1
|
Kraski A, Migdał P, Klopfleisch R, Räckel C, Sharbati J, Heimesaat MM, Alter T, Hanisch C, Gölz G, Einspanier R, Sharbati S. Structured multicellular intestinal spheroids (SMIS) as a standardized model for infection biology. Gut Pathog 2024; 16:47. [PMID: 39289703 PMCID: PMC11406839 DOI: 10.1186/s13099-024-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND 3D cell culture models have recently garnered increasing attention for replicating organ microarchitecture and eliciting in vivo-like responses, holding significant promise across various biological disciplines. Broadly, 3D cell culture encompasses organoids as well as single- and multicellular spheroids. While the latter have found successful applications in tumor research, there is a notable scarcity of standardized intestinal models for infection biology that mimic the microarchitecture of the intestine. Hence, this study aimed to develop structured multicellular intestinal spheroids (SMIS) specifically tailored for studying molecular basis of infection by intestinal pathogens. RESULTS We have successfully engineered human SMIS comprising four relevant cell types, featuring a fibroblast core enveloped by an outer monolayer of enterocytes and goblet cells along with monocytic cells. These SMIS effectively emulate the in vivo architecture of the intestinal mucosal surface and manifest differentiated morphological characteristics, including the presence of microvilli, within a mere two days of culture. Through analysis of various differentiation factors, we have illustrated that these spheroids attain heightened levels of differentiation compared to 2D monolayers. Moreover, SMIS serve as an optimized intestinal infection model, surpassing the capabilities of traditional 2D cultures, and exhibit a regulatory pattern of immunological markers similar to in vivo infections after Campylobacter jejuni infection. Notably, our protocol extends beyond human spheroids, demonstrating adaptability to other species such as mice and pigs. CONCLUSION Based on the rapid attainment of enhanced differentiation states, coupled with the emergence of functional brush border features, increased cellular complexity, and replication of the intestinal mucosal microarchitecture, which allows for exposure studies via the medium, we are confident that our innovative SMIS model surpasses conventional cell culture methods as a superior model. Moreover, it offers advantages over stem cell-derived organoids due to scalability and standardization capabilities of the protocol. By showcasing differentiated morphological attributes, our model provides an optimal platform for diverse applications. Furthermore, the investigated differences of several immunological factors compared to monotypic monolayers after Campylobacter jejuni infection underline the refinement of our spheroid model, which closely mimics important features of in vivo infections.
Collapse
Affiliation(s)
- Angelina Kraski
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paweł Migdał
- Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Clara Räckel
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Scarini JF, Gonçalves MWA, de Lima-Souza RA, Lavareze L, de Carvalho Kimura T, Yang CC, Altemani A, Mariano FV, Soares HP, Fillmore GC, Egal ESA. Potential role of the Eph/ephrin system in colorectal cancer: emerging druggable molecular targets. Front Oncol 2024; 14:1275330. [PMID: 38651144 PMCID: PMC11033724 DOI: 10.3389/fonc.2024.1275330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. In colorectal cancer (CRC), it is involved in different processes including tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. However, conflicting data regarding Eph receptors in CRC, especially in its putative role as an oncogene or a suppressor gene, make the precise role of Eph-ephrin interaction confusing in CRC development. In this review, we provide an overview of the literature and highlight evidence that collaborates with these ambiguous roles of the Eph/ephrin system in CRC, as well as the molecular findings that represent promising therapeutic targets.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ching-Chu Yang
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
3
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
4
|
Fu Y, Zhang X, Wu H, Zhang P, Liu S, Guo T, Shan H, Liang Y, Chen H, Xie J, Duan Y. HOXA3 functions as the on-off switch to regulate the development of hESC-derived third pharyngeal pouch endoderm through EPHB2-mediated Wnt pathway. Front Immunol 2024; 14:1258074. [PMID: 38259452 PMCID: PMC10800530 DOI: 10.3389/fimmu.2023.1258074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingping Zhang
- Department of Laboratory Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Kundu S, Nunes L, Adler J, Mathot L, Stoimenov I, Sjöblom T. Recurring EPHB1 mutations in human cancers alter receptor signalling and compartmentalisation of colorectal cancer cells. Cell Commun Signal 2023; 21:354. [PMID: 38102712 PMCID: PMC10722860 DOI: 10.1186/s12964-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis. METHODS Here, 79,151 somatic mutations in 9,898 samples of 33 different tumour types were analysed with a bioinformatic pipeline to find 3D-mutated cluster pairs and hotspot mutations in EPH receptors. From these, 15 recurring EPHB1 mutations were stably expressed in colorectal cancer followed by confocal microscopy based in vitro compartmentalisation assays and phospho-proteome analysis. RESULTS The 3D-protein structure-based bioinformatics analysis resulted in 63% EPHB1 mutants with compartmentalisation phenotypes vs 43% for hotspot mutations. Whereas the ligand-binding domain mutations C61Y, R90C, and R170W, the fibronectin domain mutation R351L, and the kinase domain mutation D762N displayed reduced to strongly compromised cell compartmentalisation, the kinase domain mutations R743W and G821R enhanced this phenotype. While mutants with reduced compartmentalisation also had reduced ligand induced receptor phosphorylation, the enhanced compartmentalisation was not linked to receptor phosphorylation level. Phosphoproteome mapping pinpointed the PI3K pathway and PIK3C2B phosphorylation in cells harbouring mutants with reduced compartmentalisation. CONCLUSIONS This is the first integrative study of pan-cancer EPH receptor mutations followed by in vitro validation, a robust way to identify cancer-causing mutations, uncovering EPHB1 mutation phenotypes and demonstrating the utility of protein structure-based mutation analysis in characterization of novel cancer genes. Video Abstract.
Collapse
Affiliation(s)
- Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeremy Adler
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ivaylo Stoimenov
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Chang C, Banerjee SL, Park SS, Zhang X, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544638. [PMID: 37693478 PMCID: PMC10491099 DOI: 10.1101/2023.06.12.544638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Sara L. Banerjee
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Xiaolei Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - David Cotnoir-White
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
8
|
Asbjornsdottir B, Sigurdsson S, Miranda-Ribera A, Fiorentino M, Konno T, Lan J, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study. Int J Mol Sci 2023; 24:14730. [PMID: 37834178 PMCID: PMC10572565 DOI: 10.3390/ijms241914730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin (Cgn) and claudin 12 (Cldn12) duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin (Ocln) and Rho/Rac guanine nucleotide exchange factor 2 (Arhgf2) and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Snaevar Sigurdsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Biomedical Center, University of Iceland, 102 Reykjavik, Iceland
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Scientific Affairs, Landspitali University Hospital, 102 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
9
|
Tan F, Xuan Y, Long L, Yu Y, Zhang C, Liang P, Wang Y, Chen M, Wen J, Chen G. Single-cell analysis of human prepuce reveals dynamic changes in gene regulation and cellular communications. BMC Genomics 2023; 24:514. [PMID: 37658288 PMCID: PMC10474653 DOI: 10.1186/s12864-023-09615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Collapse
Affiliation(s)
- Fei Tan
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Zhang
- Department of Dermatology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Geng Chen
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
11
|
Zhang H, Cui Z, Pan T, Hu H, He R, Yi M, Sun W, Gao R, Wang H, Ma X, Peng Q, Feng X, Liang S, Du Y, Wang C. RNF186/EPHB2 Axis Is Essential in Regulating TNF Signaling for Colorectal Tumorigenesis in Colorectal Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1796-1805. [PMID: 36130827 PMCID: PMC9553791 DOI: 10.4049/jimmunol.2200229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023]
Abstract
The receptor tyrosine kinase EPHB2 (EPH receptor B2) is highly expressed in many human cancer types, especially in gastrointestinal cancers, such as colorectal cancer. Several coding mutations of the EPHB2 gene have been identified in many cancer types, suggesting that EPHB2 plays a critical role in carcinogenesis. However, the exact functional mechanism of EPHB2 in carcinogenesis remains unknown. In this study, we find that EPHB2 is required for TNF-induced signaling activation and proinflammatory cytokine production in colorectal epithelial cells. Mechanistically, after TNF stimulation, EPHB2 is ubiquitinated by its E3 ligase RNF186. Then, ubiquitinated EPHB2 recruits and further phosphorylates TAB2 at nine tyrosine sites, which is a critical step for the binding between TAB2 and TAK1. Due to defects in TNF signaling in RNF186-knockout colorectal epithelial cells, the phenotype of colitis-propelled colorectal cancer model in RNF186-knockout mice is significantly reduced compared with that in wild-type control mice. Moreover, we find that a genetic mutation in EPHB2 identified in a family with colorectal cancer is a gain-of-function mutation that promoted TNF signaling activation compared with wild-type EPHB2. We provide evidence that the EPHB2-RNF186-TAB2-TAK1 signaling cascade plays an essential role in TNF-mediated signal transduction in colorectal epithelial cells and the carcinogenesis of colorectal cancer, which may provide potential targets for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Huazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Pan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and
| | - Huijun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and
| |
Collapse
|
12
|
Kim H, Myung JK, Paik SS, Kim H, Park H, Kim YJ, Lee SB, Kim HU, Song HJ, Jeong IH, Hong S, Park CM, Lee C, Kim Y, Jang B. EPHB2 expression is associated with intestinal phenotype of gastric cancer and indicates better prognosis by suppressing gastric cancer migration. Am J Cancer Res 2022; 12:1295-1308. [PMID: 35411225 PMCID: PMC8984899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023] Open
Abstract
The protein tyrosine kinase Ephrin type-B receptor 2 (EPHB2) belongs to one of the intestinal stem cell signature genes and plays a crucial role in maintaining the crypt-villous axis. Herein, we aimed to investigate the expression of EPHB2 during gastric carcinogenesis and evaluated its prognostic and functional significance in gastric cancer (GC). EPHB2 expression was upregulated in intestinal metaplasia and GCs compared to normal antral and fundic glands. EPHB2 mRNA levels were strongly correlated with the intestinal stem cell markers OLFM4, LGR5, and EPHB3. Notably, EPHB2 expression was significantly correlated with CDX2 expression, and in vitro studies demonstrated that CDX2 expression increased both EPHB2 transcription and protein levels. In a large cohort of GC patients, EPHB2 positivity was observed in 39% of 704 GCs and was negatively correlated with tumor differentiation, lymphovascular invasion, and tumor-node-metastasis stages. Notably, EPHB2 positivity was associated with better overall survival, and it was an independent prognostic marker in intestinal-type GCs. Overexpression of EPHB2 in GC cell lines, MKN-28 and MKN-74, reduced migration activity by suppressing phosphorylation of focal adhesion kinase, whereas no significant difference was observed in proliferation rates. Thus, we suggest that EPHB2 acts as a tumor suppressor in GCs and can be a prognostic marker in intestinal-type GCs.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Pathology, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| | - Jae Kyung Myung
- Department of Pathology, Hanyang University College of MedicineSeoul, South Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of MedicineSeoul, South Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of MedicineSeoul, South Korea
| | - Hosub Park
- Department of Pathology, Hanyang University College of MedicineSeoul, South Korea
| | - Yeon Ju Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang UniversitySeoul, South Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical ScienceSeoul, South Korea
| | - Heung Up Kim
- Department of Internal Medicine, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| | - Hyun Joo Song
- Department of Internal Medicine, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| | - In Ho Jeong
- Department of Surgery, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| | - Suji Hong
- Department of Pathology, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| | - Chul Min Park
- Department of Obstetrics & Gynecology, Jeju National University School of MedicineJeju, South Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of MedicineSeoul, South Korea
| | - Younghoon Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of MedicineSeoul, South Korea
| | - Bogun Jang
- Department of Pathology, Jeju National University School of Medicine and Jeju National University HospitalJeju, South Korea
| |
Collapse
|
13
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
14
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
15
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
16
|
Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N, DelRio FW, Yavitt FM, Liberali P, Anseth KS, Lutolf MP. Tissue geometry drives deterministic organoid patterning. Science 2022; 375:eaaw9021. [PMID: 34990240 DOI: 10.1126/science.aaw9021] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epithelial organoids are stem cell–derived tissues that approximate aspects of real organs, and thus they have potential as powerful tools in basic and translational research. By definition, they self-organize, but the structures formed are often heterogeneous and irreproducible, which limits their use in the lab and clinic. We describe methodologies for spatially and temporally controlling organoid formation, thereby rendering a stochastic process more deterministic. Bioengineered stem cell microenvironments are used to specify the initial geometry of intestinal organoids, which in turn controls their patterning and crypt formation. We leveraged the reproducibility and predictability of the culture to identify the underlying mechanisms of epithelial patterning, which may contribute to reinforcing intestinal regionalization in vivo. By controlling organoid culture, we demonstrate how these structures can be used to answer questions not readily addressable with the standard, more variable, organoid models.
Collapse
Affiliation(s)
- N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Nikolaev
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T E Brown
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - O Mitrofanova
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - N Brandenberg
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F W DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - F M Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - P Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - K S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland
| |
Collapse
|
17
|
Abstract
A simple, universal and fundamental definition of adult stem cell communities is proposed. Key principles of cell lineage methods for defining adult stem cell numbers, locations and behaviors are critically evaluated, emphasizing the imperatives of capturing the full spectrum of individual stem cell behaviors, examining a variety of experimental time periods and avoiding unwarranted assumptions. The focus is first on defining fundamentals and then addresses stem cell heterogeneity, potential hierarchies and how individual cells serve the function of a stem cell community.
Collapse
|
18
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
19
|
Modeling Intestinal Stem Cell Function with Organoids. Int J Mol Sci 2021; 22:ijms222010912. [PMID: 34681571 PMCID: PMC8535974 DOI: 10.3390/ijms222010912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal epithelial cells (IECs) are crucial for the digestive process and nutrient absorption. The intestinal epithelium is composed of the different cell types of the small intestine (mainly, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells). The small intestine is characterized by the presence of crypt-villus units that are in a state of homeostatic cell turnover. Organoid technology enables an efficient expansion of intestinal epithelial tissue in vitro. Thus, organoids hold great promise for use in medical research and in the development of new treatments. At present, the cholinergic system involved in IECs and intestinal stem cells (ISCs) are attracting a great deal of attention. Thus, understanding the biological processes triggered by epithelial cholinergic activation by acetylcholine (ACh), which is produced and released from neuronal and/or non-neuronal tissue, is of key importance. Cholinergic signaling via ACh receptors plays a pivotal role in IEC growth and differentiation. Here, we discuss current views on neuronal innervation and non-neuronal control of the small intestinal crypts and their impact on ISC proliferation, differentiation, and maintenance. Since technology using intestinal organoid culture systems is advancing, we also outline an organoid-based organ replacement approach for intestinal diseases.
Collapse
|
20
|
Xu Y, Robev D, Saha N, Wang B, Dalva MB, Xu K, Himanen JP, Nikolov DB. The Ephb2 Receptor Uses Homotypic, Head-to-Tail Interactions within Its Ectodomain as an Autoinhibitory Control Mechanism. Int J Mol Sci 2021; 22:10473. [PMID: 34638814 PMCID: PMC8508685 DOI: 10.3390/ijms221910473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell-cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph-ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph-Eph interfaces. One Eph-Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor-receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (Y.X.); (K.X.)
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| | - Matthew B. Dalva
- Department of Neuroscience and Jefferson Center for Synaptic Biology, Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA;
| | - Kai Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (Y.X.); (K.X.)
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Juha P. Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (D.R.); (N.S.)
| |
Collapse
|
21
|
Liu Y, Zhang P, Wu Q, Fang H, Wang Y, Xiao Y, Cong M, Wang T, He Y, Ma C, Tian P, Liang Y, Qin LX, Yang Q, Yang Q, Liao L, Hu G. Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63. Nat Commun 2021; 12:5232. [PMID: 34475402 PMCID: PMC8413371 DOI: 10.1038/s41467-021-25552-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Disseminated tumor cells often fall into a long term of dormant stage, characterized by decreased proliferation but sustained survival, in distant organs before awakening for metastatic growth. However, the regulatory mechanism of metastatic dormancy and awakening is largely unknown. Here, we show that the epithelial-like and mesenchymal-like subpopulations of breast cancer stem-like cells (BCSCs) demonstrate different levels of dormancy and tumorigenicity in lungs. The long non-coding RNA (lncRNA) NR2F1-AS1 (NAS1) is up-regulated in the dormant mesenchymal-like BCSCs, and functionally promotes tumor dissemination but reduces proliferation in lungs. Mechanistically, NAS1 binds to NR2F1 mRNA and recruits the RNA-binding protein PTBP1 to promote internal ribosome entry site (IRES)-mediated NR2F1 translation, thus leading to suppression of ΔNp63 transcription by NR2F1. Furthermore, ΔNp63 downregulatio results in epithelial-mesenchymal transition, reduced tumorigenicity and enhanced dormancy of cancer cells in lungs. Overall, the study links BCSC plasticity with metastatic dormancy, and reveals the lncRNA as an important regulator of both processes. Disseminated tumor cells often become dormant before awakening for metastatic growth. Here, the authors report that the lncRNA, NR2F1-AS1, is upregulated in dormant mesenchymal-like breast cancer stem-like cells and promotes dissemination but inhibits proliferation, leading to metastatic dormancy.
Collapse
Affiliation(s)
- Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houqin Fang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengxin Ma
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
22
|
N'Tumba-Byn T, Yamada M, Seandel M. Loss of tyrosine kinase receptor Ephb2 impairs proliferation and stem cell activity of spermatogonia in culture†. Biol Reprod 2021; 102:950-962. [PMID: 31836902 DOI: 10.1093/biolre/ioz222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Germline stem and progenitor cells can be extracted from the adult mouse testis and maintained long-term in vitro. Yet, the optimal culture conditions for preserving stem cell activity are unknown. Recently, multiple members of the Eph receptor family were detected in murine spermatogonia, but their roles remain obscure. One such gene, Ephb2, is crucial for maintenance of somatic stem cells and was previously found enriched at the level of mRNA in murine spermatogonia. We detected Ephb2 mRNA and protein in primary adult spermatogonial cultures and hypothesized that Ephb2 plays a role in maintenance of stem cells in vitro. We employed CRISPR-Cas9 targeting and generated stable mutant SSC lines with complete loss of Ephb2. The characteristics of Ephb2-KO cells were interrogated using phenotypic and functional assays. Ephb2-KO SSCs exhibited reduced proliferation compared to wild-type cells, while apoptosis was unaffected. Therefore, we examined whether Ephb2 loss correlates with activity of canonical pathways involved in stem cell self-renewal and proliferation. Ephb2-KO cells had reduced ERK MAPK signaling. Using a lentiviral transgene, Ephb2 expression was rescued in Ephb2-KO cells, which partially restored signaling and proliferation. Transplantation analysis revealed that Ephb2-KO SSCs cultures formed significantly fewer colonies than WT, indicating a role for Ephb2 in preserving stem cell activity of cultured cells. Transcriptome analysis of wild-type and Ephb2-KO SSCs identified Dppa4 and Bnc1 as differentially expressed, Ephb2-dependent genes that are potentially involved in stem cell function. These data uncover for the first time a crucial role for Ephb2 signaling in cultured SSCs.
Collapse
Affiliation(s)
- Thierry N'Tumba-Byn
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| | - Makiko Yamada
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
23
|
Takahashi T, Shiraishi A, Murata J, Matsubara S, Nakaoka S, Kirimoto S, Osawa M. Muscarinic receptor M3 contributes to intestinal stem cell maintenance via EphB/ephrin-B signaling. Life Sci Alliance 2021; 4:4/9/e202000962. [PMID: 34244422 PMCID: PMC8321669 DOI: 10.26508/lsa.202000962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
Acetylcholine (ACh) signaling through activation of nicotinic and muscarinic ACh receptors regulates expression of specific genes that mediate and sustain proliferation, differentiation, and homeostasis in the intestinal crypts. This signaling plays a pivotal role in the regulation of intestinal stem cell function, but the details have not been clarified. Here, we performed experiments using type 3 muscarinic acetylcholine receptor (M3) knockout mice and their intestinal organoids and report that endogenous ACh affects the size of the intestinal stem niche via M3 signaling. RNA sequencing of crypts identified up-regulation of the EphB/ephrin-B signaling pathway. Furthermore, using an MEK inhibitor (U0126), we found that mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling, which is downstream of EphB/ephrin-B signaling, is activated in M3-deficient crypts. Collectively, M3, EphB/ephrin-B, and the MAPK/ERK signaling cascade work together to maintain the homeostasis of intestinal epithelial cell growth and differentiation following modifications of the cholinergic intestinal niche.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Jun Murata
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | | | | | - Masatake Osawa
- Department of Regenerative Medicine and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
24
|
Leung HW, Leung CON, Lau EY, Chung KPS, Mok EH, Lei MML, Leung RWH, Tong M, Keng VW, Ma C, Zhao Q, Ng IOL, Ma S, Lee TK. EPHB2 Activates β-Catenin to Enhance Cancer Stem Cell Properties and Drive Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2021; 81:3229-3240. [PMID: 33903122 DOI: 10.1158/0008-5472.can-21-0184] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
The survival benefit derived from sorafenib treatment for patients with hepatocellular carcinoma (HCC) is modest due to acquired resistance. Targeting cancer stem cells (CSC) is a possible way to reverse drug resistance, however, inhibitors that specifically target liver CSCs are limited. In this study, we established two sorafenib-resistant, patient-derived tumor xenografts (PDX) that mimicked development of acquired resistance to sorafenib in patients with HCC. RNA-sequencing analysis of sorafenib-resistant PDXs and their corresponding mock controls identified EPH receptor B2 (EPHB2) as the most significantly upregulated kinase. EPHB2 expression increased stepwise from normal liver tissue to fibrotic liver tissue to HCC tissue and correlated with poor prognosis. Endogenous EPHB2 knockout showed attenuation of tumor development in mice. EPHB2 regulated the traits of liver CSCs; similarly, sorted EPHB2High HCC cells were endowed with enhanced CSC properties when compared with their EPHB2-Low counterparts. Mechanistically, EPHB2 regulated cancer stemness and drug resistance by driving the SRC/AKT/GSK3β/β-catenin signaling cascade, and EPHB2 expression was regulated by TCF1 via promoter activation, forming a positive Wnt/β-catenin feedback loop. Intravenous administration of rAAV-8-shEPHB2 suppressed HCC tumor growth and significantly sensitized HCC cells to sorafenib in an NRAS/AKT-driven HCC immunocompetent mouse model. Targeting a positive feedback loop involving the EPHB2/β-catenin axis may be a possible therapeutic strategy to combat acquired drug resistance in HCC. SIGNIFICANCE: This study identifies a EPHB2/β-catenin/TCF1 positive feedback loop that augments cancer stemness and sorafenib resistance in HCC, revealing a targetable axis to combat acquired drug resistance in HCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3229/F1.large.jpg.
Collapse
Affiliation(s)
- Hoi Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Eunice Y Lau
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, P.R. China
| | - Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Etienne H Mok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Cong Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Qian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Irene Oi Lin Ng
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, P.R. China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, P.R. China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, P.R. China
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China. .,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| |
Collapse
|
25
|
Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory. Mol Psychiatry 2021; 26:3956-3969. [PMID: 31772302 PMCID: PMC8550978 DOI: 10.1038/s41380-019-0606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.
Collapse
|
26
|
Schwarzmueller L, Bril O, Vermeulen L, Léveillé N. Emerging Role and Therapeutic Potential of lncRNAs in Colorectal Cancer. Cancers (Basel) 2020; 12:E3843. [PMID: 33352769 PMCID: PMC7767007 DOI: 10.3390/cancers12123843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Maintenance of the intestinal epithelium is dependent on the control of stem cell (SC) proliferation and differentiation. The fine regulation of these cellular processes requires a complex dynamic interplay between several signaling pathways, including Wnt, Notch, Hippo, EGF, Ephrin, and BMP/TGF-β. During the initiation and progression of colorectal cancer (CRC), key events, such as oncogenic mutations, influence these signaling pathways, and tilt the homeostatic balance towards proliferation and dedifferentiation. Therapeutic strategies to specifically target these deregulated signaling pathways are of particular interest. However, systemic blocking or activation of these pathways poses major risks for normal stem cell function and tissue homeostasis. Interestingly, long non-coding RNAs (lncRNAs) have recently emerged as potent regulators of key cellular processes often deregulated in cancer. Because of their exceptional tissue and tumor specificity, these regulatory RNAs represent attractive targets for cancer therapy. Here, we discuss how lncRNAs participate in the maintenance of intestinal homeostasis and how they can contribute to the deregulation of each signaling pathway in CRC. Finally, we describe currently available molecular tools to develop lncRNA-targeted cancer therapies.
Collapse
Affiliation(s)
- Laura Schwarzmueller
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Oscar Bril
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nicolas Léveillé
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.S.); (O.B.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Zhang H, Cui Z, Cheng D, Du Y, Guo X, Gao R, Chen J, Sun W, He R, Ma X, Peng Q, Martin BN, Yan W, Rong Y, Wang C. RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis. Autophagy 2020; 17:3030-3047. [PMID: 33280498 DOI: 10.1080/15548627.2020.1851496] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although genome-wide association studies have identified the gene RNF186 encoding an E3 ubiquitin-protein ligase as conferring susceptibility to ulcerative colitis, the exact function of this protein remains unclear. In the present study, we demonstrate an important role for RNF186 in macroautophagy/autophagy activation in colonic epithelial cells and intestinal homeostasis. Mechanistically, RNF186 acts as an E3 ubiquitin-protein ligase for EPHB2 and regulates the ubiquitination of EPHB2. Upon stimulation by ligand EFNB1 (ephrin B1), EPHB2 is ubiquitinated by RNF186 at Lys892, and further recruits MAP1LC3B for autophagy. Compared to control mice, rnf186-/- and ephb2-/- mice have a more severe phenotype in the DSS-induced colitis model, which is due to a defect in autophagy in colon epithelial cells. More importantly, treatment with ephrin-B1-Fc recombinant protein effectively relieves DSS-induced mouse colitis, which suggests that ephrin-B1-Fc may be a potential therapy for human inflammatory bowel diseases.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG16L1: autophagy related 16 like 1; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; CD: Crohn disease; CQ: chloroquine; Csf2: colony stimulating factor 2; Cxcl1: c-x-c motif chemokine ligand 1; DMSO: dimethyl sulfoxide; DSS: dextran sodium sulfate; EFNB1: ephrin B1; EPHB2: EPH receptor B2; EPHB3: EPH receptor B3; EPHB2K788R: lysine 788 mutated to arginine in EPHB2; EPHB2K892R: lysine 892 mutated to arginine in EPHB2; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GWAS: genome-wide association studies; HRP: horseradish peroxidase; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel diseases; Il1b: interleukin 1 beta; Il6: interleukin 6; IRGM:immunity related GTPase M; i.p.: intraperitoneally; IPP: inorganic pyrophosphatase; KD: knockdown; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NOD2: nucleotide binding oligomerization domain containing 2; PI3K: phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; RNF186: ring finger protein 186; RNF186A64T: alanine 64 mutated to threonine in RNF186; RNF186R179X: arginine 179 mutated to X in RNF186; RPS6: ribosomal protein S6; Tnf: tumor necrosis factor; SQSTM1: sequestosome 1; Ub: ubiquitin; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2H: ubiquitin conjugating enzyme E2 H; UBE2K: ubiquitin conjugating enzyme E2 K; UBE2N: ubiquitin conjugating enzyme E2 N; UC: ulcerative colitis; ULK1:unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
- Huazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Du Cheng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanyun Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwen Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruirui He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bradley N Martin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yueguang Rong
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Bioinformatics, Wuhan Institute of Biotechnology, Wuhan, China
| |
Collapse
|
28
|
Tobon A, Olivas P, Ocaña T, Pellisé M, Balaguer F. Imatinib: a new chemopreventive option in adenomatous polyposis? BMJ Open Gastroenterol 2020; 7:bmjgast-2020-000555. [PMID: 33376108 PMCID: PMC7778759 DOI: 10.1136/bmjgast-2020-000555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022] Open
Abstract
Patients with adenomatous polyposis, usually defined as patients with >10 adenomatous polyps in the colorectum, are at increased risk for colorectal cancer (CRC). Since surgical and endoscopic treatment do not completely eliminate the potential for future polyps or extraintestinal neoplasms, there is an unmet medical need to identify pharmacological agents to delay major surgical interventions. We present two cases of patients with adenomatous polyposis who developed chronic myelogenous leukaemia and were treated with imatinib as part of their chemotherapy. A sustained regression of the colonic polyps documented in both cases was observed after the initiation of the tyrosine kinase inhibitor. Despite the presence of potential confounders, we hypothesise the potential role of imatinib as a chemopreventive agent in patients with familial adenomatous polyposis.
Collapse
Affiliation(s)
- Angelica Tobon
- Internal Medicine Department, Fundación Valle de Lili, ICESI University, Cali, Colombia
| | - Pol Olivas
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María Pellisé
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Verheyen T, Fang T, Lindenhofer D, Wang Y, Akopyan K, Lindqvist A, Högberg B, Teixeira AI. Spatial organization-dependent EphA2 transcriptional responses revealed by ligand nanocalipers. Nucleic Acids Res 2020; 48:5777-5787. [PMID: 32352518 PMCID: PMC7261182 DOI: 10.1093/nar/gkaa274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Ligand binding induces extensive spatial reorganization and clustering of the EphA2 receptor at the cell membrane. It has previously been shown that the nanoscale spatial distribution of ligands modulates EphA2 receptor reorganization, activation and the invasive properties of cancer cells. However, intracellular signaling downstream of EphA2 receptor activation by nanoscale spatially distributed ligands has not been elucidated. Here, we used DNA origami nanostructures to control the positions of ephrin-A5 ligands at the nanoscale and investigated EphA2 activation and transcriptional responses following ligand binding. Using RNA-seq, we determined the transcriptional profiles of human glioblastoma cells treated with DNA nanocalipers presenting a single ephrin-A5 dimer or two dimers spaced 14, 40 or 100 nm apart. These cells displayed divergent transcriptional responses to the differing ephrin-A5 nano-organization. Specifically, ephrin-A5 dimers spaced 40 or 100 nm apart showed the highest levels of differential expressed genes compared to treatment with nanocalipers that do not present ephrin-A5. These findings show that the nanoscale organization of ephrin-A5 modulates transcriptional responses to EphA2 activation.
Collapse
Affiliation(s)
- Toon Verheyen
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Trixy Fang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Dominik Lindenhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| |
Collapse
|
30
|
Fiuza UM, Negishi T, Rouan A, Yasuo H, Lemaire P. A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development 2020; 147:dev.186965. [DOI: 10.1242/dev.186965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/02/2020] [Indexed: 01/13/2023]
Abstract
Gastrulation is the first major morphogenetic event during animal embryogenesis. Ascidian gastrulation starts with the invagination of 10 endodermal precursor cells between the 64- and late 112-cell stages. This process occurs in the absence of endodermal cell division and in two steps, driven by myosin-dependent contractions of the acto-myosin network. First, endoderm precursors constrict their apex. Second, they shorten apico-basally, while retaining small apical surfaces, thereby causing invagination. The mechanisms that prevent endoderm cell division, trigger the transition between step 1 and step 2, and drive apico-basal shortening have remained elusive. Here, we demonstrate a conserved role for Nodal and Eph signalling during invagination in two distantly related ascidian species, Phallusia mammillata and Ciona intestinalis. Specifically, we show that the transition to step 2 is triggered by Nodal relayed by Eph signalling. Additionally, our results indicate that Eph signalling lengthens the endodermal cell cycle, independently of Nodal. Finally, we find that both Nodal and Eph signals are dispensable for endoderm fate specification. These results illustrate commonalities as well as differences in the action of Nodal during ascidian and vertebrate gastrulation.
Collapse
Affiliation(s)
- Ulla-Maj Fiuza
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Takefumi Negishi
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Alice Rouan
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | | |
Collapse
|
31
|
DiPrima M, Wang D, Tröster A, Maric D, Terrades-Garcia N, Ha T, Kwak H, Sanchez-Martin D, Kudlinzki D, Schwalbe H, Tosato G. Identification of Eph receptor signaling as a regulator of autophagy and a therapeutic target in colorectal carcinoma. Mol Oncol 2019; 13:2441-2459. [PMID: 31545551 PMCID: PMC6822245 DOI: 10.1002/1878-0261.12576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Advanced colorectal carcinoma is currently incurable, and new therapies are urgently needed. We report that phosphotyrosine‐dependent Eph receptor signaling sustains colorectal carcinoma cell survival, thereby uncovering a survival pathway active in colorectal carcinoma cells. We find that genetic and biochemical inhibition of Eph tyrosine kinase activity or depletion of the Eph ligand EphrinB2 reproducibly induces colorectal carcinoma cell death by autophagy. Spautin and 3‐methyladenine, inhibitors of early steps in the autophagic pathway, significantly reduce autophagy‐mediated cell death that follows inhibition of phosphotyrosine‐dependent Eph signaling in colorectal cancer cells. A small‐molecule inhibitor of the Eph kinase, NVP‐BHG712 or its regioisomer NVP‐Iso, reduces human colorectal cancer cell growth in vitro and tumor growth in mice. Colorectal cancers express the EphrinB ligand and its Eph receptors at significantly higher levels than numerous other cancer types, supporting Eph signaling inhibition as a potential new strategy for the broad treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Dragan Maric
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nekane Terrades-Garcia
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Spain
| | - Taekyu Ha
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Hyeongil Kwak
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| | - David Sanchez-Martin
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, USA
| |
Collapse
|
32
|
Talebian A, Henkemeyer M. EphB2 receptor cell-autonomous forward signaling mediates auditory memory recall and learning-driven spinogenesis. Commun Biol 2019; 2:372. [PMID: 31633063 PMCID: PMC6789002 DOI: 10.1038/s42003-019-0625-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023] Open
Abstract
While ephrin-B ligands and EphB receptors are expressed to high levels in the learning centers of the brain, it remains largely unknown how their trans-synaptic interactions contribute to memory. We find that EphB2 forward signaling is needed for contextual and sound-evoked memory recall and that constitutive over-activation of the receptor's intracellular tyrosine kinase domain results in enhanced memory. Loss of EphB2 expression does not affect the number of neurons activated following encoding, although a reduction of neurons activated after the sound-cued retrieval test was detected in the auditory cortex and hippocampal CA1. Further, spine density and maturation was reduced in the auditory cortex of mutants especially in the neurons that were dual-activated during both encoding and retrieval. Our data demonstrates that trans-synaptic ephrin-B-EphB2 interactions and forward signaling facilitate neural activation and structural plasticity in learning-associated neurons involved in the generation of memories.
Collapse
Affiliation(s)
- Asghar Talebian
- Department of Neuroscience and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mark Henkemeyer
- Department of Neuroscience and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
33
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
34
|
Mu X, Huang O, Jiang M, Xie Z, Chen D, Zhang X. Prognostic value of ephrin B receptors in breast cancer: An online survival analysis using the microarray data of 3,554 patients. Oncol Lett 2019; 18:742-750. [PMID: 31289549 PMCID: PMC6540016 DOI: 10.3892/ol.2019.10363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023] Open
Abstract
The roles of Ephrin B (EphB) receptors in cancer are relatively unknown as these receptors are associated with complex signaling pathways. A limited number of studies have investigated the association between EphB receptors and prognosis. Using the Kaplan-Meier plotter database, the present study investigated the associations between the mRNA expression levels of five EphB receptors and the outcomes of 3,554 patients with breast cancer who had been followed-up for 20 years. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated to assess the relative risk of survival. The results demonstrated that high mRNA expression levels of EphB2 (HR, 0.74; 95% CI, 0.66-0.84; P=2.1×10-6), EphB4 (HR, 0.82; 95% CI, 0.72-0.93; P=0.0023) and EphB6 (HR, 0.69; 95% CI, 0.61-0.78; P=3×10-9) were significantly associated with improved survival, while a high mRNA expression level of EphB3 (HR, 1.14; 95% CI, 1.01-1.28; P=0.029) was associated with worse survival for patients with breast cancer. High expression levels of all EphB receptors, including EphB1 (HR, 1.4; 95% CI, 1.02-1.94; P=0.039), EphB2 (HR, 1.34; 95% CI, 1.07-1.67; P=0.011), EphB3 (HR, 1.39; 95% CI, 1.11-1.73, P=0.0038), EphB4 (HR, 1.33; 95% CI, 1.06-1.67; P=0.013) and EphB6 (HR, 1.32; 95% CI, 1.05-1.65; P=0.016), were associated with an increased risk of mortality in patients with lymph-node-positive breast cancer. High mRNA expression levels of EphB1 were not associated with survival for all patients with breast cancer (HR, 0.85; 95% CI, 0.72-1.01; P=0.058). The results of the present suggested that EphB receptors may be useful as prognostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Xin Mu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Zuoquan Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | - Debo Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xi Zhang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
35
|
Zhuang X, Zhang H, Hu G. Cancer and Microenvironment Plasticity: Double-Edged Swords in Metastasis. Trends Pharmacol Sci 2019; 40:419-429. [PMID: 31078320 DOI: 10.1016/j.tips.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Cancer initiates at one site (primary tumor) and, in most cases, spreads to other distant organs (metastasis). During the multistep process of metastasis, primary tumor cells acquire cellular and phenotypic plasticity to survive and thrive in different environments. Moreover, cancer cells also utilize and educate microenvironmental components by reshaping them into accomplices of metastasis. Recent studies have identified a plethora of new molecular and cellular modulators of metastasis that have dynamic or even opposite roles, dominating the phenotypic plasticity of both tumoral and microenvironmental components. In this review we discuss their bipotential functions and the possible underpinning mechanisms, as well as their implications for targeted cancer therapy.
Collapse
Affiliation(s)
- Xueqian Zhuang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
36
|
Dong J, Pan YB, Wu XR, He LN, Liu XD, Feng DF, Xu TL, Sun S, Xu NJ. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. SCIENCE ADVANCES 2019; 5:eaav4416. [PMID: 30820459 PMCID: PMC6392779 DOI: 10.1126/sciadv.aav4416] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
The quiescence of radial neural stem cells (rNSCs) in adult brain is regulated by environmental stimuli. However, little is known about how the neurogenic niche couples the external signal to regulate activation and transition of quiescent rNSCs. Here, we reveal that long-term excitation of hippocampal dentate granule cells (GCs) upon voluntary running leads to activation of adult rNSCs in the subgranular zone and thereby generation of newborn neurons. Unexpectedly, the role of these excited GC neurons in NSCs depends on direct GC-rNSC interaction in the local niche, which is through down-regulated ephrin-B3, a GC membrane-bound ligand, and attenuated transcellular EphB2 kinase-dependent signaling in the adjacent rNSCs. Furthermore, constitutively active EphB2 kinase sustains the quiescence of rNSCs during running. These findings thus elucidate the physiological significance of GC excitability on adult rNSCs under external environments and indicate a key-lock switch regulation via cell-cell contact for functional transition of rNSCs.
Collapse
Affiliation(s)
- Jian Dong
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Rong Wu
- Department of Neurology, Institute of Neurology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Na He
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Abstract
The intestinal epithelium withstands continuous mechanical, chemical and biological insults despite its single-layered, simple epithelial structure. The crypt-villus tissue architecture in combination with rapid cell turnover enables the intestine to act both as a barrier and as the primary site of nutrient uptake. Constant tissue replenishment is fuelled by continuously dividing stem cells that reside at the bottom of crypts. These cells are nurtured and protected by specialized epithelial and mesenchymal cells, and together constitute the intestinal stem cell niche. Intestinal stem cells and early progenitor cells compete for limited niche space and, therefore, the ability to retain or regain stemness. Those cells unable to do so differentiate to one of six different mature cell types and move upwards towards the villus, where they are shed into the intestinal lumen after 3-5 days. In this Review, we discuss the signals, cell types and mechanisms that control homeostasis and regeneration in the intestinal epithelium. We investigate how the niche protects and instructs intestinal stem cells, which processes drive differentiation of mature cells and how imbalance in key signalling pathways can cause human disease.
Collapse
|
38
|
Hagen SJ, Ang LH, Zheng Y, Karahan SN, Wu J, Wang YE, Caron T, Gad A, Muthupalani S, Fox JG. Loss of Tight Junction Protein Claudin 18 Promotes Progressive Neoplasia Development in Mouse Stomach. Gastroenterology 2018; 155:1852-1867. [PMID: 30195448 PMCID: PMC6613545 DOI: 10.1053/j.gastro.2018.08.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/12/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Loss of claudin 18 (CLDN18), a membrane-spanning tight junction protein, occurs during early stages of development of gastric cancer and associates with shorter survival times of patients. We investigated whether loss of CLDN18 occurs in mice that develop intraepithelial neoplasia with invasive glands due to infection with Helicobacter pylori, and whether loss is sufficient to promote the development of similar lesions in mice with or without H pylori infection. METHODS We performed immunohistochemical analyses in levels of CLDN18 in archived tissues from B6:129 mice infected with H pylori for 6 to 15 months. We analyzed gastric tissues from B6:129S5-Cldn18tm1Lex/Mmucd mice, in which the CLDN18 gene was disrupted in gastric tissues (CLDN18-knockout mice), or from control mice with a full-length CLDN18 gene (CLDN18+/+; B6:129S5/SvEvBrd) or heterozygous disruption of CLDN18 (CLDN18+/-; B6:129S5/SvEvBrd) that were infected with H pylori SS1 or PMSS1 at 6 weeks of age and tissues collected for analysis at 20 and 30 weeks after infection. Tissues from CLDN18-knockout mice and control mice with full-length CLDN18 gene expression were also analyzed without infection at 7 weeks and 2 years after birth. Tissues from control and CLDN18-knockout mice were analyzed by electron microscopy, stained by conventional methods and analyzed for histopathology, prepared by laser capture microdissection and analyzed by RNAseq, and immunostained for lineage markers, proliferation markers, and stem cell markers and analyzed by super-resolution or conventional confocal microscopy. RESULTS CLDN18 had a basolateral rather than apical tight junction localization in gastric epithelial cells. B6:129 mice infected with H pylori, which developed intraepithelial neoplasia with invasive glands, had increasing levels of CLDN18 loss over time compared with uninfected mice. In B6:129 mice infected with H pylori compared with uninfected mice, CLDN18 was first lost from most gastric glands followed by disrupted and reduced expression in the gastric neck and in surface cells. Gastric tissues from CLDN18-knockout mice had low levels of inflammation but increased cell proliferation, expressed markers of intestinalized proliferative spasmolytic polypeptide-expressing metaplasia, and had defects in signal transduction pathways including p53 and STAT signaling by 7 weeks after birth compared with full-length CLDN18 gene control mice. By 20 to 30 weeks after birth, gastric tissues from uninfected CLDN18-knockout mice developed intraepithelial neoplasia that invaded the submucosa; by 2 years, gastric tissues contained large and focally dysplastic polypoid tumors with invasive glands that invaded the serosa. CONCLUSIONS H pylori infection of B6:129 mice reduced the expression of CLDN18 early in gastric cancer progression, similar to previous observations from human gastric tissues. CLDN18 regulates cell lineage differentiation and cellular signaling in mouse stomach; CLDN18-knockout mice develop intraepithelial neoplasia and then large and focally dysplastic polypoid tumors in the absence of H pylori infection.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Lay-Hong Ang
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Yi Zheng
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Harvard Medical School, Boston, MA 02115, USA,Present address: Perkin-Elmer Corporation, Hopkinton, MA 01748, USA
| | - Salih N. Karahan
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Dr. Karahan was a visiting medical student from the Koç University School of Medicine, Bakirkoy, Istanbul,TURKEY
| | - Jessica Wu
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Present address: Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yaoyu E. Wang
- Harvard Medical School, Boston, MA 02115, USA,Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02130 USA
| | - Tyler Caron
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Present address: Broad Institute, Cambridge, MA 02142, USA
| | - Aniket Gad
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Liu XD, Zhu XN, Halford MM, Xu TL, Henkemeyer M, Xu NJ. Retrograde regulation of mossy fiber axon targeting and terminal maturation via postsynaptic Lnx1. J Cell Biol 2018; 217:4007-4024. [PMID: 30185604 PMCID: PMC6219728 DOI: 10.1083/jcb.201803105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Synapse formation relies on the coordination of dynamic pre- and postsynaptic structures during brain development. Liu et al. reveal that presynaptic terminal maturation of mossy fiber axons is retrogradely regulated by postsynaptic scaffold protein Lnx1 via stabilizing EphB receptor kinases. Neuronal connections are initiated by axon targeting to form synapses. However, how the maturation of axon terminals is modulated through interacting with postsynaptic elements remains elusive. In this study, we find that ligand of Numb protein X 1 (Lnx1), a postsynaptic PDZ protein expressed in hippocampal CA3 pyramidal neurons, is essential for mossy fiber (MF) axon targeting during the postnatal period. Lnx1 deletion causes defective synaptic arrangement that leads to aberrant presynaptic terminals. We further identify EphB receptors as novel Lnx1-binding proteins to form a multiprotein complex that is stabilized on the CA3 neuron membrane through preventing proteasome activity. EphB1 and EphB2 are independently required to transduce distinct signals controlling MF pruning and targeting for precise DG-CA3 synapse formation. Furthermore, constitutively active EphB2 kinase rescues structure of the wired MF terminals in Lnx1 mutant mice. Our data thus define a retrograde trans-synaptic regulation required for integration of post- and presynaptic structure that participates in building hippocampal neural circuits during the adolescence period.
Collapse
Affiliation(s)
- Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Na Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael M Halford
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Henkemeyer
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
40
|
Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice. J Neurosci 2018; 38:8345-8363. [PMID: 30082414 DOI: 10.1523/jneurosci.0128-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
Abstract
Eph receptors play pivotal roles in the axon guidance of retinal ganglion cells (RGCs) at the optic chiasm and the establishment of the topographic retinocollicular map. We previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) is specifically involved in the control of retinotectal projections in chicks through the dephosphorylation of EphA and EphB receptors. We subsequently revealed that all the mouse R3 subfamily members (PTPRB, PTPRH, PTPRJ, and PTPRO) of the receptor protein tyrosine phosphatase (RPTP) family inhibited Eph receptors as their substrates in cultured mammalian cells. We herein investigated the functional roles of R3 RPTPs in the projection of mouse retinal axon of both sexes. Ptpro and Ptprj were expressed in mouse RGCs; however, Ptprj expression levels were markedly higher than those of Ptpro Consistent with their expression levels, Eph receptor activity was significantly enhanced in Ptprj-knock-out (Ptprj-KO) retinas. In Ptprj-KO and Ptprj/Ptpro-double-KO (DKO) mice, the number of retinal axons that projected ipsilaterally or to the contralateral eye was significantly increased. Furthermore, retinal axons in Ptprj-KO and DKO mice formed anteriorly shifted ectopic terminal zones in the superior colliculus (SC). We found that c-Abl (Abelson tyrosine kinase) was downstream of ephrin-Eph signaling for the repulsion of retinal axons at the optic chiasm and in the SC. c-Abl was identified as a novel substrate for PTPRJ and PTPRO, and the phosphorylation of c-Abl was upregulated in Ptprj-KO and DKO retinas. Thus, PTPRJ regulates retinocollicular projections in mice by controlling the activity of Eph and c-Abl kinases.SIGNIFICANCE STATEMENT Correct retinocollicular projection is a prerequisite for proper vision. Eph receptors have been implicated in retinal axon guidance at the optic chiasm and the establishment of the topographic retinocollicular map. We herein demonstrated that protein tyrosine phosphatase receptor type J (PTPRJ) regulated retinal axonal projections by controlling Eph activities. The retinas of Ptprj-knock-out (KO) and Ptpro/Ptprj double-KO mice exhibited significantly enhanced Eph activities over those in wild-type mice, and their axons showed defects in pathfinding at the chiasm and retinocollicular topographic map formation. We also revealed that c-Abl (Abelson tyrosine kinase) downstream of Eph receptors was regulated by PTPRJ. These results indicate that the regulation of the ephrin-Eph-c-Abl axis by PTPRJ plays pivotal roles in the proper central projection of retinal axons during development.
Collapse
|
41
|
|
42
|
Moorefield EC, Andres SF, Blue RE, Van Landeghem L, Mah AT, Santoro MA, Ding S. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany NY) 2018; 9:1898-1915. [PMID: 28854151 PMCID: PMC5611984 DOI: 10.18632/aging.101279] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFPLow), activatable reserve IESC and enteroendocrine cells (Sox9-EGFPHigh), Sox9-EGFPSublow progenitors, and Sox9-EGFPNegative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFPLow IESC and Sox9-EGFPHigh cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.
Collapse
Affiliation(s)
- Emily C Moorefield
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah F Andres
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda T Mah
- Department of Hematology, Stanford University, Stanford, CA 94305, USA
| | - M Agostina Santoro
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Locke C, Machida K, Tucker CL, Wu Y, Yu J. Optogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase. Biol Open 2017; 6:1820-1830. [PMID: 29158322 PMCID: PMC5769660 DOI: 10.1242/bio.029900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in the brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in hippocampal neurons with an optogenetic approach, which allowed us to specify spatial regions of signal activation and monitor in real-time the consequences of signal activation. We designed and constructed OptoEphB2, a genetically encoded photoactivatable EphB2. Photoactivation of OptoEphB2 in fibroblast cells induced receptor phosphorylation and resulted in cell rounding ------- a well-known cellular response to EphB2 activation. In contrast, local activation of OptoEphb2 in dendrites of hippocampal neurons induces rapid actin polymerization, resulting dynamic dendritic filopodial growth. Inhibition of Rac1 and CDC42 did not abolish OptoEphB2-induced actin polymerization. Instead, we identified Abelson tyrosine-protein kinase 2 (Abl2/Arg) as a necessary effector in OptoEphB2-induced filopodia growth in dendrites. These findings provided new mechanistic insight into EphB2's role in neural development and demonstrated the advantage of OptoEphB as a new tool for studying EphB signaling.
Collapse
Affiliation(s)
- Clifford Locke
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kazuya Machida
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Yi Wu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ji Yu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
44
|
Evergren E, Cobbe N, McMahon HT. Eps15R and clathrin regulate EphB2-mediated cell repulsion. Traffic 2017; 19:44-57. [PMID: 28972287 PMCID: PMC5836524 DOI: 10.1111/tra.12531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans‐endocytosis of the inter‐cellular receptor‐ligand EphB‐ephrinB complex is required. The molecular mechanism underlying trans‐endocytosis is poorly defined. Here we show that the process is clathrin‐ and Eps15R‐mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co‐cultures of EphB2‐ and ephrinB1‐expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2‐mediated cell repulsion as shown in a rescue experiment in the EphB2 co‐culture assay where wild type Eps15R but not the clathrin‐binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans‐endocytosis and thereby cell repulsion.
Collapse
Affiliation(s)
- Emma Evergren
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Neville Cobbe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
45
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Lee J, Park D, Lee Y. Metformin Synergistically Potentiates the Antitumor Effects of Imatinib in Colorectal Cancer Cells. Dev Reprod 2017; 21:139-150. [PMID: 28785735 PMCID: PMC5532306 DOI: 10.12717/dr.2017.21.2.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Metformin is the most commonly prescribed anti-diabetic drug with relatively
minor side effect. Substantial evidence has suggested that metformin is
associated with decreased cancer risk and anticancer activity against diverse
cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity
for treatment of chronic myeloid leukemia and also induces growth arrest and
apoptosis in colorectal cancer cells. In this study, we tested the combination
of imatinib and metformin against HCT15 colorectal cancer cells for effects on
cell viability, cell cycle and autophagy. Our data show that metformin
synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated
by combination and drug reduction indices. We also demonstrate that the
combination causes synergistic down-regulation of pERK, cell cycle arrest in S
and G2/M phases via reduction of cyclin B1 level. Moreover, the
combination resulted in autophagy induction as revealed by increased acidic
vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic
process by chloroquine led to decreased cell viability, suggesting that
induction of autophagy seems to play a cell protective role that may act against
anticancer effects. In conclusion, our present data suggest that metformin in
combination with imatinib might be a promising therapeutic option in colorectal
cancer.
Collapse
Affiliation(s)
- Jaeryun Lee
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Deokbae Park
- Dept. of Histology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Youngki Lee
- Dept. of Histology, Jeju National University School of Medicine, Jeju 690-756, Korea
| |
Collapse
|
47
|
Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K, Kawano T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 2017; 17:8. [PMID: 28465671 PMCID: PMC5408411 DOI: 10.1186/s12907-017-0047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As the major subfamily of receptor tyrosine, erythropoietin-producing hepatocellular (Eph) receptor has been related to progression and prognosis in different types of tumors. However, the role and mechanism of EPHA3 in gastric cancer is still not well understood. Methods Specimen were collected from 202 patients who underwent gastric resection for gastric adenocarcinoma. The expression of EphA3 was studied using immunohistochemistry. We analyzed the clinicopathological factors and prognostic relevance of EphA3 expression in gastric cancer. Results High expression of EphA3 was associated with male predominance (p = 0.031), differentiated histology (p < 0.001), depth of tumor (p = 0.002), lymph node metastasis (p = 0.001), distant metastasis (p = 0.021), liver metastasis (p = 0.024), advanced stage (p < 0.001), and high HER2 expression (p = 0.017). Relapse-free survival (RFS) was significantly worse in patients with high expression of EphA3 than in those with low expression of EphA3 (p = 0.014). Multivariate analysis for RFS showed that depth of tumor [hazard ratio (HR) 9.333, 95% confidence interval (CI) 2.183–39.911, p = 0.003] and lymph node metastasis [hazard ratio (HR) 5.734, 95% confidence interval (CI) 2.349–13.997, p < 0.001] were independent prognostic factors. Conclusions These findings suggest that high expression EphA3 may participate in metastasis and worse survival.
Collapse
Affiliation(s)
| | - Mikito Inokuchi
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoko Takagi
- Department of Translational Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sho Otsuki
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
48
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
49
|
Wang Z, Deng M, Liu Z, Wu S. Hypoxia-induced miR-210 promoter demethylation enhances proliferation, autophagy and angiogenesis of schwannoma cells. Oncol Rep 2017; 37:3010-3018. [PMID: 28440459 DOI: 10.3892/or.2017.5511] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxia, a dominant feature in cancer occurrence and evolution, exists throughout the progression of most malignant tumors. This study focused on the mechanism of hypoxia-induced miR-210 upregulation, and the miR-210 functions in schwannoma. We detected microvascular density, vascular endothelial growth factor (VEGF) and miR-210 expression levels using schwannoma tissue mciroarray. The results showed that miR-210 expression was significantly associated with VEGF. Moreover, the cytological tests showed that hypoxia induced miR-210 expression, while reduce ephrin-A3 expression. The bisulfate genomic sequencing PCR results showed that miR-210 promoter region was hypermethylated in RT4-D6P2T in normoxia, while demethylated in hypoxia, and the region included the hypoxia-inducible factor-1α (HIF-1α) response element site. Cellular function research showed that hypoxia resulted in RT4-D6P2T apoptosis, higher autophage and invasion. Besides, hypoxia can affect HIF-1α/VEGF-mediated angiogenesis. To learn about the specific functions of miR-210, we found that with miR-210 inhibition, tumor cell apoptosis increased, autophagy and angiogenesis reduced, and the cell cycle was arrested. Hypoxia promoted miR-210 expression through promoter demethylation, then consequently enhanced tumor cell proliferation and autophagy, increasing tumor cell angiogenesis. Thus, miR-210 could be a potential marker for judging tumor malignancy and be taken as an effective target for clinical auxiliary treatment of neurilemmoma.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mingsi Deng
- Department of Orthodontics, The Stomatological Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Zhendong Liu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
50
|
Loss of the EPH receptor B6 contributes to colorectal cancer metastasis. Sci Rep 2017; 7:43702. [PMID: 28262839 PMCID: PMC5337985 DOI: 10.1038/srep43702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Although deregulation of EPHB signaling has been shown to be an important step in colorectal tumorigenesis, the role of EPHB6 in this process has not been investigated. We found here that manipulation of EPHB6 levels in colon cancer cell lines has no effect on their motility and growth on a solid substrate, soft agar or in a xenograft mouse model. We then used an EphB6 knockout mouse model to show that EphB6 inactivation does not efficiently initiate tumorigenesis in the intestinal tract. In addition, when intestinal tumors are initiated genetically or pharmacologically in EphB6+/+ and EphB6−/− mice, no differences were observed in animal survival, tumor multiplicity, size or histology, and proliferation of intestinal epithelial cells or tumor cells. However, reintroduction of EPHB6 into colon cancer cells significantly reduced the number of lung metastasis after tail-vein injection in immunodeficient mice, while EPHB6 knockdown in EPHB6-expressing cells increased their metastatic spread. Consistently, although EPHB6 protein expression in a series of 130 primary colorectal tumors was not associated with patient survival, EPHB6 expression was significantly lower in lymph node metastases compared to primary tumors. Our results indicate that the loss of EPHB6 contributes to the metastatic process of colorectal cancer.
Collapse
|