1
|
Mandal N, Das A, Datta R. Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in Mucopolysaccharidosis VII. Neurobiol Dis 2025; 206:106825. [PMID: 39909083 DOI: 10.1016/j.nbd.2025.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Cognitive disability and neurodegeneration are prominent symptoms of Mucopolysaccharidosis VII (MPS VII), a lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. Yet, the mechanism of neurodegeneration in MPS VII remains unclear thereby limiting the scope of targeted therapy. We aimed to bridge this knowledge gap by employing the β-glucuronidase-deficient (CG2135-/-) Drosophila model of MPS VII. Taking cues from our initial observation that the adult CG2135-/- flies displayed enhanced susceptibility to starvation, we investigated potential impairments in the autophagy-lysosomal clearance machinery in their brain to dissect the underlying cause of neurodegeneration. We found that both autophagosome biogenesis and lysosome-mediated autophagosomal turnover were impaired in the CG2135-/- fly brain. This was evidenced by lower Atg8a-II levels, reduced Atg1 and Ref(2)P expression along with accumulation of lipofuscin-like inclusions and multilamellar bodies. Mitophagy was also found to be defective in their brain, resulting in buildup of enlarged mitochondria with distorted cristae and reduced membrane potential. This, in turn, compromised mitochondrial function, as reflected by drastically reduced brain ATP levels. Energy depletion triggered apoptosis in neuronal as well as non-neuronal cells of the CG2135-/- fly brain, where apoptotic dopaminergic neurons were also detected. Interestingly, resveratrol treatment corrected the mitophagy defect and prevented ATP depletion in the CG2135-/- fly brain, providing an explanation for its neuroprotective effects. Collectively, our study reveals a pharmacologically targetable mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in MPS VII.
Collapse
Affiliation(s)
- Nishan Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA.
| |
Collapse
|
2
|
Silva NJ, Anderson S, Mula SA, Escoubas CC, Nakajo H, Molofsky AV. Microglial cathepsin B promotes neuronal efferocytosis during brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626596. [PMID: 39677624 PMCID: PMC11642881 DOI: 10.1101/2024.12.03.626596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Half of all newborn neurons in the developing brain are removed via efferocytosis - the phagocytic clearance of apoptotic cells. Microglia are brain-resident professional phagocytes that play important roles in neural circuit development including as primary effectors of efferocytosis. While the mechanisms through which microglia recognize potential phagocytic cargo are widely studied, the lysosomal mechanisms that are necessary for efficient digestion are less well defined. Here we show that the lysosomal protease cathepsin B promotes microglial efferocytosis of neurons and restricts the accumulation of apoptotic cells during brain development. We show that cathepsin B is microglia-specific and enriched in brain regions where neuronal turnover is high in both zebrafish and mouse. Myeloid-specific cathepsin B knockdown in zebrafish led to dysmorphic microglia containing undigested dead cells, as well as an accumulation of dead cells in surrounding tissue. These effects where phenocopied in mice globally deficient for Ctsb using markers for apoptosis. We also observed behavioral impairments in both models. Live imaging studies in zebrafish revealed deficits in phagolysosomal fusion and acidification, and live imaging of cultured mouse microglia reveal delayed phagocytosis consistent with impairments in digestion and resolution of phagocytosis rather than initial uptake. These data reveal a novel role for microglial cathepsin B in mediating neuronal efferocytosis during typical brain development.
Collapse
|
3
|
Sang J, Lee Y. Age-dependent switched taste behavior to ribose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104194. [PMID: 39406300 DOI: 10.1016/j.ibmb.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Chemical detection is vital for animal survival, aiding in avoiding toxins and selecting nutritious foods. While Drosophila larvae exhibit appetitive feeding behavior toward ribose, an important sugar for RNA, nucleotide, and nucleoside synthesis, how adult Drosophila perceives ribose remains unclear. Through behavioral and electrophysiological investigations, we unexpectedly discovered that adult flies actively avoid ribose. Our external electrophysiological analysis revealed that ribose is detected through bitter-sensing gustatory receptor neurons in S-type sensilla, suggesting its perception as a bitter compound. Additionally, we identify painless as crucial for both ribose aversion and the neuronal response to ribose.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
4
|
Bhattacharjee A, Abuammar H, Juhász G. Lysosomal activity depends on TRPML1-mediated Ca 2+ release coupled to incoming vesicle fusions. J Biol Chem 2024; 300:107911. [PMID: 39433126 PMCID: PMC11599452 DOI: 10.1016/j.jbc.2024.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
The lysosomal cation channel TRPML1/MCOLN1 facilitates autophagic degradation during amino acid starvation based on studies involving long-term TRMPL1 modulation. Here we show that lysosomal activation (more acidic pH and higher hydrolase activity) depends on incoming vesicle fusions. We identify an immediate, calcium-dependent role of TRPML1 in lysosomal activation through promoting autophagosome-lysosome fusions and lysosome acidification within 10 to 20 min of its pharmacological activation. Lysosomes also become more fusion competent upon TRPML1 activation via increased transport of lysosomal SNARE proteins syntaxin 7 and VAMP7 by SNARE carrier vesicles. We find that incoming vesicle fusion is a prerequisite for lysosomal Ca2+ efflux that leads to acidification and hydrolytic enzyme activation. Physiologically, the first vesicle fusions likely trigger generation of the phospholipid PI(3,5)P2 that activates TRPML1, and allosteric TRPML1 activation in the absence of PI(3,5)P2 restores autophagosome-lysosome fusion and rescues abnormal SNARE sequestration within lysosomes. We thus identify a prompt role of TRPML1-mediated calcium signaling in lysosomal fusions, activation, and SNARE trafficking.
Collapse
Affiliation(s)
- Arindam Bhattacharjee
- Institute of Genetics, MTA Lendület Lysosomal Degradation Research Group, HUN-REN BRC Szeged, Szeged, Hungary
| | - Hussein Abuammar
- Institute of Genetics, MTA Lendület Lysosomal Degradation Research Group, HUN-REN BRC Szeged, Szeged, Hungary; Biology Doctoral School, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Institute of Genetics, MTA Lendület Lysosomal Degradation Research Group, HUN-REN BRC Szeged, Szeged, Hungary; Department of Anatomy, Cell and Developmental Biology, ELTE, Budapest, Hungary.
| |
Collapse
|
5
|
Rundell TB, Baranski TJ. Insect Models to Study Human Lipid Metabolism Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39405006 DOI: 10.1007/5584_2024_827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Disorders of lipid metabolism such as obesity have become some of the most significant diseases of the twenty-first century. Despite these metabolic diseases affecting more than a third of the population in highly industrialized nations, the mechanisms underlying disease development remain poorly understood. Insect models, such as Drosophila melanogaster, offer a means of systematically examining conserved lipid metabolism and its pathology. Over the past several decades, Drosophila melanogaster has been used to greatly expand on our knowledge of metabolic disease, often taking advantage of the extensive genetic tools available to researchers. Additionally, Drosophila melanogaster has served and will continue to serve as a powerful tool for validating the results of genome-wide approaches to the study of diseases. This chapter explores the advancements of insect models in the study of lipid metabolism disorders as well as highlight opportunities for future areas of research.
Collapse
Affiliation(s)
- Thomas B Rundell
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
6
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
7
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Sun J, Zhang H, Xie B, Shen Y, Zhu Y, Xu W, Zhang B, Song X. Transient stimulation of TRPMLs enhance the functionality of hDPCs and facilitate hair growth in mice. Cell Signal 2024; 119:111167. [PMID: 38604341 DOI: 10.1016/j.cellsig.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Beilei Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Yeh JY, Chao HC, Hong CL, Hung YC, Tzou FY, Hsiao CT, Li JL, Chen WJ, Chou CT, Tsai YS, Liao YC, Lin YC, Lin S, Huang SY, Kennerson M, Lee YC, Chan CC. A missense mutation in human INSC causes peripheral neuropathy. EMBO Mol Med 2024; 16:1091-1114. [PMID: 38589651 PMCID: PMC11099080 DOI: 10.1038/s44321-024-00062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.
Collapse
Affiliation(s)
- Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Hua-Chuan Chao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Cheng-Li Hong
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chien Hung
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Lin Li
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan
| | - Wen-Jie Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Tapiei, Taiwan
| | - Cheng-Ta Chou
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Concord, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Yi-Chung Lee
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhao Z, Xie L, Shi J, Liu T, Wang S, Huang J, Wu D, Zhang X. Neuroprotective Effect of Zishen Huoxue Decoction treatment on Vascular Dementia by activating PINK1/Parkin mediated Mitophagy in the Hippocampal CA1 Region. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117172. [PMID: 37709106 DOI: 10.1016/j.jep.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Huoxue Decoction (ZSHXD) is a Traditional Chinese Medicine (TCM) prescription for the treatment of vascular dementia (VD). Although the clinical effects of ZSHXD have been demonstrated, the molecular mechanisms underlying the neuroprotective effects of ZSHXD remain unclear. AIM OF THE STUDY To explore whether the neuroprotective effect of Zishen Huoxue Decoction (ZSHXD) treatment is associated with the PINK1/Parkin pathway-mediated mitophagy in hippocampal CA1 region of 2-VO model rats. MATERIALS AND METHODS Seventy-two male SD rats were randomly divided into the sham group, model group, Donepezil (0.45 mg/kg) group, ZSHXD low dose group (8.9 g/kg), ZSHXD medium dose group (17.8 g/kg), and ZSHXD high dose group (35.6 g/kg). Two-vessel occlusion (2-VO) rat model is established to evaluate the therapeutic effect of ZSHXD pretreatment. Hematoxylin-eosin (HE) staining is conducted to detect the morphological changes of neurons and the number of normal neurons in the hippocampal CA1 region. Then, the mitochondrial function and structure were reflected by the mitochondrial membrane potential (MMP) levels and transmission electron microscopy (TEM). Meanwhile, the expression of mitophagy related proteins mediated by PINK1/Parkin was detected by western blot (WB). After that, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by Elisa. At last, the apoptosis-related proteins Caspase-3、Bax、Bcl-2 were measured by WB. RESULTS The results depict that ZSHXD has dose-dependently improved the cognitive function in 2-VO model rats. It has also been showed that ZSHXD can alleviate neuron damage, rescue the mitochondrial structural injury and dysfunction in hippocampal CA1 region. Besides, ZSHXD has increased the activity of SOD and decreased the activity of MDA. In addition, ZSHXD can inhibit apoptosis with Caspase-3, Bax decreasing and Bcl-2 increasing. Specially, the protection of ZSHXD showed in 2-VO model rats is along with the upregulation of PINK1, Parkin and LC3-Ⅱ/Ⅰ, and downregulation of p62 in the hippocampal CA1 region. CONCLUSIONS This study reveals that ZSHXD protects the 2-VO model rats from ischemic injury by activating the PINK1/Parkin-mediated mitophagy in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Ziting Zhao
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Le Xie
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China
| | - Jiayi Shi
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China
| | - Tonghe Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China
| | - Shiliang Wang
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410006, Hunan Province, China
| | - Dahua Wu
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China.
| | - Xiuli Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China.
| |
Collapse
|
11
|
Peng YX, Liu ZY, Lin PX, Su SC, Gao CF, Wu SF. Reverse genetic study reveals the molecular targets of chordotonal organ TRPV channel modulators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105584. [PMID: 37945222 DOI: 10.1016/j.pestbp.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023]
Abstract
Insecticides have been widely used for the control of insect pests that have a significant impact on agriculture and human health. A better understanding of insecticide targets is needed for effective insecticide design and resistance management. Pymetrozine, afidopyropen and flonicamid are reported to target on proteins that located on insect chordotonal organs, resulting in the disruption of insect coordination and the inhibition of feeding. In this study, we systematically examined the susceptibility of six Drosophila melanogaster mutants (five transient receptor potential channels and one mechanoreceptor) to three commercially used insecticides, in order to identify the receptor subunits critical to the insect's response to insecticides. Our results showed that iav1, nan36aand wtrw1 mutants exhibited significantly reduced susceptibility to pymetrozine and afidopyropen, but not to flonicamid. The number of eggs produced by the three mutant females were significantly less than that of the w1118 strain. Meanwhile, the longevity of all male mutants and females of nan36a and wtrw1 mutants was significantly shorter than that of the w1118 strain as the control. However, we observed no gravitaxis defects in wtrw1 mutants and the anti-gravitaxis of wtrw1 mutants was abolished by pymetrozine. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that Nan as a TRPV subfamily member located in Drosophila chordotonal neurons, acting as a target of pymetrozine, which interferes with Drosophila and causes motor deficits with gravitaxis defects. Taken together, this study elucidates the interactions of pymetrozine and afidopyropen with TRPV channels, Nan and Iav, and TRPA channel, Wtrw. Our research provides another evidence that pymetrozine and afidopyropen might target on nan, iav and wtrw channels and provides insights into the development of sustainable pest management strategies.
Collapse
Affiliation(s)
- Yu-Xuan Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Zhao-Yu Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Pin-Xuan Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Shao-Cong Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China.
| |
Collapse
|
12
|
Sheng L, Shields EJ, Gospocic J, Sorida M, Ju L, Byrns CN, Carranza F, Berger SL, Bonini N, Bonasio R. Ensheathing glia promote increased lifespan and healthy brain aging. Aging Cell 2023; 22:e13803. [PMID: 36840361 PMCID: PMC10186613 DOI: 10.1111/acel.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Glia have an emergent role in brain aging and disease. In the Drosophila melanogaster brain, ensheathing glia function as phagocytic cells and respond to acute neuronal damage, analogous to mammalian microglia. We previously reported changes in glia composition over the life of ants and fruit flies, including a decline in the relative proportion of ensheathing glia with time. How these changes influence brain health and life expectancy is unknown. Here, we show that ensheathing glia but not astrocytes decrease in number during Drosophila melanogaster brain aging. The remaining ensheathing glia display dysregulated expression of genes involved in lipid metabolism and apoptosis, which may lead to lipid droplet accumulation, cellular dysfunction, and death. Inhibition of apoptosis rescued the decline of ensheathing glia with age, improved the neuromotor performance of aged flies, and extended lifespan. Furthermore, an expanded ensheathing glia population prevented amyloid-beta accumulation in a fly model of Alzheimer's disease and delayed the premature death of the diseased animals. These findings suggest that ensheathing glia play a vital role in regulating brain health and animal longevity.
Collapse
Affiliation(s)
- Lihong Sheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Emily J. Shields
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| | - Janko Gospocic
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| | - Masato Sorida
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Linyang Ju
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - China N. Byrns
- Medical Scientist Training ProgramUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Faith Carranza
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shelley L. Berger
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Nancy Bonini
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Roberto Bonasio
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| |
Collapse
|
13
|
Abstract
Lysosomes are acidic membrane-bound organelles that use hydrolytic enzymes to break down material through pathways such as endocytosis, phagocytosis, mitophagy, and autophagy. To function properly, intralysosomal environments are strictly controlled by a set of integral membrane proteins such as ion channels and transporters. Potassium ion (K+) channels are a large and diverse family of membrane proteins that control K+ flux across both the plasma membrane and intracellular membranes. In the plasma membrane, they are essential in both excitable and non-excitable cells for the control of membrane potential and cell signaling. However, our understanding of intracellular K+ channels is very limited. In this review, we summarize the recent development in studies of K+ channels in the lysosome. We focus on their characterization, potential roles in maintaining lysosomal membrane potential and lysosomal function, and pathological implications.
Collapse
Affiliation(s)
- Peng Huang
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Yi Wu
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| |
Collapse
|
14
|
Hull JJ, Brent CS, Fu T, Wang G, Christie AE. Mining Lygus hesperus (western tarnished plant bug) transcriptomic data for transient receptor potential channels: Expression profiling and functional characterization of a Painless homolog. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101027. [PMID: 36242802 DOI: 10.1016/j.cbd.2022.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
The transient receptor potential (TRP) family of cation channels are evolutionarily conserved proteins with critical roles in sensory physiology. Despite extensive studies in model species, knowledge of TRP channel functional diversity and physiological impact remains limited in many non-model insect species. To assess the TRP channel repertoire in a non-model agriculture pest species (Lygus hesperus), publicly available transcriptomic datasets were mined for potential homologs. Among the transcripts identified, 30 are predicted to encompass complete open reading frames that encode proteins representing each of the seven TRP channel subfamilies. Although no homologs were identified for the Pyrexia and Brivido channels, the TRP complement in L. hesperus exceeded the 13-16 channels reported in most insects. This diversity appears to be driven by a combination of alternative splicing, which impacted members of six subfamilies, and gene expansion of the TRPP subfamily. To validate the in silico data and provide more detailed analyses of L. hesperus TRP functionality, the putative Painless homolog was selected for more in depth analysis and its functional role in thermosensation examined in vitro. RT-PCR expression profiling revealed near ubiquitous expression of the Painless transcript throughout nymphal and adult development. Electrophysiological data generated using a Xenopus oocyte recombinant expression system indicated activation parameters for L. hesperus Painless homolog that are consistent with a role in noxious heat (40°-45 °C) thermosensation.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Ting Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Bureau of Agriculture and Rural Affairs, Shandong 276200, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Allan CY, Fisher PR. The Dictyostelium Model for Mucolipidosis Type IV. Front Cell Dev Biol 2022; 10:741967. [PMID: 35493081 PMCID: PMC9043695 DOI: 10.3389/fcell.2022.741967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Mucolipidosis type IV, a devastating neurological lysosomal disease linked to mutations in the transient receptor potential channel mucolipin 1, TRPML1, a calcium permeable channel in the membranes of vesicles in endolysosomal system. TRPML1 function is still being elucidated and a better understanding of the molecular pathogenesis of Mucolipidosis type IV, may facilitate development of potential treatments. We have created a model to study mucolipin function in the eukaryotic slime mould Dictyostelium discoideum by altering expression of its single mucolipin homologue, mcln. We show that in Dictyostelium mucolipin overexpression contributes significantly to global chemotactic calcium responses in vegetative and differentiated cells. Knockdown of mucolipin also enhances calcium responses in vegetative cells but does not affect responses in 6–7 h developed cells, suggesting that in developed cells mucolipin may help regulate local calcium signals rather than global calcium waves. We found that both knocking down and overexpressing mucolipin often, but not always, presented the same phenotypes. Altering mucolipin expression levels caused an accumulation or increased acidification of Lysosensor Blue stained vesicles in vegetative cells. Nutrient uptake by phagocytosis and macropinocytosis were increased but growth rates were not, suggesting defects in catabolism. Both increasing and decreasing mucolipin expression caused the formation of smaller slugs and larger numbers of fruiting bodies during multicellular development, suggesting that mucolipin is involved in initiation of aggregation centers. The fruiting bodies that formed from these smaller aggregates had proportionately larger basal discs and thickened stalks, consistent with a regulatory role for mucolipin-dependent Ca2+ signalling in the autophagic cell death pathways involved in stalk and basal disk differentiation in Dictyostelium. Thus, we have provided evidence that mucolipin contributes to chemotactic calcium signalling and that Dictyostelium is a useful model to study the molecular mechanisms involved in the cytopathogenesis of Mucolipidosis type IV.
Collapse
|
16
|
Dhakal S, Ren Q, Liu J, Akitake B, Tekin I, Montell C, Lee Y. Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection. eLife 2022; 11:56726. [PMID: 35416769 PMCID: PMC9068209 DOI: 10.7554/elife.56726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism through which the brain senses the metabolic state, enabling an animal to regulate food consumption, and discriminate between nutritional and non-nutritional foods is a fundamental question. Flies choose the sweeter non-nutritive sugar, L-glucose, over the nutritive D-glucose if they are not starved. However, under starvation conditions, they switch their preference to D-glucose, and this occurs independent of peripheral taste neurons. Here, we found that eliminating the TRPγ channel impairs the ability of starved flies to choose D-glucose. This food selection depends on trpγ expression in neurosecretory cells in the brain that express Diuretic hormone 44 (DH44). Loss of trpγ increases feeding, alters the physiology of the crop, which is the fly stomach equivalent, and decreases intracellular sugars and glycogen levels. Moreover, survival of starved trpγ flies is reduced. Expression of trpγ in DH44 neurons reverses these deficits. These results highlight roles for TRPγ in coordinating feeding with the metabolic state through expression in DH44 neuroendocrine cells.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Qiuting Ren
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jiangqu Liu
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Bradley Akitake
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Izel Tekin
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Youngseok Lee
- Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
18
|
Bais S, Norwillo A, Ruthel G, Herbert DR, Freedman BD, Greenberg RM. Schistosome TRPML channels play a role in neuromuscular activity and tegumental integrity. Biochimie 2022; 194:108-117. [PMID: 34990770 PMCID: PMC8950431 DOI: 10.1016/j.biochi.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma. Mono-therapeutic treatment of this disease with the drug praziquantel, presents challenges such as inactivity against immature worms and inability to prevent reinfection. Importantly, ion channels are important targets for many current anthelmintics. Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signaling pathways. TRPML channels are a class of Ca2+-permeable TRP channels expressed on endolysosomal membranes. They regulate lysosomal function and trafficking, among other functions. Schistosoma mansoni is predicted to have a single TRPML gene (SmTRPML) with two splice variants differing by 12 amino acids. This study focuses on exploring the physiological properties of SmTRPML channels to better understand their role in schistosomes. In mammalian cells expressing SmTRPML, TRPML activators elicit a rise in intracellular Ca2+. In these cells, SmTRPML localizes both to lysosomes and the plasma membrane. These same TRPML activators elicit an increase in adult worm motility that is dependent on SmTRPML expression, indicating a role for these channels in parasite neuromuscular activity. Suppression of SmTRPML in adult worms, or exposure of adult worms to TRPML inhibitors, results in tegumental vacuolations, balloon-like surface exudates, and membrane blebbing, similar to that found following TRPML loss in other organisms. Together, these findings indicate that SmTRPML may regulate the function of the schistosome endolysosomal system. Further, the role of SmTRPML in neuromuscular activity and in parasite tegumental integrity establishes this channel as a candidate anti-schistosome drug target.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Abigail Norwillo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
19
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
20
|
Wu Y, Xu M, Wang P, Syeda AKR, Huang P, Dong XP. Lysosomal potassium channels. Cell Calcium 2022; 102:102536. [PMID: 35016151 DOI: 10.1016/j.ceca.2022.102536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The lysosome is an important membrane-bound acidic organelle that is regarded as the degradative center as well as multifunctional signaling hub. It digests unwanted macromolecules, damaged organelles, microbes, and other materials derived from endocytosis, autophagy, and phagocytosis. To function properly, the ionic homeostasis and membrane potential of the lysosome are strictly regulated by transporters and ion channels. As the most abundant cation inside the cell, potassium ions (K+) are vital for lysosomal membrane potential and lysosomal calcium (Ca2+) signaling. However, our understanding about how lysosomal K+homeostasis is regulated and what are the functions of K+in the lysosome is very limited. Currently, two lysosomal K+channels have been identified: large-conductance Ca2+-activated K+channel (BK) and transmembrane Protein 175 (TMEM175). In this review, we summarize recent development in our understanding of K+ homeostasis and K+channels in the lysosome. We hope to guide the readers into a more in-depth discussion of lysosomal K+ channels in lysosomal physiology and human diseases.
Collapse
Affiliation(s)
- Yi Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Peng Huang
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada.
| |
Collapse
|
21
|
Drosophila D-idua Reduction Mimics Mucopolysaccharidosis Type I Disease-Related Phenotypes. Cells 2021; 11:cells11010129. [PMID: 35011691 PMCID: PMC8750945 DOI: 10.3390/cells11010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
Deficit of the IDUA (α-L-iduronidase) enzyme causes the lysosomal storage disorder mucopolysaccharidosis type I (MPS I), a rare pediatric neurometabolic disease, due to pathological variants in the IDUA gene and is characterized by the accumulation of the undegraded mucopolysaccharides heparan sulfate and dermatan sulfate into lysosomes, with secondary cellular consequences that are still mostly unclarified. Here, we report a new fruit fly RNAi-mediated knockdown model of a IDUA homolog (D-idua) displaying a phenotype mimicking some typical molecular features of Lysosomal Storage Disorders (LSD). In this study, we showed that D-idua is a vital gene in Drosophila and that ubiquitous reduction of its expression leads to lethality during the pupal stage, when the precise degradation/synthesis of macromolecules, together with a functional autophagic pathway, are indispensable for the correct development to the adult stage. Tissue-specific analysis of the D-idua model showed an increase in the number and size of lysosomes in the brain and muscle. Moreover, the incorrect acidification of lysosomes led to dysfunctional lysosome-autophagosome fusion and the consequent block of autophagy flux. A concomitant metabolic drift of glycolysis and lipogenesis pathways was observed. After starvation, D-idua larvae showed a quite complete rescue of both autophagy/lysosome phenotypes and metabolic alterations. Metabolism and autophagy are strictly interconnected vital processes that contribute to maintain homeostatic control of energy balance, and little is known about this regulation in LSDs. Our results provide new starting points for future investigations on the disease’s pathogenic mechanisms and possible pharmacological manipulations.
Collapse
|
22
|
Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells 2021; 10:cells10123537. [PMID: 34944044 PMCID: PMC8700256 DOI: 10.3390/cells10123537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy, the process of cellular self-degradation, is intrinsically tied to the degradative function of the lysosome. Several diseases have been linked to lysosomal degradative defects, including rare lysosomal storage disorders and neurodegenerative diseases. Ion channels and pumps play a major regulatory role in autophagy. Importantly, calcium signaling produced by TRPML1 (transient receptor potential cation channel, mucolipin subfamily) has been shown to regulate autophagic progression through biogenesis of autophagic-lysosomal organelles, activation of mTORC1 (mechanistic target of rapamycin complex 1) and degradation of autophagic cargo. ER calcium channels such as IP3Rs supply calcium for the lysosome, and lysosomal function is severely disrupted in the absence of lysosomal calcium replenishment by the ER. TRPML1 function is also regulated by LC3 (microtubule-associated protein light chain 3) and mTORC1, two critical components of the autophagic network. Here we provide an overview of the current knowledge about ion channels and pumps-including lysosomal V-ATPase (vacuolar proton-ATPase), which is required for acidification and hence proper enzymatic activity of lysosomal hydrolases-in the regulation of autophagy, and discuss how functional impairment of some of these leads to diseases.
Collapse
|
23
|
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 2021; 298:101487. [PMID: 34915027 PMCID: PMC8808176 DOI: 10.1016/j.jbc.2021.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+, and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homo-tetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.
Collapse
Affiliation(s)
- Xiaojing Song
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huaiyi Zhu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yanru Cao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heyang Ye
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
24
|
Wang H, Dong Y, Wan B, Ji Y, Xu Q. Identification and Characterization Analysis of Transient Receptor Potential Mucolipin Protein of Laodelphax striatellus Fallén. INSECTS 2021; 12:insects12121107. [PMID: 34940195 PMCID: PMC8706664 DOI: 10.3390/insects12121107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022]
Abstract
Transient receptor potential mucolipin (TRPML) protein in flies plays a pivotal role in Ca2+ ions release, resulting in membrane trafficking, autophagy and ion homeostasis. However, to date, the characterization of TRPML in agricultural pests remains unknown. Here, we firstly reported the TRPML of a destructive pest of gramineous crops, Laodelphax striatellus. The L. striatellus TRPML (Ls-TRPML) has a 1818 bp open reading frame, encoding 605 amino acid. TRPML in agricultural pests is evolutionarily conserved, and the expression of Ls-TRPML is predominately higher in the ovary than in other organs of L. striatellus at the transcript and protein level. The Bac-Bac system showed that Ls-TRPML localized in the plasma membrane, nuclear membrane and nucleus and co-localized with lysosome in Spodoptera frugiperda cells. The immunofluorescence microscopy analysis showed that Ls-TRPML localized in the cytoplasm and around the nuclei of the intestine cells or ovary follicular cells of L. striatellus. The results from the lipid-binding assay revealed that Ls-TRPML strongly bound to phosphatidylinositol-3,5-bisphosphate, as compared with other phosphoinositides. Overall, our results helped is identify and characterize the TRPML protein of L. striatellus, shedding light on the function of TRPML in multiple cellular processes in agricultural pests.
Collapse
Affiliation(s)
- Haitao Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
- Correspondence: (H.W.); (Q.X.); Tel.: +86-134-5181-6249 (H.W.); +86-133-2781-7381 (Q.X.)
| | - Yan Dong
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
| | - Baijie Wan
- Institute of Agricultural Sciences in Jiangsu Coastal Area, Yancheng 224002, China;
| | - Yinghua Ji
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
| | - Qiufang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.D.); (Y.J.)
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (H.W.); (Q.X.); Tel.: +86-134-5181-6249 (H.W.); +86-133-2781-7381 (Q.X.)
| |
Collapse
|
25
|
Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J 2021; 40:e107204. [PMID: 34435379 PMCID: PMC8488563 DOI: 10.15252/embj.2020107204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N‐deacetylase and N‐sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α‐tubulin. Loss of NDST3 promotes assembly of the V‐ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly‐dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Misko A, Wood L, Kiselyov K, Slaugenhaupt S, Grishchuk Y. Progress in elucidating pathophysiology of mucolipidosis IV. Neurosci Lett 2021; 755:135944. [PMID: 33965501 PMCID: PMC8253105 DOI: 10.1016/j.neulet.2021.135944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV (MLIV) is an autosomal-recessive disease caused by loss-of-function mutations in the MCOLN1 gene encoding the non-selective cationic lysosomal channel transient receptor potential mucolipin-1 (TRPML1). Patients with MLIV suffer from severe motor and cognitive deficits that manifest in early infancy and progressive loss of vision leading to blindness in the second decade of life. There are no therapies available for MLIV and the unmet medical need is extremely high. Here we review the spectrum of clinical presentations and the latest research in the MLIV pre-clinical model, with the aim of highlighting the progress in understanding the pathophysiology of the disease. These highlights include elucidation of the neurodevelopmental versus neurodegenerative features over the course of disease, hypomyelination as one of the major brain pathological disease hallmarks, and dysregulation of cytokines, with emerging evidence of IFN-gamma pathway upregulation in response to TRPML1 loss and pro-inflammatory activation of astrocytes and microglia. These scientific advances in the MLIV field provide a basis for future translational research, including biomarker and therapy development, that are desperately needed for this patient population.
Collapse
Affiliation(s)
- Albert Misko
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States
| | - Levi Wood
- Georgia W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Susan Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
27
|
Wong CO, Karagas NE, Jung J, Wang Q, Rousseau MA, Chao Y, Insolera R, Soppina P, Collins CA, Zhou Y, Hancock JF, Zhu MX, Venkatachalam K. Regulation of longevity by depolarization-induced activation of PLC-β-IP 3R signaling in neurons. Proc Natl Acad Sci U S A 2021; 118:e2004253118. [PMID: 33859040 PMCID: PMC8072327 DOI: 10.1073/pnas.2004253118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cβ (PLC-β) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-β activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-β-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-β/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-β-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | - Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Morgan A Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Ryan Insolera
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Pushpanjali Soppina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030;
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
28
|
Abstract
Lysosomal calcium is emerging as a modulator of autophagy and lysosomal compartment, an obligatory partner to complete the autophagic pathway. A variety of specific signals such as nutrient deprivation or oxidative stress can trigger lysosomal calcium-mediated nuclear translocation of the transcription factor EB (TFEB), a master regulator of global lysosomal function. Also, lysosomal calcium can promote the formation of autophagosome vesicles (AVs) by a mechanism that requires the production of the phosphoinositide PI3P by the VPS34 autophagic complex and the activation of the energy-sensing kinase AMPK. Additionally, lysosomal calcium plays a role in membrane fusion and fission events involved in cellular processes such as endocytic maturation, autophagosome-lysosome fusion, lysosomal exocytosis, and lysosomal reformation upon autophagy completion. Lysosomal calcium-dependent functions are defective in cellular and animal models of the non-selective cation channel TRPML1, whose mutations in humans cause the neurodegenerative lysosomal storage disease mucolipidosis type IV (MLIV). Lysosomal calcium is not only acting as a positive regulator of autophagy, but it is also responsible for turning-off this process through the reactivation of the mTOR kinase during prolonged starvation. More recently, it has been described the role of lysosomal calcium on an elegant sequence of intracellular signaling events such as membrane repair, lysophagy, and lysosomal biogenesis upon the induction of different grades of lysosomal membrane damage. Here, we will discuss these novel findings that re-define the importance of the lysosome and lysosomal calcium signaling at regulating cellular metabolism.
Collapse
|
29
|
Shrestha B, Lee Y. Mechanisms of DEET gustation in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103550. [PMID: 33549816 DOI: 10.1016/j.ibmb.2021.103550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
DEET is the most widely used active ingredient in insect repellents and offers protection against insect bites. We previously reported that DEET suppresses the feeding behavior of Drosophila, which is guided by gustatory receptors (GRs) in bitter-sensing gustatory receptor neurons. Here, we sought to identify new candidates using egg-laying assays. Upon screening all GR mutants, GR89a was identified as a potential DEET receptor. Gr89a mutants exhibited reduced oviposition avoidance, feeding avoidance, and electrophysiological responses compared to Gr32a, Gr33a, and Gr66a mutants. However, GR89a was found to modulate DEET avoidance, as demonstrated by genetic and RNA interference assays. Furthermore, we found that DEET ingestion severely affected larval and pupal development and survival, and therefore may act as an effective larvicide.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
30
|
Rigon L, De Filippis C, Napoli B, Tomanin R, Orso G. Exploiting the Potential of Drosophila Models in Lysosomal Storage Disorders: Pathological Mechanisms and Drug Discovery. Biomedicines 2021; 9:biomedicines9030268. [PMID: 33800050 PMCID: PMC8000850 DOI: 10.3390/biomedicines9030268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
Collapse
Affiliation(s)
- Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Correspondence:
| | - Concetta De Filippis
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Barbara Napoli
- Laboratory of Molecular Biology, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Rosella Tomanin
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
31
|
Wang LX, Niu CD, Wu SF, Gao CF. Molecular characterizations and expression profiles of transient receptor potential channels in the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104780. [PMID: 33771259 DOI: 10.1016/j.pestbp.2021.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Transient receptor potential (TRP) is a superfamily of important cation channels located on the cell membrane. It can regulate almost all sensory modality and control a series of behaviors, including hearing, locomotion, gentle touch, temperature sensation, dry air and food texture detection. The expression profiles of TRP channels have been well documented in the model insect Drosophila melanogaster. However, little is known about the TRP channels of agricultural pests. In this study, we cloned 9 TRP ion channel genes from brown planthopper. Their amino acid sequences are highly conserved with homologues of other insects and have typical TRP channel characteristics: six transmembrane domains (TM1 - TM6) and a pore region between TM5 and TM6. These TRP channels of N. lugens were expressed in all developmental stages and various body parts. The expression levels of almost all TRP channels were relatively higher in adults than nymph stages, and lowest in the eggs. Antenna and abdomen were the main body parts with high expression of these genes. Furthermore, the mRNA levels of these TRP genes were significantly decreased in the third-instar nymphs injected with double-stranded RNA (dsRNA). The survival rate of different TRP dsRNA injected nymphs all exceeded 81%, which was no significant difference compared with the control group. These results suggested that these 9 TRP channels are expressed throughout the body and all ages of the brown planthopper, and are involved in regulating multiple physiological and behavioral processes. The identification of TRP channel genes in this study not only provides a foundation for further exploring the potential roles of TRP channels, but also serves as targets to develop new insecticides for the control of agricultural pests.
Collapse
Affiliation(s)
- Li-Xiang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chun-Dong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China.
| |
Collapse
|
32
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
33
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
34
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
35
|
Ma Z, Freeman MR. TrpML-mediated astrocyte microdomain Ca 2+ transients regulate astrocyte-tracheal interactions. eLife 2020; 9:e58952. [PMID: 33284108 PMCID: PMC7721441 DOI: 10.7554/elife.58952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes exhibit spatially-restricted near-membrane microdomain Ca2+transients in their fine processes. How these transients are generated and regulate brain function in vivo remains unclear. Here we show that Drosophila astrocytes exhibit spontaneous, activity-independent microdomain Ca2+ transients in their fine processes. Astrocyte microdomain Ca2+ transients are mediated by the TRP channel TrpML, stimulated by reactive oxygen species (ROS), and can be enhanced in frequency by the neurotransmitter tyramine via the TyrRII receptor. Interestingly, many astrocyte microdomain Ca2+ transients are closely associated with tracheal elements, which dynamically extend filopodia throughout the central nervous system (CNS) to deliver O2 and regulate gas exchange. Many astrocyte microdomain Ca2+ transients are spatio-temporally correlated with the initiation of tracheal filopodial retraction. Loss of TrpML leads to increased tracheal filopodial numbers, growth, and increased CNS ROS. We propose that local ROS production can activate astrocyte microdomain Ca2+ transients through TrpML, and that a subset of these microdomain transients promotes tracheal filopodial retraction and in turn modulate CNS gas exchange.
Collapse
Affiliation(s)
- Zhiguo Ma
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
36
|
The intracellular Ca 2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proc Natl Acad Sci U S A 2020; 117:30775-30786. [PMID: 33199609 PMCID: PMC7720193 DOI: 10.1073/pnas.2016959117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is localized to late endosomes and lysosomes. Here, we investigated the function of TRPML1 channels in regulating lower urinary tract (LUT) smooth muscle cell (SMC) contractility. We found that TRPML1 forms a stable signaling complex with ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). We further showed that TRPML1 channels are important for initiating an essential Ca2+-signaling negative feedback mechanism between RyRs on SR membranes and K+ channels on the plasma membrane. Knockout of TRPML1 channels in mice impaired this pathway, resulting in LUT smooth muscle hypercontractility and symptoms of overactive bladder. Our findings demonstrate a critical role for TRPML1 in LUT function. TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is predominantly localized to the membranes of late endosomes and lysosomes (LELs). Intracellular release of Ca2+ through TRPML1 is thought to be pivotal for maintenance of intravesicular acidic pH as well as the maturation, fusion, and trafficking of LELs. Interestingly, genetic ablation of TRPML1 in mice (Mcoln1−/−) induces a hyperdistended/hypertrophic bladder phenotype. Here, we investigated this phenomenon further by exploring an unconventional role for TRPML1 channels in the regulation of Ca2+-signaling activity and contractility in bladder and urethral smooth muscle cells (SMCs). Four-dimensional (4D) lattice light-sheet live-cell imaging showed that the majority of LELs in freshly isolated bladder SMCs were essentially immobile. Superresolution microscopy revealed distinct nanoscale colocalization of LEL-expressing TRPML1 channels with ryanodine type 2 receptors (RyR2) in bladder SMCs. Spontaneous intracellular release of Ca2+ from the sarcoplasmic reticulum (SR) through RyR2 generates localized elevations of Ca2+ (“Ca2+ sparks”) that activate plasmalemmal large-conductance Ca2+-activated K+ (BK) channels, a critical negative feedback mechanism that regulates smooth muscle contractility. This mechanism was impaired in Mcoln1−/− mice, which showed diminished spontaneous Ca2+ sparks and BK channel activity in bladder and urethra SMCs. Additionally, ex vivo contractility experiments showed that loss of Ca2+ spark–BK channel signaling in Mcoln1−/− mice rendered both bladder and urethra smooth muscle hypercontractile. Voiding activity analyses revealed bladder overactivity in Mcoln1−/− mice. We conclude that TRPML1 is critically important for Ca2+ spark signaling, and thus regulation of contractility and function, in lower urinary tract SMCs.
Collapse
|
37
|
Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 2020; 220:107713. [PMID: 33141027 DOI: 10.1016/j.pharmthera.2020.107713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
The old Greek saying "Panta Rhei" ("everything flows") is true for all life and all living things in general. It also becomes nicely evident when looking closely into cells. There, material from the extracellular space is taken up by endocytic processes and transported to endosomes where it is sorted either for recycling or degradation. Cargo is also packaged for export through exocytosis involving the Golgi network, lysosomes and other organelles. Everything in this system is in constant motion and many proteins are necessary to coordinate transport along the different intracellular pathways to avoid chaos. Among these proteins are ion channels., in particular TRPML channels (mucolipins) and two-pore channels (TPCs) which reside on endosomal and lysosomal membranes to speed up movement between organelles, e.g. by regulating fusion and fission; they help readjust pH and osmolarity changes due to such processes, or they promote exocytosis of export material. Pathophysiologically, these channels are involved in neurodegenerative, metabolic, retinal and infectious diseases, cancer, pigmentation defects, and immune cell function, and thus have been proposed as novel pharmacological targets, e.g. for the treatment of lysosomal storage disorders, Duchenne muscular dystrophy, or different types of cancer. Here, we discuss the similarities but also differences of TPCs and TRPMLs in regulating phagocytosis, autophagy and lysosomal exocytosis, and we address the contradictions and open questions in the field relating to the roles TPCs and TRPMLs play in these different processes.
Collapse
|
38
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Yan Y, Wang Y, Ding J, Lu L, Ke GJ, Dong K. TRPML1 Inhibited Photoreceptor Apoptosis and Protected the Retina by Activation of Autophagy in Experimental Retinal Detachment. Ophthalmic Res 2020; 64:587-594. [PMID: 33027790 DOI: 10.1159/000512104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE In this study, we used a rat model of retinal detachment (RD) to investigate the effects of transient receptor potential mucolipin 1 (TRPML1) on photoreceptor cells and the underlying mechanism. METHODS An RD model was established by subretinal injection of sodium hyaluronate, and mucolipin synthetic agonist 1 (ML-SA1) and dimethyl sulphoxide were subretinally injected after RD induction. Retinal morphology was observed using haematoxylin-eosin staining, and the apoptosis of photoreceptor cells was detected by transmission electron microscopy. Reactive oxygen species (ROS) were examined with an ROS detection kit. The retinal expression levels of TRPML1, the autophagy-related protein microtubule-associated protein 1 light chain 3 (LC3), Beclin 1, and cleaved caspase 3 were detected by Western blotting. The Morris water maze was used to test vision-dependent behaviour. RESULTS We found that retinal structure and the outer nuclear layer were improved and that the apoptosis of photoreceptor cells was reduced after ML-SA1 injection. The expression of ROS was reduced, and the loss of TRPML1 was inhibited after ML-SA1 treatment. The LC3-II to LC3-I ratio and Beclin 1 expression were enhanced, and cleaved caspase 3 expression was decreased after ML-SA1 treatment. Treatment with ML-SA1 also improved vision-dependent behaviour. CONCLUSIONS Our findings suggest that ML-SA1 attenuates photoreceptor apoptosis and improves vision-dependent behaviour by activation of autophagy.
Collapse
Affiliation(s)
- Yuanye Yan
- Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yisai Wang
- Department of Ophthalmology, Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Ophthalmology, The Second People's Hospital of Hefei, Hefei, China
| | - Li Lu
- Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gen-Jie Ke
- Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Dong
- Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
40
|
Roles of TRP Channels in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289194. [PMID: 32963700 PMCID: PMC7492880 DOI: 10.1155/2020/7289194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Transient receptor potential (TRP) proteins consist of a superfamily of cation channels that have been involved in diverse physiological processes in the brain as well as in the pathogenesis of neurological disease. TRP channels are widely expressed in the brain, including neurons and glial cells, as well as in the cerebral vascular endothelium and smooth muscle. Members of this channel superfamily show a wide variety of mechanisms ranging from ligand binding to voltage, physical, and chemical stimuli, implying the promising therapeutic potential of TRP in neurological diseases. In this review, we focus on the physiological functions of TRP channels in the brain and the pathological roles in neurological disorders to explore future potential neuroprotective strategies.
Collapse
|
41
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
42
|
Mepyans M, Andrzejczuk L, Sosa J, Smith S, Herron S, DeRosa S, Slaugenhaupt SA, Misko A, Grishchuk Y, Kiselyov K. Early evidence of delayed oligodendrocyte maturation in the mouse model of mucolipidosis type IV. Dis Model Mech 2020; 13:dmm044230. [PMID: 32586947 PMCID: PMC7406328 DOI: 10.1242/dmm.044230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal disease caused by mutations in the MCOLN1 gene that encodes the endolysosomal transient receptor potential channel mucolipin-1, or TRPML1. MLIV results in developmental delay, motor and cognitive impairments, and vision loss. Brain abnormalities include thinning and malformation of the corpus callosum, white-matter abnormalities, accumulation of undegraded intracellular 'storage' material and cerebellar atrophy in older patients. Identification of the early events in the MLIV course is key to understanding the disease and deploying therapies. The Mcoln1-/- mouse model reproduces all major aspects of the human disease. We have previously reported hypomyelination in the MLIV mouse brain. Here, we investigated the onset of hypomyelination and compared oligodendrocyte maturation between the cortex/forebrain and cerebellum. We found significant delays in expression of mature oligodendrocyte markers Mag, Mbp and Mobp in the Mcoln1-/- cortex, manifesting as early as 10 days after birth and persisting later in life. Such delays were less pronounced in the cerebellum. Despite our previous finding of diminished accumulation of the ferritin-bound iron in the Mcoln1-/- brain, we report no significant changes in expression of the cytosolic iron reporters, suggesting that iron-handling deficits in MLIV occur in the lysosomes and do not involve broad iron deficiency. These data demonstrate very early deficits of oligodendrocyte maturation and critical regional differences in myelination between the forebrain and cerebellum in the mouse model of MLIV. Furthermore, they establish quantitative readouts of the MLIV impact on early brain development, useful to gauge efficacy in pre-clinical trials.
Collapse
Affiliation(s)
- Molly Mepyans
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Livia Andrzejczuk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jahree Sosa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sierra Smith
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Shawn Herron
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Samantha DeRosa
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Albert Misko
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
43
|
Rimal S, Sang J, Dhakal S, Lee Y. Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster. Mol Cells 2020; 43:530-538. [PMID: 32451368 PMCID: PMC7332364 DOI: 10.14348/molcells.2020.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 01/23/2023] Open
Abstract
The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
44
|
Thakore P, Pritchard HAT, Griffin CS, Yamasaki E, Drumm BT, Lane C, Sanders KM, Feng Earley Y, Earley S. TRPML1 channels initiate Ca 2+ sparks in vascular smooth muscle cells. Sci Signal 2020; 13:13/637/eaba1015. [PMID: 32576680 DOI: 10.1126/scisignal.aba1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel localized to the membranes of endosomes and lysosomes and is not present or functional on the plasma membrane. Ca2+ released from endosomes and lysosomes into the cytosol through TRPML1 channels is vital for trafficking, acidification, and other basic functions of these organelles. Here, we investigated the function of TRPML1 channels in fully differentiated contractile vascular smooth muscle cells (SMCs). In live-cell confocal imaging studies, we found that most endosomes and lysosomes in freshly isolated SMCs from cerebral arteries were essentially immobile. Using nanoscale super-resolution microscopy, we found that TRPML1 channels present in late endosomes and lysosomes formed stable complexes with type 2 ryanodine receptors (RyR2) on the sarcoplasmic reticulum (SR). Spontaneous Ca2+ signals resulting from the release of SR Ca2+ through RyR2s ("Ca2+ sparks") and corresponding Ca2+-activated K+ channel activity are critically important for balancing vasoconstriction. We found that these signals were essentially absent in SMCs from TRPML1-knockout (Mcoln1-/- ) mice. Using ex vivo pressure myography, we found that loss of this critical signaling cascade exaggerated the vasoconstrictor responses of cerebral and mesenteric resistance arteries. In vivo radiotelemetry studies showed that Mcoln1-/- mice were spontaneously hypertensive. We conclude that TRPML1 is crucial for the initiation of Ca2+ sparks in SMCs and the regulation of vascular contractility and blood pressure.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Caoimhin S Griffin
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Conor Lane
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
45
|
Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 2020; 21:ijms21114181. [PMID: 32545371 PMCID: PMC7312350 DOI: 10.3390/ijms21114181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.
Collapse
|
46
|
Lloyd-Evans E, Waller-Evans H. Lysosomal Ca 2+ Homeostasis and Signaling in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035311. [PMID: 31653642 DOI: 10.1101/cshperspect.a035311] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is an essential process in all cells that is maintained by a plethora of channels, pumps, transporters, receptors, and intracellular Ca2+ sequestering stores. Changes in cytosolic Ca2+ concentration govern processes as far reaching as fertilization, cell growth, and motility through to cell death. In recent years, lysosomes have emerged as a major intracellular Ca2+ storage organelle with an increasing involvement in triggering or regulating cellular functions such as endocytosis, autophagy, and Ca2+ release from the endoplasmic reticulum. This review will summarize recent work in the area of lysosomal Ca2+ signaling and homeostasis, including newly identified functions, and the involvement of lysosome-derived Ca2+ signals in human disease. In addition, we explore recent controversies in the techniques used for measurement of lysosomal Ca2+ content.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Helen Waller-Evans
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
47
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
48
|
Kidera H, Hatabu T, Takahashi KH. Apoptosis inhibition mitigates aging effects in Drosophila melanogaster. Genetica 2020; 148:69-76. [PMID: 32219590 DOI: 10.1007/s10709-020-00088-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Aging is a natural biological process that results in progressive loss of cell, tissue, and organ function. One of the causing factors of the aging process is the decrease in muscle mass, which has not been fully verified in Drosophila. Apoptotic cell death may result in aberrant cell loss and can eventually diminish tissue function and muscle atrophy. If so, inhibition of apoptosis may prolong longevity and reduce motor function and muscle mass decline with age in Drosophila flies. Here, we used Drosophila melanogaster as study material, and induced the overexpression of Drosophila inhibitor of apoptosis protein 1 gene to inhibit apoptosis, and investigated the effect of apoptosis inhibition on the longevity and age-related declines in flight and climbing ability and muscle mass. As a result, the inhibition of apoptosis tended to mitigate the aging effects and prolonged longevity and reduced climbing ability decline with age. The current study suggests that apoptosis inhibition could mitigate the aging effects in D. melanogaster. Although such effects have already been known in mammals, the current results suggest that the apoptosis may play a similar role in insects as well.
Collapse
Affiliation(s)
- Hiroaki Kidera
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Toshimitsu Hatabu
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuo H Takahashi
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
49
|
Darios F, Stevanin G. Impairment of Lysosome Function and Autophagy in Rare Neurodegenerative Diseases. J Mol Biol 2020; 432:2714-2734. [PMID: 32145221 PMCID: PMC7232018 DOI: 10.1016/j.jmb.2020.02.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Rare genetic diseases affect a limited number of patients, but their etiology is often known, facilitating the development of reliable animal models and giving the opportunity to investigate physiopathology. Lysosomal storage disorders are a group of rare diseases due to primary alteration of lysosome function. These diseases are often associated with neurological symptoms, which highlighted the importance of lysosome in neurodegeneration. Likewise, other groups of rare neurodegenerative diseases also present lysosomal alteration. Lysosomes fuse with autophagosomes and endosomes to allow the degradation of their content thanks to hydrolytic enzymes. It has emerged that alteration of the autophagy–lysosome pathway could play a critical role in neuronal death in many neurodegenerative diseases. Using a repertoire of selected rare neurodegenerative diseases, we highlight that a variety of alterations of the autophagy–lysosome pathway are associated with neuronal death. Yet, in most cases, it is still unclear why alteration of this pathway can lead to neurodegeneration. Lysosome function is impaired in many rare neurodegenerative diseases, making it a convergent point for these diseases. Impaired lysosome function is associated with alteration of the autophagy pathway. Autophagy–lysosome pathway can be impaired at various steps in different rare neurodegenerative diseases. The mechanisms linking impaired autophagy–lysosome pathway to neurodegeneration are still not fully elucidated.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, F-75013, Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France.
| | - Giovanni Stevanin
- Sorbonne Université, F-75013, Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France; PSL Research University, Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, F-75013 Paris, France
| |
Collapse
|
50
|
Drosophila as a model to understand autophagy deregulation in human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020. [PMID: 32620249 DOI: 10.1016/bs.pmbts.2020.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Autophagy has important functions in normal physiology to maintain homeostasis and protect against cellular stresses by the removal of harmful cargos such as dysfunctional organelles, protein aggregates and invading pathogens. The deregulation of autophagy is a hallmark of many diseases and therapeutic targeting of autophagy is highly topical. With the complex role of autophagy in disease it is essential to understand the genetic and molecular basis of the contribution of autophagy to pathogenesis. The model organism, Drosophila, provides a genetically amenable system to dissect out the contribution of autophagy to human disease models. Here we review the roles of autophagy in human disease and how autophagy studies in Drosophila have contributed to the understanding of pathophysiology.
Collapse
|