas Ngo
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Cocas
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Santa Clara University, Biology Department, Neuroscience ProgramSanta ClaraUnited States
| | - Samuel Pleasure
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Programs in Neuroscience and Developmental & Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
33
|
Singh S, Lian Q, Budiman T, Taketo MM, Simons BD, Gupta V. Heterogeneous murine peribiliary glands orchestrate compartmentalized epithelial renewal. Dev Cell 2023; 58:2732-2745.e5. [PMID: 37909044 PMCID: PMC10842076 DOI: 10.1016/j.devcel.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The extrahepatic branches of the biliary tree have glands that connect to the surface epithelium through narrow pits. The duct epithelia undergo homeostatic renewal, yet the identity and multiplicity of cells that maintain this tissue is unknown. Using marker-free and targeted clonal fate mapping in mice, we provide evidence that the extrahepatic bile duct is compartmentalized. Pit cholangiocytes of extramural glands renewed the surface epithelium, whereas basally oriented cholangiocytes maintained the gland itself. In contrast, basally positioned cholangiocytes replenished the surface epithelium in mural glands. Single-cell sequencing identified genes enriched in the base and surface epithelial populations, with trajectory analysis showing graded gene expression between these compartments. Epithelia were plastic, changing cellular identity upon fasting and refeeding. Gain of canonical Wnt signaling caused basal cell expansion, gastric chief cell marker expression, and a decrease in surface epithelial markers. Our results identify the cellular hierarchy governing extrahepatic biliary epithelial renewal.
Collapse
Affiliation(s)
- Serrena Singh
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Qiuyu Lian
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Tifanny Budiman
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Makoto M Taketo
- Kyoto University Hospital-iACT (Colon Cancer Project), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Benjamin D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Vikas Gupta
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Kohlsdorf T. Reversibility of digit loss revisited: Limb diversification in Bachia lizards (gymnophthalmidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:496-508. [PMID: 33544406 DOI: 10.1002/jez.b.23024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023]
Abstract
Strict interpretations of the Dollo's Law lead to postulation that trait loss is irreversible and organisms never recover ancestral phenotypes. Dollo, however, admitted the possibility of reversals in trait loss when predicted differences between reversed (derived) and ancestral forms. Phenotypic signatures from reversals are expected, as the historical context of a reversal in trait loss differs from the initial setting where the trait originally evolved. This article combines morphological and molecular information for Bachia scolecoides to discuss phenotypic and genetic patterns established during processes that reversed digit loss in Gymnophthalmidae (also termed microteiid lizards). Results suggest that pathways leading to the derived tetradactyl state of B. scolecoides comprise particularities in their origin and associated processes. Autopodial bones of B. scolecoides lack digit identity, and muscle anatomy is very similar between manus and pes. Gymnophthalmidae sequence patterns in the limb-specific sonic hedgehog enhancer (ZRS) suggest that regulation of shh expression did not degenerate in Bachia, given the prediction of similar motifs despite mutations specific to Bachia. Persistence of developmental mechanisms might explain intermittent character expression leading to reversals of digit loss, as ZRS signaling pathways remain active during the development of at least one pair of appendices in Bachia, especially if some precursors persisted at early stages. Patterns of ZRS sequences suggest that irreversibility of trait loss might be lineage-specific (restricted to Gymnophthalmini) and contingent to the type of signature established. These results provide insights regarding possible mechanisms that may allow reactivation of developmental programs in specific regions of the embryo.
Collapse
Affiliation(s)
- Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Wang Y, Lou R, Zhang Z, Xiao C, Yu S, Wei S, Liu Y, Fu W, Li B, Chen YG. Stromal BMP signaling regulates mucin production in the large intestine via interleukin-1/17. SCIENCE ADVANCES 2023; 9:eadi1827. [PMID: 37889976 PMCID: PMC10610902 DOI: 10.1126/sciadv.adi1827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Bone morphogenic protein (BMP) signaling is critical for intestinal development, homeostasis, and function performance. Although the function of BMP signaling in the intestinal epithelium is well appreciated, the direct effect of BMP on intestinal stromal cells is poorly understood. Here, we show that disruption of BMP signaling by genetic ablation of Alk3 or Smad4 expands the stromal cell pool, the mucosa tumefaction, and colonic polyposis in the large intestine. Interleukin (IL) secretion by stromal cells is notably increased, including IL-1, IL-11, and IL-17. Specifically, IL-1 and IL-17a hyperactivate the mucin production by goblet cells through nuclear factor κB signaling, and abnormal mucin accumulation results in the morphological changes, epithelial barrier destruction, and polyposis development. Together, our results provide an insight into the role of BMP signaling in intestinal stromal cells to regulate epithelium function. This study further highlights the role of mucin-producing goblet cells in intestinal homeostasis and colitis development.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Ruoyu Lou
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chuyu Xiao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Siting Wei
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
36
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 PMCID: PMC10110419 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver – Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Nishio Y, Kato K, Tran Mau-Them F, Futagawa H, Quélin C, Masuda S, Vitobello A, Otsuji S, Shawki HH, Oishi H, Thauvin-Robinet C, Takenouchi T, Kosaki K, Takahashi Y, Saitoh S. Gain-of-function MYCN causes a megalencephaly-polydactyly syndrome manifesting mirror phenotypes of Feingold syndrome. HGG ADVANCES 2023; 4:100238. [PMID: 37710961 PMCID: PMC10550848 DOI: 10.1016/j.xhgg.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Hiroshi Futagawa
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, 35200 Rennes, France
| | - Saori Masuda
- Department of Hematology and Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Antonio Vitobello
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Shiomi Otsuji
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, 21070 Dijon, France
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
38
|
Amano K, Kitaoka Y, Kato S, Fujiwara M, Okuzaki D, Aikawa T, Kogo M, Iida S. Pth1r Signal in Gli1+ Cells Maintains Postnatal Cranial Base Synchondrosis. J Dent Res 2023; 102:1241-1251. [PMID: 37575041 DOI: 10.1177/00220345231184405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Cranial base synchondroses are the endochondral ossification centers for cranial base growth and thus indispensable for proper skull, brain, and midfacial development. The synchondroses are composed of mirror-image growth plates that are continuously maintained from the embryonic to postnatal stage through chondrocyte differentiation. Several factors, including Pth1r signaling, are known to control fetal synchondrosis development. However, there are currently no reports regarding any role for Pth1r signaling in postnatal cranial base and synchondrosis development. Also, the mesenchymal cells that source Pth1r signaling for synchondroses are not known. Here, we employed an inducible mouse model, a hedgehog-responsive Gli1-CreERT2 driver, focusing on the postnatal study. We performed 2 inducible protocols using Gli1-CreERT2;Tomatofl/+ mice that uncovered distinct patterning of Gli1-positive and Gli1-negative chondrocytes in the synchondrosis cartilage. Moreover, we generated Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+ mice to assess their functions in postnatal synchondrosis and found that the mutants had survived postnatally. The mutant skulls morphologically presented unambiguous phenotypes where we noticed the shortened cranial base and premature synchondrosis closure. Histologically, gradual disorganization in mutant synchondroses caused an uncommon remaining central zone between hypertrophic zones on both sides while the successive differentiation of round, flat, and hypertrophic chondrocytes was observed in control sections. These mutant synchondroses disappeared and were finally replaced by bone. Of note, the mutant fusing synchondroses lost their characteristic patterning of Gli1-positive and Gli1-negative chondrocytes, suggesting that loss of Pth1r signaling alters the distribution of hedgehog-responsive chondrocytes. Moreover, we performed laser microdissection and RNA sequencing to characterize the flat proliferative and round resting chondrocytes where we found flat chondrocytes have a characteristic feature of both chondrocyte proliferation and maturation. Taken together, these data demonstrate that Pth1r signaling in Gli1-positive cells is essential for postnatal development and maintenance in cranial base synchondroses. Our findings will elucidate previously unknown aspects of Pth1r functions in cranial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Kitaoka
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- The Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - T Aikawa
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Kogo
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
39
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
40
|
Noguchi H, Arela JC, Ngo TT, Cocas L, Pleasure SJ. Shh from mossy cells contributes to preventing NSC pool depletion after seizure-induced neurogenesis and in aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554173. [PMID: 37662214 PMCID: PMC10473584 DOI: 10.1101/2023.08.21.554173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epileptic seizures induce aberrant neurogenesis from resident neural stem cells (NSCs) in the dentate gyrus of the adult mouse hippocampus, which has been implicated in depletion of the NSC pool and impairment of hippocampal function. However, the mechanisms regulating neurogenesis after seizures remain unknown. Here we demonstrate that Shh from mossy cells is a major source of Shh signaling activity after seizures, by which mossy cells contribute to seizure-induced neurogenesis and maintenance of the NSC pool. Deletion of Shh from mossy cells attenuates seizure-induced neurogenesis. Moreover, in the absence of Shh from mossy cells, NSCs pool are prematurely depleted after seizure-induced proliferation, and NSCs have impaired self-renewal. Likewise, lack of Shh from mossy cells accelerates age-related decline of the NSC pool with accompanying reduction of self-renewal of NSCs outside the context of pathology such as seizures. Together, our findings indicate that Shh from mossy cells is critical to maintain NSCs and to prevent exhaustion from excessive consumption in aging and after seizures.
Collapse
|
41
|
Zhang N, Barrell WB, Liu KJ. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible. J Anat 2023; 243:90-99. [PMID: 36899483 PMCID: PMC10273353 DOI: 10.1111/joa.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.
Collapse
Affiliation(s)
- Nian Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
- State Key Laboratory of Oral Disease, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatogy, Sichuan UniversityChengduChina
| | - William B. Barrell
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
42
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
43
|
Sarkaria SM, Zhou J, Bao S, Zhao W, Fang Y, Que J, Bhagat G, Zhang C, Ding L. Systematic dissection of coordinated stromal remodeling identifies Sox10 + glial cells as a therapeutic target in myelofibrosis. Cell Stem Cell 2023; 30:832-850.e6. [PMID: 37267917 PMCID: PMC10240254 DOI: 10.1016/j.stem.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/24/2022] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Remodeling of the tissue niche is often evident in diseases, yet, the stromal alterations and their contribution to pathogenesis are poorly characterized. Bone marrow fibrosis is a maladaptive feature of primary myelofibrosis (PMF). We performed lineage tracing and found that most collagen-expressing myofibroblasts were derived from leptin-receptor-positive (LepR+) mesenchymal cells, whereas a minority were from Gli1-lineage cells. Deletion of Gli1 did not impact PMF. Unbiased single-cell RNA sequencing (scRNA-seq) confirmed that virtually all myofibroblasts originated from LepR-lineage cells, with reduced expression of hematopoietic niche factors and increased expression of fibrogenic factors. Concurrently, endothelial cells upregulated arteriolar-signature genes. Pericytes and Sox10+ glial cells expanded drastically with heightened cell-cell signaling, suggesting important functional roles in PMF. Chemical or genetic ablation of bone marrow glial cells ameliorated fibrosis and improved other pathology in PMF. Thus, PMF involves complex remodeling of the bone marrow microenvironment, and glial cells represent a promising therapeutic target.
Collapse
Affiliation(s)
- Shawn M Sarkaria
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Junsong Zhou
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Suying Bao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenqi Zhao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yinshan Fang
- Division of Digestive and Liver Diseases, Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Govind Bhagat
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying fibrogenic cells following salivary gland obstructive injury. Front Cell Dev Biol 2023; 11:1190386. [PMID: 37287453 PMCID: PMC10242138 DOI: 10.3389/fcell.2023.1190386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen significantly increased at 14 days post-ligation. Macrophages, which participate in extracellular matrix remodeling, and Gli1+ and PDGFRα+ stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, Gli1 + cells were not found in discrete clusters at embryonic day 16 but were found in clusters expressing the stromal genes Pdgfra and/or Pdgfrb. In adult mice, Gli1+ cells were similarly heterogeneous but more cells co-expressed PDGFRα and PDGFRβ. Using Gli1-CreERT2; ROSA26tdTomato lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato+ cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1+ cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Some Pdgfra + /Pdgfrb + stromal cell subpopulations expanded in response to ligation, with two stromal cell subpopulations showing increased expression of Col1a1 and a greater diversity of matrisome genes, consistent with these cells being fibrogenic. However, only a few cells in these subpopulations expressed Gli1, consistent with a minor contribution of these cells to extracellular matrix production. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
45
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
46
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying Fibrogenic Cells Following Salivary Gland Obstructive Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531751. [PMID: 36945483 PMCID: PMC10028956 DOI: 10.1101/2023.03.09.531751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen trended upwards at 7 days and significantly increased at 14 days post- ligation. Macrophages, which participate in extracellular matrix remodeling, Gli1 + and PDGFRα + stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, we found that a majority of Gli1 + cells at embryonic day 16 also express Pdgfra and/or Pdgfrb. However, in adult mice, only a small subset of Gli1 + cells express PDGFRα and/or PDGFRβ at the protein level. Using lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato + cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1 + cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Pdgfra + /Pdgfrb + stromal cell subpopulations both expanded in response to ligation, showed increased expression and a greater diversity of matrisome genes expressed, consistent with these cells being fibrogenic. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Carl Zeiss Microscopy, LLC, White Plains, New York, USA
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Albany Medical College, Albany, New York, USA
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: The Jackson Laboratory, Farmington, Connecticut, USA
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
47
|
Lav R, Krivanek J, Anthwal N, Tucker AS. Wnt signaling from Gli1-expressing apical stem/progenitor cells is essential for the coordination of tooth root development. Stem Cell Reports 2023; 18:1015-1029. [PMID: 36931279 PMCID: PMC10147554 DOI: 10.1016/j.stemcr.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Stem cell regulation plays a crucial role during development and homeostasis. Here, an essential source of Wnts from Gli1+ stem/progenitor cells was identified in the murine molar. Loss of Wnt production in Gli1+ apical stem/progenitor cells led to loss of Axin2 at the root apex, mis-regulation of SOX9, loss of BMP and Hh signaling, and truncation of root development. In the absence of Wnt signals, the root epithelium lost its integrity and epithelial identity. This phenotype could be partially mimicked by loss of Sox9 in the Gli1 population. Stabilization of Wnt signaling in the apical papilla led to rapid unordered differentiation of hard tissues and fragmentation of the epithelial root sheath. Wnt signaling from Gli1+ stem/progenitor cells, therefore, orchestrates root development, coordinating mesenchymal and epithelial interactions via SOX9 to regulate stem/progenitor cell expansion and differentiation. Our results demonstrate that disparate stem/progenitor cell populations are unified in their fundamental signaling interactions.
Collapse
Affiliation(s)
- Rupali Lav
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
48
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
49
|
Pei F, Ma L, Jing J, Feng J, Yuan Y, Guo T, Han X, Ho TV, Lei J, He J, Zhang M, Chen JF, Chai Y. Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis. Nat Commun 2023; 14:344. [PMID: 36670126 PMCID: PMC9859800 DOI: 10.1038/s41467-023-35977-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) reside in microenvironments, referred to as niches, which provide structural support and molecular signals. Sensory nerves are niche components in the homeostasis of tissues such as skin, bone marrow and hematopoietic system. However, how the sensory nerve affects the behavior of MSCs remains largely unknown. Here we show that the sensory nerve is vital for mesenchymal tissue homeostasis and maintenance of MSCs in the continuously growing adult mouse incisor. Loss of sensory innervation leads to mesenchymal disorder and a decrease in MSCs. Mechanistically, FGF1 from the sensory nerve directly acts on MSCs by binding to FGFR1 and activates the mTOR/autophagy axis to sustain MSCs. Modulation of mTOR/autophagy restores the MSCs and rescues the mesenchymal tissue disorder of Fgfr1 mutant mice. Collectively, our study provides insights into the role of sensory nerves in the regulation of MSC homeostasis and the mechanism governing it.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
50
|
Mohamed FF, Ge C, Hallett SA, Bancroft AC, Cowling RT, Ono N, Binrayes AA, Greenberg B, Levi B, Kaartinen VM, Franceschi RT. Control of craniofacial development by the collagen receptor, discoidin domain receptor 2. eLife 2023; 12:e77257. [PMID: 36656123 PMCID: PMC9977278 DOI: 10.7554/elife.77257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Development of the craniofacial skeleton requires interactions between progenitor cells and the collagen-rich extracellular matrix (ECM). The mediators of these interactions are not well-defined. Mutations in the discoidin domain receptor 2 gene (DDR2), which encodes a non-integrin collagen receptor, are associated with human craniofacial abnormalities, such as midface hypoplasia and open fontanels. However, the exact role of this gene in craniofacial morphogenesis is not known. As will be shown, Ddr2-deficient mice exhibit defects in craniofacial bones including impaired calvarial growth and frontal suture formation, cranial base hypoplasia due to aberrant chondrogenesis and delayed ossification at growth plate synchondroses. These defects were associated with abnormal collagen fibril organization, chondrocyte proliferation and polarization. As established by localization and lineage-tracing studies, Ddr2 is expressed in progenitor cell-enriched craniofacial regions including sutures and synchondrosis resting zone cartilage, overlapping with GLI1 + cells, and contributing to chondrogenic and osteogenic lineages during skull growth. Tissue-specific knockouts further established the requirement for Ddr2 in GLI +skeletal progenitors and chondrocytes. These studies establish a cellular basis for regulation of craniofacial morphogenesis by this understudied collagen receptor and suggest that DDR2 is necessary for proper collagen organization, chondrocyte proliferation, and orientation.
Collapse
Affiliation(s)
- Fatma F Mohamed
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Shawn A Hallett
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Alec C Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas SouthwesternDallasUnited States
| | - Randy T Cowling
- Division of Cardiovascular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of DentistryHoustonUnited States
| | - Abdul-Aziz Binrayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud UniversityRiyadhSaudi Arabia
| | - Barry Greenberg
- Division of Cardiovascular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas SouthwesternDallasUnited States
| | - Vesa M Kaartinen
- Department of Biologic & Materials Science, University of Michigan School of DentistryAnn ArborUnited States
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
- Department of Biological Chemistry, School of Medicine, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| |
Collapse
|