1
|
Alnakhli LA, Goldrick M, Lord E, Roberts IS. The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001516. [PMID: 39560979 PMCID: PMC11575702 DOI: 10.1099/mic.0.001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Listeria monocytogenes is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (Phly, PactA, P/prfA and P/plcA) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the Phly, PactA and P/plcA promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A sigB mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a sigB mutation increased expression from the Phly and PactA promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that L. monocytogenes PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.
Collapse
Affiliation(s)
- Lamis A. Alnakhli
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ian S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
2
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
3
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Tucker JS, Khan H, D’Orazio SEF. Lymph node stromal cells vary in susceptibility to infection but can support the intracellular growth of Listeria monocytogenes. J Leukoc Biol 2024; 116:132-145. [PMID: 38416405 PMCID: PMC11212796 DOI: 10.1093/jleuko/qiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Lymph node stromal cells (LNSCs) are an often overlooked component of the immune system but play a crucial role in maintaining tissue homeostasis and orchestrating immune responses. Our understanding of the functions these cells serve in the context of bacterial infections remains limited. We previously showed that Listeria monocytogenes, a facultative intracellular foodborne bacterial pathogen, must replicate within an as-yet-unidentified cell type in the mesenteric lymph node (MLN) to spread systemically. Here, we show that L. monocytogenes could invade, escape from the vacuole, replicate exponentially, and induce a type I interferon response in the cytosol of 2 LNSC populations infected in vitro, fibroblastic reticular cells (FRCs) and blood endothelial cells (BECs). Infected FRCs and BECs also produced a significant chemokine and proinflammatory cytokine response after in vitro infection. Flow cytometric analysis confirmed that GFP+ L. monocytogenes were associated with a small percentage of MLN stromal cells in vivo following foodborne infection of mice. Using fluorescent microscopy, we showed that these cell-associated bacteria were intracellular L. monocytogenes and that the number of infected FRCs and BECs changed over the course of a 3-day infection in mice. Ex vivo culturing of these infected LNSC populations revealed viable, replicating bacteria that grew on agar plates. These results highlight the unexplored potential of FRCs and BECs to serve as suitable growth niches for L. monocytogenes during foodborne infection and to contribute to the proinflammatory environment within the MLN that promotes clearance of listeriosis.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Hiba Khan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
5
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
6
|
Drolia R, Bryant DB, Tenguria S, Jules-Culver ZA, Thind J, Amelunke B, Liu D, Gallina NLF, Mishra KK, Samaddar M, Sawale MR, Mishra DK, Cox AD, Bhunia AK. Listeria adhesion protein orchestrates caveolae-mediated apical junctional remodeling of epithelial barrier for Listeria monocytogenes translocation. mBio 2024; 15:e0282123. [PMID: 38376160 PMCID: PMC10936185 DOI: 10.1128/mbio.02821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes (Lm) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic (lap- or ΔinlA) or double (lap-ΔinlA) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates Lm translocation at cells displaying apical E-cadherin during cell extrusion and mucus expulsion from goblet cells. LAP hijacks caveolar endocytosis to traffic integral junctional proteins to the early and recycling endosomes. Pharmacological inhibition in a cell line and genetic knockout of caveolin-1 in mice prevents LAP-induced intestinal permeability, junctional endocytosis, and Lm translocation. Furthermore, LAP-Hsp60-dependent tight junction remodeling is also necessary for InlA access to E-cadherin for Lm intestinal barrier crossing in InlA-permissive hosts. IMPORTANCE Listeria monocytogenes (Lm) is a foodborne pathogen with high mortality (20%-30%) and hospitalization rates (94%), particularly affecting vulnerable groups such as pregnant women, fetuses, newborns, seniors, and immunocompromised individuals. Invasive listeriosis involves Lm's internalin (InlA) protein binding to E-cadherin to breach the intestinal barrier. However, non-functional InlA variants have been identified in Lm isolates, suggesting InlA-independent pathways for translocation. Our study reveals that Listeria adhesion protein (LAP) and InlA cooperatively assist Lm entry into the gut lamina propria in a gerbil model, mimicking human listeriosis in early infection stages. LAP triggers caveolin-1-mediated endocytosis of critical junctional proteins, transporting them to early and recycling endosomes, facilitating Lm passage through enterocytes. Furthermore, LAP-Hsp60-mediated junctional protein endocytosis precedes InlA's interaction with basolateral E-cadherin, emphasizing LAP and InlA's cooperation in enhancing Lm intestinal translocation. This understanding is vital in combating the severe consequences of Lm infection, including sepsis, meningitis, encephalitis, and brain abscess.
Collapse
Affiliation(s)
- Rishi Drolia
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Science, Old Dominion University, Norfolk, Virginia, USA
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Donald B. Bryant
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Shivendra Tenguria
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Zuri A. Jules-Culver
- Department of Biological Science, Old Dominion University, Norfolk, Virginia, USA
| | - Jessie Thind
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Breanna Amelunke
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Dongqi Liu
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Nicholas L. F. Gallina
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Krishna K. Mishra
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Manalee Samaddar
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Manoj R. Sawale
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Dharmendra K. Mishra
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Abigail D. Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Arun K. Bhunia
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Cho J, Alexander KL, Ferrell JL, Johnson LA, Estus S, D’Orazio SEF. Apolipoprotein E genotype affects innate susceptibility to Listeria monocytogenes infection in aged male mice. Infect Immun 2023; 91:e0025123. [PMID: 37594272 PMCID: PMC10501219 DOI: 10.1128/iai.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Apolipoprotein E (ApoE) is a lipid transport protein that is hypothesized to suppress proinflammatory cytokine production, particularly after stimulation with Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). Studies using transgenic ApoE human replacement mice (APOE) expressing one of three different allelic variants suggest that there is a hierarchy in terms of responsiveness to proinflammatory stimuli such as APOE4/E4 > APOE3/E3 > APOE2/E2. In this study, we test the hypothesis that APOE genotype can also predict susceptibility to infection with the facultative intracellular gram-positive bacterium Listeria monocytogenes. We found that bone-marrow-derived macrophages isolated from aged APOE4/E4 mice expressed elevated levels of nitric oxide synthase 2 and were highly resistant to in vitro infection with L. monocytogenes compared to APOE3/E3 and APOE2/E2 mice. However, we did not find statistically significant differences in cytokine or chemokine output from either macrophages or whole splenocytes isolated from APOE2/E2, APOE3/E3, or APOE4/E4 mice following L. monocytogenes infection. In vivo, overall susceptibility to foodborne listeriosis also did not differ by APOE genotype in either young (2 mo old) or aged (15 mo old) C57BL/6 mice. However, we observed a sex-dependent susceptibility to infection in aged APOE2/E2 male mice and a sex-dependent resistance to infection in aged APOE4/E4 male mice that was not present in female mice. Thus, these results suggest that APOE genotype does not play an important role in innate resistance to infection with L. monocytogenes but may be linked to sex-dependent changes that occur during immune senescence.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Katie L. Alexander
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Front Immunol 2023; 14:1235675. [PMID: 37675103 PMCID: PMC10478088 DOI: 10.3389/fimmu.2023.1235675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
9
|
Marcinkiewicz AL, Brangulis K, Dupuis AP, Hart TM, Zamba‐Campero M, Nowak TA, Stout JL, Akopjana I, Kazaks A, Bogans J, Ciota AT, Kraiczy P, Kolokotronis SO, Lin YP. Structural evolution of an immune evasion determinant shapes pathogen host tropism. Proc Natl Acad Sci U S A 2023; 120:e2301549120. [PMID: 37364114 PMCID: PMC10319004 DOI: 10.1073/pnas.2301549120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.
Collapse
Affiliation(s)
- Ashley L. Marcinkiewicz
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
| | - Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, RigaLV-1067, Latvia
- Department of Human Physiology and Biochemistry, Riga Stradins University, RigaLV-1007, Latvia
| | - Alan P. Dupuis
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
| | - Thomas M. Hart
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
- Department of Biological Sciences, State University of New York Albany, Albany, NY12222
| | - Maxime Zamba‐Campero
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
| | - Tristan A. Nowak
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, State University of New York Albany, Albany, NY12222
| | - Jessica L. Stout
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, RigaLV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, RigaLV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, RigaLV-1067, Latvia
| | - Alexander T. Ciota
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, State University of New York Albany, Albany, NY12222
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt60596, Germany
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, Brooklyn, NY 11203-2098
- Institute for Genomics in Health, Brooklyn, NY11203-2098
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Brooklyn, NY11203-2098
- Department of Cell Biology, College of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY11203-2098
| | - Yi-Pin Lin
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, State University of New York Albany, Albany, NY12222
| |
Collapse
|
10
|
Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J Exp Med 2023; 220:e20210923. [PMID: 36809399 PMCID: PMC9960115 DOI: 10.1084/jem.20210923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Timothy H. Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N. Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinyuan Lei
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
11
|
Tucker JS, Cho J, Albrecht TM, Ferrell JL, D’Orazio SEF. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Infect Immun 2023; 91:e0006423. [PMID: 36916918 PMCID: PMC10112146 DOI: 10.1128/iai.00064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jooyoung Cho
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Taylor M. Albrecht
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Adhikari P, Florien N, Gupta S, Kaushal A. Recent Advances in the Detection of Listeria monocytogenes. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Listeria monocytogenes is the third-most severe pathogen causing a yearly outbreak of food poisoning in the world that proliferates widely in the environment. Infants, pregnant mothers, and immuno-compromised people are at high risk. Its ability to grow in both biotic and abiotic environments leads to epidemics that infect 5 out of 10 people annually. Because of the epithelial adhesion (by E-cadherin binding), it can suppress immune cells and thrive in the gastrointestinal tract till the brain through blood flow (E-cadherin). Microbial culture is still used as a gold standard, but takes a long time and often yields false positive results due to incompetence and temperature variations. Therefore, in order to treat it rather than using broad spectrum antibiotics, a standardized time-saving and highly specific technology for early detection is very important. It has been observed that the production of a particular antibody is delaying (so does the detection process) as a result of the inadequate understanding of the pathophysiology of the bacteria. This book chapter provides a brief summary of a pathogen as well as the scientific advances that led to its identification more easily.
Collapse
|
13
|
Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. eLife 2023; 12:e83534. [PMID: 36695568 PMCID: PMC9925056 DOI: 10.7554/elife.83534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.
Collapse
Affiliation(s)
- David B Heisler
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kristen A Johnson
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Duo H Ma
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Maikke B Ohlson
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lishu Zhang
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michelle Tran
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael E Abrams
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
14
|
Listeria monocytogenes Co-Opts the Host Exocyst Complex To Promote Internalin A-Mediated Entry. Infect Immun 2022; 90:e0032622. [PMID: 36255255 PMCID: PMC9753705 DOI: 10.1128/iai.00326-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes induces its internalization (entry) into intestinal epithelial cells through interaction of its surface protein, internalin A (InlA), with the human cell-cell adhesion molecule, E-cadherin. While InlA-mediated entry requires bacterial stimulation of actin polymerization, it remains unknown whether additional host processes are manipulated to promote internalization. Here, we show that interaction of InlA with E-cadherin induces the host membrane-trafficking process of polarized exocytosis, which augments uptake of Listeria. Imaging studies revealed that exocytosis is stimulated at sites of InlA-dependent internalization. Experiments inhibiting human N-ethylmaleimide-sensitive factor (NSF) demonstrated that exocytosis is needed for efficient InlA-mediated entry. Polarized exocytosis is mediated by the exocyst complex, which comprises eight proteins, including Sec6, Exo70, and Exo84. We found that Exo70 was recruited to sites of InlA-mediated entry. In addition, depletion of Exo70, Exo84, or Sec6 by RNA interference impaired entry without affecting surface levels of E-cadherin. Similar to binding of InlA to E-cadherin, homophilic interaction of E-cadherin molecules mobilized the exocyst and stimulated exocytosis. Collectively, these results demonstrate that ligation of E-cadherin induces exocytosis that promotes Listeria entry, and they raise the possibility that the exocyst might also control the normal function of E-cadherin in cell-cell adhesion.
Collapse
|
15
|
Wortel IMN, Kim S, Liu AY, Ibarra EC, Miller MJ. Listeria motility increases the efficiency of epithelial invasion during intestinal infection. PLoS Pathog 2022; 18:e1011028. [PMID: 36584235 PMCID: PMC9836302 DOI: 10.1371/journal.ppat.1011028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile "layered" cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils "hunt" for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection.
Collapse
Affiliation(s)
- Inge M. N. Wortel
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Annie Y. Liu
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enid C. Ibarra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
16
|
Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022; 185:4526-4540.e18. [PMID: 36347253 PMCID: PMC9691600 DOI: 10.1016/j.cell.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Anna B Seminara
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Emily R Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
17
|
von Hoesslin M, Kuhlmann M, de Almeida GP, Kanev K, Wurmser C, Gerullis AK, Roelli P, Berner J, Zehn D. Secondary infections rejuvenate the intestinal CD103
+
tissue-resident memory T cell pool. Sci Immunol 2022; 7:eabp9553. [DOI: 10.1126/sciimmunol.abp9553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resident T lymphocytes (T
RM
) protect tissues during pathogen reexposure. Although T
RM
phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103
+
T cells (a marker of T
RM
cells) and the other to specifically deplete CD103
−
T cells. Using these models, we observed that intestinal CD103
+
T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103
+
T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103
+
resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103
+
T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103
−
precursors. Moreover, in contrast to CD103
-
cells, which require antigen plus inflammation for their activation, CD103
+
T
RM
became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103
+
resident memory T cells lack secondary expansion potential and require CD103
−
precursors for their long-term maintenance.
Collapse
Affiliation(s)
- Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Pereira de Almeida
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ann-Katrin Gerullis
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Jacqueline Berner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Rahman S, Das AK. A subtractive proteomics and immunoinformatics approach towards designing a potential multi-epitope vaccine against pathogenic Listeriamonocytogenes. Microb Pathog 2022; 172:105782. [PMID: 36150556 DOI: 10.1016/j.micpath.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is the causative agent of listeriosis, which is dangerous for pregnant women, the elderly or individuals with a weakened immune system. Individuals with leukaemia, cancer, HIV/AIDS, kidney transplant and steroid therapy suffer from immunological damage are menaced. World Health Organization (WHO) reports that human listeriosis has a high mortality rate of 20-30% every year. To date, no vaccine is available to treat listeriosis. Thereby, it is high time to design novel vaccines against L. monocytogenes. Here, we present computational approaches to design an antigenic, stable and safe vaccine against the L. monocytogenes that could help to control the infections associated with the pathogen. Three vital pathogenic proteins of L. monocytogenes, such as Listeriolysin O (LLO), Phosphatidylinositol-specific phospholipase C (PI-PLC), and Actin polymerization protein (ActA), were selected using a subtractive proteomics approach to design the multi-epitope vaccine (MEV). A total of 5 Cytotoxic T-lymphocyte (CTL) and 9 Helper T-lymphocyte (HTL) epitopes were predicted from these selected proteins. To design the multi-epitope vaccine (MEV) from the selected proteins, CTL epitopes were joined with the AAY linker, and HTL epitopes were joined with the GPGPG linker. Additionally, a human β-defensin-3 (hBD-3) adjuvant was added to the N-terminal side of the final MEV construct to increase the immune response to the vaccine. The final MEV was predicted to be antigenic, non-allergen and non-toxic in nature. Physicochemical property analysis suggested that the MEV construct is stable and could be easily purified through the E. coli expression system. This in-silico study showed that MEV has a robust binding interaction with Toll-like receptor 2 (TLR2), a key player in the innate immune system. Current subtractive proteomics and immunoinformatics study provides a background for designing a suitable, safe and effective vaccine against pathogenic L. monocytogenes.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
19
|
Barreto de Albuquerque J, Altenburger LM, Abe J, von Werdt D, Wissmann S, Martínez Magdaleno J, Francisco D, van Geest G, Ficht X, Iannacone M, Bruggmann R, Mueller C, Stein JV. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8 + T cells lacking a gut-homing phenotype. Sci Immunol 2022; 7:eabf1861. [PMID: 35714202 DOI: 10.1126/sciimmunol.abf1861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.
Collapse
Affiliation(s)
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Remy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Lactiplantibacillus plantarum subsp. plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Foods 2022; 11:170. [PMID: 35053902 PMCID: PMC8775058 DOI: 10.3390/foods11020170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for many food outbreaks worldwide. This study aimed to investigate the single and combined effect of fructooligosaccharides (FOS) and Lactiplantibacillus plantarum subsp. plantarum CICC 6257 (L. plantarum) on the growth, adhesion, invasion, and virulence of gene expressions of Listeria monocytogenes 19112 serotype 4b (L. monocytogenes). Results showed that L. plantarum combined with 2% and 4% (w/v) FOS significantly (p < 0.05) inhibited the growth of L. monocytogenes (3-3.5 log10 CFU/mL reduction) at the incubation temperature of 10 °C and 25 °C. Under the same combination condition, the invasion rates of L. monocytogenes to Caco-2 and BeWo cells were reduced more than 90% compared to the result of the untreated group. After L. plantarum was combined with the 2% and 4% (w/v) FOS treatment, the gene expression of actin-based motility, sigma factor, internalin A, internalin B, positive regulatory factor A, and listeriolysin O significantly (p < 0.05) were reduced over 91%, 77%, 92%, 89%, 79%, and 79% compared to the result of the untreated group, respectively. The inhibition level of the L. plantarum and FOS combination against L. monocytogenes was higher than that of FOS or L. plantarum alone. Overall, these results indicated that the L. plantarum and FOS combination might be an effective formula against L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (X.L.); (B.G.); (Y.L.); (M.Z.A.); (X.W.)
| |
Collapse
|
21
|
The use of foodborne infection to evaluate bacterial pathogenesis and host response. Methods Cell Biol 2022; 168:299-314. [PMID: 35366988 PMCID: PMC10064862 DOI: 10.1016/bs.mcb.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foodborne bacterial infections are a major cause of gastrointestinal illness. Murine models have been widely used to interrogate bacterial pathogenesis and host response to better understand the pathogens that cause gastrointestinal disease. Humans are usually exposed to these pathogens through consumption of contaminated food products. However, most murine models of foodborne infection rely on oral gavage to deliver pathogens directly into the stomach. While expedient, the gavage procedure may lead to microabrasions in the esophagus that allow direct access of the pathogen to the blood, which can alter bacterial pathogenesis and the host response under study. In this chapter, the alternative approach of foodborne infection through the consumption of inoculated food is described using the human pathogen Listeria monocytogenes (Lm). A detailed protocol of this methodology is provided with details of assessing bacterial burden and the host immune response. Translation of these methods to other foodborne pathogens will allow a more accurate assessment of bacterial pathogenesis and host immunity in more physiologic murine models.
Collapse
|
22
|
Khairallah C, Bettke JA, Gorbatsevych O, Qiu Z, Zhang Y, Cho K, Kim KS, Chu TH, Imperato JN, Hatano S, Romanov G, Yoshikai Y, Puddington L, Surh CD, Bliska JB, van der Velden AWM, Sheridan BS. A blend of broadly-reactive and pathogen-selected Vγ4 Vδ1 T cell receptors confer broad bacterial reactivity of resident memory γδ T cells. Mucosal Immunol 2022; 15:176-187. [PMID: 34462572 PMCID: PMC8738109 DOI: 10.1038/s41385-021-00447-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
Although murine γδ T cells are largely considered innate immune cells, they have recently been reported to form long-lived memory populations. Much remains unknown about the biology and specificity of memory γδ T cells. Here, we interrogated intestinal memory Vγ4 Vδ1 T cells generated after foodborne Listeria monocytogenes (Lm) infection to uncover an unanticipated complexity in the specificity of these cells. Deep TCR sequencing revealed that a subset of non-canonical Vδ1 clones are selected by Lm infection, consistent with antigen-specific clonal expansion. Ex vivo stimulations and in vivo heterologous challenge infections with diverse pathogenic bacteria revealed that Lm-elicited memory Vγ4 Vδ1 T cells are broadly reactive. The Vγ4 Vδ1 T cell recall response to Lm, Salmonella enterica serovar Typhimurium (STm) and Citrobacter rodentium was largely mediated by the γδTCR as internalizing the γδTCR prevented T cell expansion. Both broadly-reactive canonical and pathogen-selected non-canonical Vδ1 clones contributed to memory responses to Lm and STm. Interestingly, some non-canonical γδ T cell clones selected by Lm infection also responded after STm infection, suggesting some level of cross-reactivity. These findings underscore the promiscuous nature of memory γδ T cells and suggest that pathogen-elicited memory γδ T cells are potential targets for broad-spectrum anti-infective vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Infections/immunology
- Bacterial Vaccines/immunology
- Cells, Cultured
- Citrobacter rodentium/physiology
- Cross Reactions
- High-Throughput Nucleotide Sequencing
- Immunity, Heterologous
- Listeria monocytogenes/physiology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Salmonella typhi/physiology
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Julie A Bettke
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Oleksandr Gorbatsevych
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yue Zhang
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kyungjin Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Timothy H Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yasunobo Yoshikai
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Adrianus W M van der Velden
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
23
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|
24
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Pitts MG, D'Orazio SEF. Enrichment of Neutrophils and Monocytes From the Liver Following Either Oral or Intravenous Listeria monocytogenes Infection. ACTA ACUST UNITED AC 2021; 130:e102. [PMID: 32710703 DOI: 10.1002/cpim.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes serious, often deadly, systemic disease in susceptible individuals such as neonates and the elderly. These facultative intracellular bacteria have been an invaluable tool in immunology research for more than three decades. Intravenous (i.v.) injection is the most commonly used transmission route in mice, but oral models of infection have also been developed in recent years, and these may be more appropriate for many studies. This article includes detailed instructions for use of either foodborne or i.v. inoculation of mice and discusses the rationale for choosing either model. Additionally, a protocol is provided for enrichment of neutrophils and monocytes from the infected liver in a manner that allows for determination of bacterial burden while still providing sufficient cells for use in flow cytometric analysis or in vitro assays. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Foodborne L. monocytogenes infection Support Protocol 1: Preparing L. monocytogenes for foodborne infection Basic Protocol 2: Intravenous L. monocytogenes infection Support Protocol 2: Preparing L. monocytogenes for intravenous infection Basic Protocol 3: Enrichment of non-parenchymal cells from the infected liver.
Collapse
Affiliation(s)
- Michelle G Pitts
- University of Kentucky College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, Kentucky
| | - Sarah E F D'Orazio
- University of Kentucky College of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Lexington, Kentucky
| |
Collapse
|
28
|
Gensollen T, Lin X, Zhang T, Pyzik M, See P, Glickman JN, Ginhoux F, Waldor M, Salmi M, Rantakari P, Blumberg RS. Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nat Immunol 2021; 22:699-710. [PMID: 34040226 PMCID: PMC8171892 DOI: 10.1038/s41590-021-00934-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
It is increasingly recognized that immune development within mucosal tissues is under the control of environmental factors during early life. However, the cellular mechanisms that underlie such temporally and regionally restrictive governance of these processes are unclear. Here, we uncover an extrathymic pathway of immune development within the colon that is controlled by embryonic but not bone marrow-derived macrophages, which determines the ability of these organs to receive invariant natural killer T (iNKT) cells and allow them to establish local residency. Consequently, early-life perturbations of fetal-derived macrophages result in persistent decreases of mucosal iNKT cells and is associated with later-life susceptibility or resistance to iNKT cell-associated mucosal disorders. These studies uncover a host developmental program orchestrated by ontogenically distinct macrophages that is regulated by microbiota, and they reveal an important postnatal function of macrophages that emerge in fetal life.
Collapse
Affiliation(s)
- Thomas Gensollen
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Xi Lin
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ting Zhang
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Matthew Waldor
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Correspondence to:
| |
Collapse
|
29
|
Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Aging-Induced Dysbiosis of Gut Microbiota as a Risk Factor for Increased Listeria monocytogenes Infection. Front Immunol 2021; 12:672353. [PMID: 33995413 PMCID: PMC8115019 DOI: 10.3389/fimmu.2021.672353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive foodborne Listeria monocytogenes infection causes gastroenteritis, septicemia, meningitis, and chorioamnionitis, and is associated with high case-fatality rates in the elderly. It is unclear how aging alters gut microbiota, increases risk of listeriosis, and causes dysbiosis post-infection. We used a geriatric murine model of listeriosis as human surrogate of listeriosis for aging individuals to study the effect of aging and L. monocytogenes infection. Aging and listeriosis-induced perturbation of gut microbiota and disease severity were compared between young-adult and old mice. Young-adult and old mice were dosed intragastrically with L. monocytogenes. Fecal pellets were collected pre- and post-infection for microbiome analysis. Infected old mice had higher Listeria colonization in liver, spleen, and feces. Metagenomics analyses of fecal DNA-sequences showed increase in α-diversity as mice aged, and infection reduced its diversity. The relative abundance of major bacterial phylum like, Bacteroidetes and Firmicutes remained stable over aging or infection, while the Verrucomicrobia phylum was significantly reduced only in infected old mice. Old mice showed a marked reduction in Clostridaiceae and Lactobacillaceae bacteria even before infection when compared to uninfected young-adult mice. L. monocytogenes infection increased the abundance of Porphyromonadaceae and Prevotellaceae in young-adult mice, while members of the Ruminococcaceae and Lachnospiraceae family were significantly increased in old mice. The abundance of the genera Blautia and Alistipes were significantly reduced post-infection in young-adult and in old mice as compared to their uninfected counterparts. Butyrate producing, immune-modulating bacterial species, like Pseudoflavonifractor and Faecalibacterium were significantly increased only in old infected mice, correlating with increased intestinal inflammatory mRNA up-regulation from old mice tissue. Histologic analyses of gastric tissues showed extensive lesions in the Listeria-infected old mice, more so in the non-glandular region and fundus than in the pylorus. Commensal species like Lactobacillus, Clostridiales, and Akkermansia were only abundant in infected young-adult mice but their abundance diminished in the infected old mice. Listeriosis in old mice enhances the abundance of butyrate-producing inflammatory members of the Ruminococcaceae/Lachnospiraceae bacteria while reducing/eliminating beneficial commensals in the gut. Results of this study indicate that, aging may affect the composition of gut microbiota and increase the risk of invasive L. monocytogenes infection.
Collapse
Affiliation(s)
- Mohammad S Alam
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Tammy Barnaba
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Carmen Tartera
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
30
|
Bortell N, Aguilera ER, Lenz LL. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog 2021; 17:e1009531. [PMID: 33878120 PMCID: PMC8087096 DOI: 10.1371/journal.ppat.1009531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/30/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Most individuals who consume foods contaminated with the bacterial pathogen Listeria monocytogenes (Lm) develop mild symptoms, while others are susceptible to life-threatening systemic infections (listeriosis). Although it is known that the risk of severe disease is increased in certain human populations, including the elderly, it remains unclear why others who consume contaminated food develop listeriosis. Here, we used a murine model to discover that pulmonary coinfections can impair the host's ability to adequately control and eradicate systemic Lm that cross from the intestines to the bloodstream. We found that the resistance of mice to oral Lm infection was dramatically reduced by coinfection with Streptococcus pneumoniae (Spn), a bacterium that colonizes the respiratory tract and can also cause severe infections in the elderly. Exposure to Spn or microbial products, including a recombinant Lm protein (L1S) and lipopolysaccharide (LPS), rendered otherwise resistant hosts susceptible to severe systemic Lm infection. In addition, we show that this increase in susceptibility was dependent on an increase in the production of interleukin-10 (IL-10) from Ncr1+ cells, including natural killer (NK) cells. Lastly, the ability of Ncr1+ cell derived IL-10 to increase disease susceptibility correlated with a dampening of both myeloid cell accumulation and myeloid cell phagocytic capacity in infected tissues. These data suggest that efforts to minimize inflammation in response to an insult at the respiratory mucosa render the host more susceptible to infections by Lm and possibly other pathogens that access the oral mucosa.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Elizabeth R. Aguilera
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laurel L. Lenz
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
31
|
Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infect Immun 2021; 89:IAI.00667-20. [PMID: 33431704 DOI: 10.1128/iai.00667-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The mucin Muc2 is a major constituent of the mucus layer that covers the intestinal epithelium and creates a barrier between epithelial cells and luminal commensal or pathogenic microorganisms. The Gram-positive foodborne pathogen Listeria monocytogenes can cause enteritis and also disseminate from the intestine to give rise to systemic disease. L. monocytogenes can bind to intestinal Muc2, but the influence of the Muc2 mucin barrier on L. monocytogenes intestinal colonization and systemic dissemination has not been explored. Here, we used an orogastric L. monocytogenes infection model to investigate the role of Muc2 in host defense against L. monocytogenes Compared to wild-type mice, we found that Muc2-/- mice exhibited heightened susceptibility to orogastric challenge with L. monocytogenes, with higher mortality, elevated colonic pathology, and increased pathogen burdens in both the intestinal tract and distal organs. In contrast, L. monocytogenes burdens were equivalent in wild-type and Muc2-/- animals when the pathogen was administered intraperitoneally, suggesting that systemic immune defects related to Muc2 deficiency do not explain the heightened pathogen dissemination observed in oral infections. Using a barcoded L. monocytogenes library to measure intrahost pathogen population dynamics, we found that Muc2-/- animals had larger pathogen founding population sizes in the intestine and distal sites than observed in wild-type animals. Comparisons of barcode frequencies suggested that the colon becomes the major source for seeding the internal organs in Muc2-/- animals. Together, our findings reveal that Muc2 mucin plays a key role in controlling L. monocytogenes colonization, dissemination, and population dynamics.
Collapse
|
32
|
Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NLF, Cox AD, Koo OK, Bhunia AK. Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12-24 h) stage of infection in a mouse model. NPJ Biofilms Microbiomes 2021; 7:18. [PMID: 33558519 PMCID: PMC7870835 DOI: 10.1038/s41522-021-00189-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12-24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Ok-Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
33
|
Innate immune responses to Listeria in vivo. Curr Opin Microbiol 2020; 59:95-101. [PMID: 33307408 DOI: 10.1016/j.mib.2020.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes (Lm) is a foodborne bacterial pathogen that causes listeriosis, a severe infection that manifests as bacteremia and meningo-encephalitis mostly in immunocompromised individuals, and maternal-fetal infection. A critical pathogenic determinant of Lm relies on its ability to actively cross the intestinal barrier, disseminate systemically and cross the blood-brain and placental barriers. Here we illustrate how Lm both evades innate immunity, favoring its dissemination in host tissues, and triggers innate immune defenses that participate to its control.
Collapse
|
34
|
Ammendolia MG, De Berardis B, Maurizi L, Longhi C. Exposure to TiO 2 Nanoparticles Increases Listeria monocytogenes Infection of Intestinal Epithelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2196. [PMID: 33158026 PMCID: PMC7693858 DOI: 10.3390/nano10112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology that could impact biological systems. We investigated the behavior of Listeria monocytogenes in intestinal epithelial cells pre-treated with either a low or high (1 and 20 µg/cm2) dose of TiO2 NPs. Our results indicate that the pre-treated cells with a low dose became more permissive to listeria infection; indeed, both adhesion and invasion were significantly increased compared to control. Increased invasion seems to be correlated to cytoskeletal alterations induced by nanoparticles, and higher bacterial survival might be due to the high levels of listeriolysin O that protects L. monocytogenes from reactive oxygen species (ROS). The potential risk of increased susceptibility to L. monocytogenes infection related to long-term intake of nanosized TiO2 at low doses should be considered.
Collapse
Affiliation(s)
- Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara De Berardis
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Linda Maurizi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| |
Collapse
|
35
|
Pickering AC, Fitzgerald JR. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Front Microbiol 2020; 11:594737. [PMID: 33193271 PMCID: PMC7658395 DOI: 10.3389/fmicb.2020.594737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Gram-positive bacterial pathogens have an array of proteins on their cell surface that mediate interactions with the host environment. In particular, bacterial cell wall-associated (CWA) proteins play key roles in both colonization and pathogenesis. Furthermore, some CWA proteins promote specialization for host-species or mediate colonization of specific anatomical niches within a host. In this mini review, we provide examples of the many ways by which major pathogens, such as Staphylococci, Streptococci and Listeria monocytogenes, utilize CWA proteins for both host- and niche-specialization. We describe different biological mechanisms mediated by CWA proteins including: the acquisition of iron from hemoglobin in the bloodstream, adherence to and invasion of host cells, and innate immune evasion through binding to the plasma proteins fibrinogen, immunoglobulin G, and complement. We also discuss the limitations of using animal models for understanding the role of specific CWA proteins in host-specialization and how transformative technologies, such as CRISPR-Cas, offer tremendous potential for developing transgenic models that simulate the host environment of interest. Improved understanding of the role of CWA proteins in niche- or host-specificity will allow the design of new therapeutic approaches which target key host–pathogen interactions underpinning Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Povolyaeva O, Chalenko Y, Kalinin E, Kolbasova O, Pivova E, Kolbasov D, Yurkov S, Ermolaeva S. Listeria monocytogenes Infection of Bat Pipistrellus nathusii Epithelial cells Depends on the Invasion Factors InlA and InlB. Pathogens 2020; 9:pathogens9110867. [PMID: 33105852 PMCID: PMC7690591 DOI: 10.3390/pathogens9110867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
L. monocytogenes is a widespread facultative intracellular pathogen. The range of natural hosts that supporting L. monocytogenes persistence in the environment has not been fully established yet. In this study, we were interested in the potential of L. monocytogenes to infect cells of bats, which are being increasingly recognized as a reservoir for microorganisms that are pathogenic to humans and domestic animals. A stable epithelial cell line was developed from the kidneys of Pipistrellus nathusii, a small bat widely distributed across Europe. The wild-type L. monocytogenes strain EGDe infected this cell line with an invasion efficiency of 0.0078 ± 0.0009%. Once it entered bat cells, L. monocytogenes doubled within about 70 min. When L. monocytogenes lacked either of the major invasion factors, InlA and InlB, invasion efficiency decreased by a factor of 10 and 25 respectively (p < 0.000001). The obtained results suggest that bat epithelial cells are susceptible to L. monocytogenes infection and that L. monocytogenes invasion of bat cells depends on the major invasion factors InlA and InlB. These results constitute the first report on in vitro studies of L. monocytogenes infection in bats.
Collapse
Affiliation(s)
- Olga Povolyaeva
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Russia; (O.P.); (O.K.); (E.P.); (D.K.); (S.Y.)
| | - Yaroslava Chalenko
- Federal Research Center for Virology and Microbiology (FRCVM), Nizhny Novgorod Research Veterinary Institute Branch, Laboratory of Molecular Microbiology, 603022 Nizhny Novgorod, Russia;
- Gamaleya Research Center of Epidemiology and Microbiology, Laboratory of Ecology of Pathogenic Bacteria, 123098 Moscow, Russia;
- Correspondence: ; Tel.: +7-92-5936-7317
| | - Egor Kalinin
- Gamaleya Research Center of Epidemiology and Microbiology, Laboratory of Ecology of Pathogenic Bacteria, 123098 Moscow, Russia;
| | - Olga Kolbasova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Russia; (O.P.); (O.K.); (E.P.); (D.K.); (S.Y.)
| | - Elena Pivova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Russia; (O.P.); (O.K.); (E.P.); (D.K.); (S.Y.)
| | - Denis Kolbasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Russia; (O.P.); (O.K.); (E.P.); (D.K.); (S.Y.)
| | - Sergey Yurkov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Russia; (O.P.); (O.K.); (E.P.); (D.K.); (S.Y.)
| | - Svetlana Ermolaeva
- Federal Research Center for Virology and Microbiology (FRCVM), Nizhny Novgorod Research Veterinary Institute Branch, Laboratory of Molecular Microbiology, 603022 Nizhny Novgorod, Russia;
- Gamaleya Research Center of Epidemiology and Microbiology, Laboratory of Ecology of Pathogenic Bacteria, 123098 Moscow, Russia;
| |
Collapse
|
37
|
Kannan S, Balakrishnan J, Govindasamy A. Listeria monocytogens - Amended understanding of its pathogenesis with a complete picture of its membrane vesicles, quorum sensing, biofilm and invasion. Microb Pathog 2020; 149:104575. [PMID: 33091581 DOI: 10.1016/j.micpath.2020.104575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a ubiquitous, intracellular foodborne pathogen that causes listeriosis in animals and humans. Pathogenic Listeria monocytogenes easily adapted to the conditions of human gastrointestinal tract and tolerate the counter changes such as acidity, bile, osmolarity, and antimicrobial peptides. They secrete specialized biologically active extra organ called membrane vesicles which comprises proteins, lipids, and lipopolysaccharides. Listerial vesicles possess functional versatility and play a significant role in pathogenesis by cell-free intercellular communication and toxin packaging. L. monocytogenes can attach promptly and decisively to inert substratum including intestinal mucosa, and forms biofilms and causes detrimental effects. Further, they invade the host cells through quorum sensing (QS) controlled virulence determinants and biofilms. The precise degree to which the bacterium retains the intracellular ambiance of host cells remains unknown. The machinery associated with intracellular survival, and the role of membrane vesicles, quorum sensing, and the Agr system in Listeria monocytogenes largely remains unclear. The current review focused to understand the role of membrane vesicles mediated pathogenesis biofilms, and delivers auxiliary impetus to understanding the potentials of virulence mediated invasion in Listeria monocytogenes.
Collapse
Affiliation(s)
- Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, India.
| | - Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal, India
| |
Collapse
|
38
|
Neurotropic Lineage III Strains of Listeria monocytogenes Disseminate to the Brain without Reaching High Titer in the Blood. mSphere 2020; 5:5/5/e00871-20. [PMID: 32938704 PMCID: PMC7494839 DOI: 10.1128/msphere.00871-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Progress in understanding the two naturally occurring central nervous system (CNS) manifestations of listeriosis (meningitis/meningoencephalitis and rhombencephalitis) has been limited by the lack of small animal models that can readily distinguish between these distinct infections. We report here that certain neurotropic strains of Listeria monocytogenes can spread to the brains of young otherwise healthy mice and cause neurological deficits without causing a fatal bacteremia. The novel strains described here fall within phylogenetic lineage III, a small collection of L. monocytogenes isolates that have not been well characterized to date. The animal model reported here mimics many features of human rhombencephalitis and will be useful for studying the mechanisms that allow L. monocytogenes to disseminate to the brain stem following natural foodborne transmission. Listeria monocytogenes is thought to colonize the brain using one of three mechanisms: direct invasion of the blood-brain barrier, transportation across the barrier by infected monocytes, and axonal migration to the brain stem. The first two pathways seem to occur following unrestricted bacterial growth in the blood and thus have been linked to immunocompromise. In contrast, cell-to-cell spread within nerves is thought to be mediated by a particular subset of neurotropic L. monocytogenes strains. In this study, we used a mouse model of foodborne transmission to evaluate the neurotropism of several L. monocytogenes isolates. Two strains preferentially colonized the brain stems of BALB/cByJ mice 5 days postinfection and were not detectable in blood at that time point. In contrast, infection with other strains resulted in robust systemic infection of the viscera but no dissemination to the brain. Both neurotropic strains (L2010-2198, a human rhombencephalitis isolate, and UKVDL9, a sheep brain isolate) typed as phylogenetic lineage III, the least characterized group of L. monocytogenes. Neither of these strains encodes InlF, an internalin-like protein that was recently shown to promote invasion of the blood-brain barrier. Acute neurologic deficits were observed in mice infected with the neurotropic strains, and milder symptoms persisted for up to 16 days in some animals. These results demonstrate that neurotropic L. monocytogenes strains are not restricted to any one particular lineage and suggest that the foodborne mouse model of listeriosis can be used to investigate the pathogenic mechanisms that allow L. monocytogenes to invade the brain stem. IMPORTANCE Progress in understanding the two naturally occurring central nervous system (CNS) manifestations of listeriosis (meningitis/meningoencephalitis and rhombencephalitis) has been limited by the lack of small animal models that can readily distinguish between these distinct infections. We report here that certain neurotropic strains of Listeria monocytogenes can spread to the brains of young otherwise healthy mice and cause neurological deficits without causing a fatal bacteremia. The novel strains described here fall within phylogenetic lineage III, a small collection of L. monocytogenes isolates that have not been well characterized to date. The animal model reported here mimics many features of human rhombencephalitis and will be useful for studying the mechanisms that allow L. monocytogenes to disseminate to the brain stem following natural foodborne transmission.
Collapse
|
39
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
40
|
Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathog 2020; 16:e1008497. [PMID: 32453780 PMCID: PMC7274463 DOI: 10.1371/journal.ppat.1008497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/05/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Molecular and cell-based studies suggest that HSPG-pathogen interactions promote pathogenesis by facilitating microbial attachment and invasion of host cells. However, the specific identity of HSPGs, precise mechanisms by which HSPGs promote pathogenesis, and the in vivo relevance of HSPG-pathogen interactions remain to be determined. HSPGs also modulate host responses to tissue injury and inflammation, but functions of HSPGs other than facilitating microbial attachment and internalization are understudied in infectious disease. Here we examined the role of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, in mouse models of Listeria monocytogenes (Lm) infection. We show that Sdc1-/- mice are significantly less susceptible to both intragastric and intravenous Lm infection compared to wild type (Wt) mice. This phenotype is not seen in Sdc3-/- or Sdc4-/- mice, indicating that ablation of Sdc1 causes a specific gain of function that enables mice to resist listeriosis. However, Sdc1 does not support Lm attachment or invasion of host cells, indicating that Sdc1 does not promote pathogenesis as a cell surface Lm receptor. Instead, Sdc1 inhibits the clearance of Lm before the bacterium gains access to its intracellular niche. Large intravascular aggregates of neutrophils and neutrophil extracellular traps (NETs) embedded with antimicrobial compounds are formed in Sdc1-/- livers, which trap and kill Lm. Lm infection induces Sdc1 shedding from the surface of hepatocytes in Wt livers, which is directly associated with the decrease in size of intravascular aggregated NETs. Furthermore, administration of purified Sdc1 ectodomains or DNase inhibits the formation of intravascular aggregated neutrophils and NETs and significantly increases the liver bacterial burden in Sdc1-/- mice. These data indicate that Lm induces Sdc1 shedding to subvert the activity of Sdc1 ectodomains to inhibit its clearance by intravascular aggregated NETs.
Collapse
|
41
|
Viret C, Rozières A, Duclaux-Loras R, Boschetti G, Nancey S, Faure M. Regulation of anti-microbial autophagy by factors of the complement system. MICROBIAL CELL 2020; 7:93-105. [PMID: 32274388 PMCID: PMC7136756 DOI: 10.15698/mic2020.04.712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system is a major component of innate immunity that participates in the defense of the host against a myriad of pathogenic microorganisms. Activation of complement allows for both local inflammatory response and physical elimination of microbes through phagocytosis or lysis. The system is highly efficient and is therefore finely regulated. In addition to these well-established properties, recent works have revealed that components of the complement system can be involved in a variety of other functions including in autophagy, the conserved mechanism that allows for the targeting and degradation of cytosolic materials by the lysosomal pathway after confining them into specialized organelles called autophagosomes. Besides impacting cell death, development or metabolism, the complement factors-autophagy connection can greatly modulate the cell autonomous, anti-microbial activity of autophagy: xenophagy. Both surface receptor-ligand interactions and intracellular interactions are involved in the modulation of the autophagic response to intracellular microbes by complement factors. Here, we review works that relate to the recently discovered connections between factors of the complement system and the functioning of autophagy in the context of host-pathogen relationship.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| |
Collapse
|
42
|
Alam MS, Cavanaugh C, Pereira M, Babu U, Williams K. Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int J Med Microbiol 2020; 310:151397. [PMID: 31974050 DOI: 10.1016/j.ijmm.2020.151397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Foodborne Listeria monocytogenes (Lm) causes serious illness and death in immunosuppressed hosts, including the elderly population. We investigated Lm susceptibility and inflammatory cytokines in geriatric mice. Young-adult and old mice were gavaged with a Lm strain Lmo-InlAm. Tissues were assayed for Lm burden and splenocytes were analyzed for Th1/Th2/Th17/Treg responses and expression of CD39 and CD73. Old Lm-infected mice lost body-weight dose-dependently, had higher Lm colonization, and showed higher inflammatory responses than Lm-infected young-adult mice. After infection, IL-17 levels increased significantly in old mice whereas IFN-γ levels were unchanged. Levels of IL-10 and Treg cells were increased in infected old mice as compared to infected young-adult mice. Age-dependent enhanced expression of CD39/CD73 was observed in purified Treg prior to infection, suggesting increased baseline adenosine production in old mice. Lm lysate-treated splenocytes from older mice produced significantly higher levels of IL-10, IL17, and IL-1β, produced less IFN-γ and IL-2, and proliferated less than splenocytes from young-adult mice. Data suggests that older mice maybe more susceptible to Lm infection due to an imbalance of Th cell responses with disproportionate and persistent anti-inflammatory responses. Lm infection enhanced differentiation of proinflammatory Th17 cells, which may also exacerbate pathological responses during listeriosis.
Collapse
Affiliation(s)
- M Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marion Pereira
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Uma Babu
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Kristina Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
43
|
Dulson SJ, Watkins EE, Crossman DK, Harrington LE. STAT4 Directs a Protective Innate Lymphoid Cell Response to Gastrointestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2472-2484. [PMID: 31562212 DOI: 10.4049/jimmunol.1900719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Innate lymphoid cells (ILCs) are strategically positioned at mucosal barrier surfaces where they respond quickly to infection or injury. Therefore, we hypothesized that ILCs are key contributors to the early immune response in the intestine against Listeria monocytogenes Using a modified strain of L. monocytogenes that mimics human gastrointestinal listeriosis in mice, we find ILCs to be essential for control of early replication of L. monocytogenes in the intestine as well as for restricted dissemination of bacteria to peripheral tissues. Specifically, group 1 ILCs (ILC1s) and group 3 ILCs (ILC3s) respond to infection with proliferation and IFN-γ and IL-22 production. Mechanistically, we show that the transcription factor STAT4 is required for the proliferative and IFN-γ effector response by ILC1s and ILC3s, and loss of STAT4 signaling in the innate immune compartment results in an inability to control bacterial growth and dissemination. Interestingly, STAT4 acts acutely as a transcription factor to promote IFN-γ production. Together, these data illustrate a critical role for ILCs in the early responses to gastrointestinal infection with L. monocytogenes and identify STAT4 as a central modulator of ILC-mediated protection.
Collapse
Affiliation(s)
- Sarah J Dulson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Emily E Watkins
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; and.,Heflin Center for Genomic Science, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laurie E Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
44
|
Pitts MG, D'Orazio SEF. Prostaglandin E 2 Inhibits the Ability of Neutrophils to Kill Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2019; 202:3474-3482. [PMID: 31061007 DOI: 10.4049/jimmunol.1900201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PGE2 is a lipid-signaling molecule with complex roles in both homeostasis and inflammation. Depending on the cellular context, PGE2 may also suppress certain immune responses. In this study, we tested whether PGE2 could inhibit bacterial killing by polymorphonuclear neutrophils (PMN) using a mouse model of foodborne listeriosis. We found that PGE2 pretreatment decreased the ability of PMN harvested from the bone marrow of either BALB/cByJ or C57BL/6J mice to kill Listeria monocytogenes in vitro. PGE2 treatment slowed the migration of PMN toward the chemoattractant leukotriene B4, decreased uptake of L. monocytogenes by PMN, and inhibited the respiratory burst of PMN compared with vehicle-treated cells. When immune cells were isolated from the livers of infected mice and tested directly ex vivo for the presence of PGE2, BALB/cByJ cells produced significantly more than C57BL/6J cells. Together, these data suggest that robust PGE2 production can suppress PMN effector functions, leading to decreased bacterial killing, which may contribute to the innate susceptibility of BALB/cByJ mice to infection with the facultative intracellular bacterial pathogen L. monocytogenes.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| |
Collapse
|
45
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
46
|
Elhadidy M, El-Tholoth M, Brocard AS. Implementation of Active Learning Approach to Teach Biorisk Management and Dual-Use Research of Concern in Egypt. APPLIED BIOSAFETY 2019; 24:100-110. [DOI: 10.1177/1535676019836998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Frequent reports of laboratory- and hospital-acquired infection in Egypt suggested a deficiency in handling hazardous samples and microorganisms among different researchers and professionals. The most common cause of laboratory incidents and potential exposure is often identified as a lack of biosafety training. Methods: In this study, we designed and implemented an effective laboratory biorisk management (BRM) training. Two workshops were delivered to 42 faculty members working in laboratories handling biological material in Egypt. The workshop modules were based on the global biorisk management curriculum developed by Sandia National Laboratories, with some modifications. The content was delivered to actively engaging participants in the learning process that included group work, case studies and scenarios, short presentations, demonstrations, hands-on activities, and questions and answers that created analytical thinking situations. These workshops introduced the concept of biorisk management, which combines risk assessment, risk mitigation, and performance systems and dual-use research of concern. Results: Results of pre-tests/post-tests revealed significant ( P < .001) improvement in knowledge acquisition among participants. Course evaluation surveys indicate that most participants felt that these teaching methods met their needs and that their personal laboratory practices would change as a result of the training course. Conclusion: We conclude that using varied hands-on strategies in teaching biorisk management provided the participants with the skills, tools, and confidence to guide their laboratory staff and colleagues on sustainable biorisk management to reduce the risks associated with infectious disease research in a laboratory setting.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
47
|
Adaptation of the Staphylococcus aureus leukocidin LukGH for the rabbit host by protein engineering. Biochem J 2019; 476:275-292. [PMID: 30559327 DOI: 10.1042/bcj20180691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Host defense against Staphylococcus aureus greatly depends on bacterial clearance by phagocytic cells. LukGH (or LukAB) is the most potent staphylococcal leukocidin towards human phagocytes in vitro, but its role in pathogenesis is obscured by the lack of suitable small animal models because LukGH has limited or no cytotoxicity towards rodent and rabbit compared with human polymorphonuclear cells (PMNs) likely due to an impaired interaction with its cellular receptor, CD11b. We aimed at adapting LukGH for the rabbit host by improving binding to the rabbit homolog of CD11b, specifically its I-domain (CD11b-I). Targeted amino acid substitutions were introduced into the LukH polypeptide to map its receptor interaction site(s). We found that the binding affinity of LukGH variants to the human and rabbit CD11b-I correlated well with their PMN cytotoxicity. Importantly, we identified LukGH variants with significantly improved cytotoxicity towards rabbit PMNs, when expressed recombinantly (10-15-fold) or by engineered S. aureus strains. These findings support the development of small animal models of S. aureus infection with the potential for demonstrating the importance of LukGH in pathogenesis.
Collapse
|
48
|
Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, Pinheiro J, Rudkin JK, Melgar S, Cotter PD, Hill C, Gahan CGM. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. MICROBIOME 2019; 7:7. [PMID: 30658700 PMCID: PMC6339339 DOI: 10.1186/s40168-019-0621-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/04/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. RESULTS We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. CONCLUSIONS We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.
Collapse
Affiliation(s)
- Vanessa Las Heras
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Pat G Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cara M Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Pinheiro
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Justine K Rudkin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
49
|
Drolia R, Bhunia AK. Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. Trends Microbiol 2019; 27:408-425. [PMID: 30661918 DOI: 10.1016/j.tim.2018.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial cell lining provides the first line of defense, yet foodborne pathogens such as Listeria monocytogenes can overcome this barrier; however, the underlying mechanism is not well understood. Though the host M cells in Peyer's patch and the bacterial invasion protein internalin A (InlA) are involved, L. monocytogenes can cross the gut barrier in their absence. The interaction of Listeria adhesion protein (LAP) with the host cell receptor (heat shock protein 60) disrupts the epithelial barrier, promoting bacterial translocation. InlA aids L. monocytogenes transcytosis via interaction with the E-cadherin receptor, which is facilitated by epithelial cell extrusion and goblet cell exocytosis; however, LAP-induced cell junction opening may be an alternative bacterial strategy for InlA access to E-cadherin and its translocation. Here, we summarize the strategies that L. monocytogenes employs to circumvent the intestinal epithelial barrier and compare and contrast these strategies with other enteric bacterial pathogens. Additionally, we provide implications of recent findings for food safety regulations.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|