1
|
Li Y, Guo Z, Li P, Guo J, Wang H, Pan W, Wu F, Li J, Zhou J, Ma Z. Tanshinone T1/T2A facilitate let-7 to suppress non-small cell lung cancer. Gene 2024:149058. [PMID: 39481768 DOI: 10.1016/j.gene.2024.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Tanshinones are a group of compounds in Salvia miltiorrhiza. Although the effects of tanshinone Ⅰ (T1) and tanshinone ⅡA (T2A) are widely concerned, the mechanism of T1 and T2A in lung cancer is rarely studied. EXPERIMENTAL PROCEDURE Xenograft tumor growth was performed to detect the role of T1/T2A in vivo. Next-generation sequencing of miRNA expression profiles in T1/T2A-treated A549 cells showed that T1/T2A upregulated the expression of the let-7 family. Then, let-7a-5p and its downstream target gene BORA were identified as the research objects in this paper. Mechanistically, we examined the interplay between miR-let-7 and BORA through the dual-luciferase reporter assay. Finally, the potential regulatory role of T1/T2A on Lin28B or MYC was explored. RESULTS This study found that the let-7 family was significantly up-regulated via "Next-generation" sequencing (NGS) in the T1/T2A-treated A549 cell line, while BORA was downregulated. BORA was confirmed as a direct target of let-7. LncRNA MYCLo-5 was up-regulated after treatment with tanshinones. Knockdown of MYCLo-5 promoted the cell cycle and proliferation of non-small cell lung cancer (NSCLC). CONCLUSIONS This study explored the effect of tanshinone T1 and T2A on NSCLC in vitro and in vivo, revealing the T1/T2A- let-7/ BORA /MYCLo-5 regulatory pathway, which provided new ideas for lung cancer treatment.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huimin Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China
| | - Jinrong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center Harvard Medical School, USA
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Garg A, Shang R, Cvetanovic T, Lai EC, Joshua-Tor L. The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs. Mol Cell 2024:S1097-2765(24)00741-X. [PMID: 39368465 DOI: 10.1016/j.molcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "flipped U with paired N" (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha's Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.
Collapse
Affiliation(s)
- Ankur Garg
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Todor Cvetanovic
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Modic M, Kuret K, Steinhauser S, Faraway R, van Genderen E, Ruiz de Los Mozos I, Novljan J, Vičič Ž, Lee FCY, Ten Berge D, Luscombe NM, Ule J. Poised PABP-RNA hubs implement signal-dependent mRNA decay in development. Nat Struct Mol Biol 2024; 31:1439-1447. [PMID: 39054355 PMCID: PMC11402784 DOI: 10.1038/s41594-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression.
Collapse
Affiliation(s)
- Miha Modic
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| | - Klara Kuret
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Rupert Faraway
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Emiel van Genderen
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jona Novljan
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Vičič
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Flora C Y Lee
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Yi G, Ye M, Carrique L, El-Sagheer A, Brown T, Norbury CJ, Zhang P, Gilbert RJC. Structural basis for activity switching in polymerases determining the fate of let-7 pre-miRNAs. Nat Struct Mol Biol 2024; 31:1426-1438. [PMID: 39054354 PMCID: PMC11402785 DOI: 10.1038/s41594-024-01357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Tumor-suppressor let-7 pre-microRNAs (miRNAs) are regulated by terminal uridylyltransferases TUT7 and TUT4 that either promote let-7 maturation by adding a single uridine nucleotide to the pre-miRNA 3' end or mark them for degradation by the addition of multiple uridines. Oligo-uridylation is increased in cells by enhanced TUT7/4 expression and especially by the RNA-binding pluripotency factor LIN28A. Using cryogenic electron microscopy, we captured high-resolution structures of active forms of TUT7 alone, of TUT7 plus pre-miRNA and of both TUT7 and TUT4 bound with pre-miRNA and LIN28A. Our structures reveal that pre-miRNAs engage the enzymes in fundamentally different ways depending on the presence of LIN28A, which clamps them onto the TUTs to enable processive 3' oligo-uridylation. This study reveals the molecular basis for mono- versus oligo-uridylation by TUT7/4, as determined by the presence of LIN28A, and thus their mechanism of action in the regulation of cell fate and in cancer.
Collapse
Affiliation(s)
- Gangshun Yi
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Calleva Centre for Evolution and Human Science, Magdalen College, Oxford, UK
| | - Mingda Ye
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Loic Carrique
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Afaf El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Institute for Life Sciences, University of Southampton Highfield Campus, Southampton, UK
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Chris J Norbury
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peijun Zhang
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Calleva Centre for Evolution and Human Science, Magdalen College, Oxford, UK.
| |
Collapse
|
5
|
Garg A, Shang R, Cvetanovic T, Lai EC, Joshua-Tor L. The structural landscape of Microprocessor mediated pri- let-7 miRNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593372. [PMID: 38766155 PMCID: PMC11100773 DOI: 10.1101/2024.05.09.593372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
miRNA biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryo-EM and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "fUN" motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a noncanonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC-motif and Drosha's PAZ-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.
Collapse
Affiliation(s)
- Ankur Garg
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Howard Hughes Medical Institute, Cold Spring Harbor laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
| | - Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Todor Cvetanovic
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Howard Hughes Medical Institute, Cold Spring Harbor laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Lead Contact
| |
Collapse
|
6
|
Futorian A, Armon L, Waldman Ben-Asher H, Shoval I, Hazut I, Munitz A, Urbach A. Nephron-Specific Lin28A Overexpression Triggers Severe Inflammatory Response and Kidney Damage. Int J Biol Sci 2024; 20:4044-4054. [PMID: 39113694 PMCID: PMC11302891 DOI: 10.7150/ijbs.97434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
The RNA-binding proteins LIN28A and LIN28B contribute to a variety of developmental biological processes. Dysregulation of Lin28A and Lin28B expression is associated with numerous types of tumors. This study demonstrates that Lin28A overexpression in the mouse nephrons leads to severe inflammation and kidney damage rather than to tumorigenesis. Notably, Lin28A overexpression causes inflammation only when expressed in nephrons, but not in the stromal cells of the kidneys, highlighting its cell context-dependent nature. The nephron-specific Lin28A-induced inflammatory response differs from previously described Lin28B-mediated inflammatory feedback loops as it is IL-6 independent. Instead, it is associated with the rapid upregulation of cytokines like Cxcl1 and Ccl2. These findings suggest that the pathophysiological effects of Lin28A overexpression extend beyond cell transformation. Our transgenic mouse model offers a valuable tool for advancing our understanding of the pathophysiology of acute kidney injury, where inflammation is a key factor.
Collapse
Affiliation(s)
- Anna Futorian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Irit Shoval
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology & Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology & Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Song D, Chen Y, Wang P, Cheng Y, Shyh-Chang N. Lin28a forms an RNA-binding complex with Igf2bp3 to regulate m 6A-modified stress response genes in stress granules of muscle stem cells. Cell Prolif 2024:e13707. [PMID: 39021312 DOI: 10.1111/cpr.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m6A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m6A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.
Collapse
Affiliation(s)
- Dan Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yeqian Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
8
|
Xu S, Dong W. LncRNA NEAT1 targets miR-125/ADAM9 mediated NF-κB pathway in inflammatory response of rosacea. Skin Res Technol 2024; 30:e13630. [PMID: 38988131 PMCID: PMC11237170 DOI: 10.1111/srt.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To investigate the role of NEAT1 targeted regulation of miR-125/ADAM9 mediated NF-κB pathway in inflammatory response in rosacea. METHOD HaCaT cell rosacea phenotype was induced by LL37. The connection targeted by NEAT1 and miR-125a-5p was confirmed by Double-Luciferase report analysis. qPCR was employed to assess the levels of expression for NEAT1, miR-125a-5p, and ADAM9 genes. The levels of expression for ADAM9/TLR2/NF-κB P65 pathway proteins in each batch of cells were determined by Western blotting. The levels of expression for inflammatory factors, including TNF-α, IL-1β, IL-6, and IL-18, were measured through ELISA experimentation. RESULTS LL37 could successfully induce HaCaT cells to exhibit rosacea phenotype. The luciferase report experiment confirmed that NEAT1 could target and bind miR-125a-5p and inhibit its expression. ADAM9 exhibited increased expression in LL37-induced HaCaT cells, showing a positive association with NEAT1 expression and inverse relationship with miR-125a-5p activation. LL37 treatment promoted the expression of ADAM9/TLR2/NF-κB P65 pathway proteins. Silencing ADAM9 can inhibit the inflammatory signaling pathway and reduce the level of TNF-α, IL-1β, IL-6, and IL-18 in HaCaT cells. CONCLUSION NEAT1 can suppress the production of miR-125a-5p and activate the TLR2/NF-κB inflammatory pathway mediated by ADAM9, thereby promoting the inflammatory response in rosacea.
Collapse
Affiliation(s)
- Sijia Xu
- Department of DermatologyRui Jin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wenxin Dong
- Department of Medical CosmetologyShanghai Skin Disease HospitalShanghaiChina
| |
Collapse
|
9
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Rosenblum SL, Soueid DM, Giambasu G, Vander Roest S, Pasternak A, DiMauro EF, Simov V, Garner AL. Live cell screening to identify RNA-binding small molecule inhibitors of the pre-let-7-Lin28 RNA-protein interaction. RSC Med Chem 2024; 15:1539-1546. [PMID: 38784453 PMCID: PMC11110735 DOI: 10.1039/d4md00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | - Dalia M Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| | - George Giambasu
- Computational Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | | | - Erin F DiMauro
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Vladimir Simov
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| |
Collapse
|
11
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
12
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
13
|
Baek SC, Kim B, Jang H, Kim K, Park IS, Min DH, Kim VN. Structural atlas of human primary microRNAs generated by SHAPE-MaP. Mol Cell 2024; 84:1158-1172.e6. [PMID: 38447581 DOI: 10.1016/j.molcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.
Collapse
Affiliation(s)
- S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Boseon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Harim Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Il-Soo Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dal-Hee Min
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
14
|
Hynes C, Kakumani PK. Regulatory role of RNA-binding proteins in microRNA biogenesis. Front Mol Biosci 2024; 11:1374843. [PMID: 38567098 PMCID: PMC10985210 DOI: 10.3389/fmolb.2024.1374843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that silence gene expression through their interaction with complementary sequences in the 3' untranslated regions (UTR) of target mRNAs. miRNAs undergo a series of steps during their processing and maturation, which are tightly regulated to fine-tune their abundance and ability to function in post-transcriptional gene silencing. miRNA biogenesis typically involves core catalytic proteins, namely, Drosha and Dicer, and several other RNA-binding proteins (RBPs) that recognize and interact with miRNA precursors and/or their intermediates, and mature miRNAs along with their interacting proteins. The series of RNA-protein and protein-protein interactions are critical to maintaining miRNA expression levels and their function, underlying a variety of cellular processes. Throughout this article, we review RBPs that play a role in miRNA biogenesis and focus on their association with components of the miRNA pathway with functional consequences in the processing and generation of mature miRNAs.
Collapse
Affiliation(s)
| | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
15
|
Feng H, Lu XJ, Maji S, Liu L, Ustianenko D, Rudnick ND, Zhang C. Structure-based prediction and characterization of photo-crosslinking in native protein-RNA complexes. Nat Commun 2024; 15:2279. [PMID: 38480694 PMCID: PMC10937933 DOI: 10.1038/s41467-024-46429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
UV-crosslinking of protein and RNA in direct contacts has been widely used to study protein-RNA complexes while our understanding of the photo-crosslinking mechanisms remains poor. This knowledge gap is due to the challenge of precisely mapping the crosslink sites in protein and RNA simultaneously in their native sequence and structural contexts. Here we systematically analyze protein-RNA interactions and photo-crosslinking by bridging crosslinked nucleotides and amino acids mapped using different assays with protein-RNA complex structures. We developed a computational method PxR3D-map which reliably predicts crosslink sites using structural information characterizing protein-RNA interaction interfaces. Analysis of the informative features revealed that photo-crosslinking is facilitated by base stacking with not only aromatic residues, but also dipeptide bonds that involve glycine, and distinct mechanisms are utilized by different RNA-binding domains. Our work suggests protein-RNA photo-crosslinking is highly selective in the cellular environment, which can guide data interpretation and further technology development for UV-crosslinking-based assays.
Collapse
Affiliation(s)
- Huijuan Feng
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Suvrajit Maji
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Linxi Liu
- Department of Statistics, Columbia University, New York, NY, 10027, USA
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dmytro Ustianenko
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Noam D Rudnick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Tan T, Gao B, Yu H, Pan H, Sun Z, Lei A, Zhang L, Lu H, Wu H, Daley GQ, Feng Y, Zhang J. Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions. Nat Commun 2024; 15:1256. [PMID: 38341436 PMCID: PMC10858886 DOI: 10.1038/s41467-024-45451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins' phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A's phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions.
Collapse
Affiliation(s)
- Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
19
|
Borgelt L, Hohnen L, Pallesen JS, Hommen P, Goebel GL, Bosica F, Liu Y, O’Mahony G, Wu P. N-Biphenyl Pyrrolinones and Dibenzofurans as RNA-Binding Protein LIN28 Inhibitors Disrupting the LIN28- Let-7 Interaction. ACS Med Chem Lett 2023; 14:1707-1715. [PMID: 38116413 PMCID: PMC10726440 DOI: 10.1021/acsmedchemlett.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
The RNA-binding protein LIN28 is a regulator of miRNA let-7 biogenesis. Inhibitors of LIN28 are highly sought after given the central role that LIN28 plays in tumorigenesis and development of cancer stem cells as well as LIN28's association with poor clinical prognosis. Although LIN28 inhibitors of different scaffolds have been reported, the potential of most LIN28 inhibiting small molecules was not fully explored since very limited structure-activity relationship (SAR) studies have been performed. We previously identified trisubstituted pyrrolinones as a new class of LIN28 inhibitors disrupting the LIN28-let-7 interaction. Here, we performed extensive SAR by evaluating 95 small molecules and identified new trisubstituted pyrrolinones featuring either an N-biphenyl or N-dibenzofuran substituent, overthrowing the existing conclusion that a salicylic acid moiety is indispensable for activity. Exchange of the negatively charged salicylic acid moiety in LIN28 inhibitors with a heterocyclic substituent is beneficial for membrane permeability, leading to increased activity in a cellular assay, and will potentially reduce toxicity.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Lisa Hohnen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr-University
Bochum, Universitätsstr.
150, Bochum 44801, Germany
| | - Jakob S. Pallesen
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Pascal Hommen
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Francesco Bosica
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Yang Liu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn
Str. 6, Dortmund 44227, Germany
| | - Gavin O’Mahony
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Otto-Hahn Str. 15, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| |
Collapse
|
20
|
Letelier P, Saldías R, Loren P, Riquelme I, Guzmán N. MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer. Int J Mol Sci 2023; 24:16984. [PMID: 38069307 PMCID: PMC10707120 DOI: 10.3390/ijms242316984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
Collapse
Affiliation(s)
- Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Rolando Saldías
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| |
Collapse
|
21
|
Liu Y, Zhang J, Cao F, Dong X, Li J, Cao Y, Li Z, Guo Y, Yan J, Liu Y, Zhao Q. N6-methyladenosine-mediated overexpression of long noncoding RNA ADAMTS9-AS2 triggers neuroblastoma differentiation via regulating LIN28B/let-7/MYCN signaling. JCI Insight 2023; 8:e165703. [PMID: 37991019 PMCID: PMC10721320 DOI: 10.1172/jci.insight.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroblastomas have shed light on the differentiation disorder that is associated with spontaneous regression or differentiation in the same tumor at the same time. Long noncoding RNAs (lncRNAs) actively participate in a broad spectrum of biological processes. However, the detailed molecular mechanisms underlying lncRNA regulation of differentiation in neuroblastomas remain largely unknown. Here, we sequenced clinical samples of ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. We compared transcription profiles of neuroblastoma cells, ganglion cells, and intermediate state cells; verified the profiles in a retinoic acid-induced cell differentiation model and clinical samples; and screened out the lncRNA ADAMTS9 antisense RNA 2 (ADAMTS9-AS2), which contributed to neuroblastoma differentiation. ADAMTS9-AS2 upregulation in neuroblastoma cell lines inhibited proliferation and metastatic potential. Additional mechanistic studies illustrated that the interactions between ADAMTS9-AS2 and LIN28B inhibited the association between LIN28B and primary let-7 (pri-let-7) miRNA, then released pri-let-7 into cytoplasm to form mature let-7, resulting in the inhibition of oncogene MYCN activity that subsequently affected cancer stemness and differentiation. Furthermore, we showed that the observed differential expression of ADAMTS9-AS2 in neuroblastoma cells was due to N6-methyladenosine methylation. Finally, ADAMTS9-AS2 upregulation inhibited proliferation and cancer stem-like capabilities in vivo. Taken together, these results show that ADAMTS9-AS2 loss leads to malignant neuroblastoma by increasing metastasis and causing dysfunctional differentiation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanglin Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Guo
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA editing catalytic complexes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1591-1609. [PMID: 37474258 PMCID: PMC10578492 DOI: 10.1261/rna.079691.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life-cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multiprotein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing, and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations, most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the zinc fingers (ZFs), an intrinsically disordered region (IDR), and several within or near the carboxy-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing, whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Global Health, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Borgelt L, Huang F, Hohnen L, Qiu X, Goebel GL, Hommen P, Wu P. Spirocyclic Chromenopyrazole Inhibitors Disrupting the Interaction between the RNA-Binding Protein LIN28 and Let-7. Chembiochem 2023; 24:e202300168. [PMID: 37129525 DOI: 10.1002/cbic.202300168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
Small-molecule inhibitors of the RNA-binding and regulating protein LIN28 have the potential to be developed as chemical probes for biological perturbation and as therapeutic candidates. Reported small molecules disrupting the interaction between LIN28 and let-7 miRNA suffer from moderate to weak inhibitory activity and flat structure-activity relationship, which hindered the development of next-generation LIN28 inhibitors that warrant further evaluations. We report herein the identification of new LIN28 inhibitors utilizing a spirocyclization strategy based on a chromenopyrazole scaffold. Representative compounds 2-5 showed potent in vitro inhibitory activity against LIN28-let-7 interaction and single-digit micromolar potency in inhibiting the proliferation of LIN28-expressing JAR cancer cells. The spirocyclic compound 5 incorporated a position that is amenable for functional group appendage and further structural modifications. The binding mode of compound 5 with the LIN28 cold shock domain was rationalized via a molecular docking analysis.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
24
|
Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-Peptide Conjugates as Small-Molecule Based Inhibitors Disrupting the Protein-RNA Interaction of LIN28-let-7. Chembiochem 2023; 24:e202300376. [PMID: 37224100 DOI: 10.1002/cbic.202300376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Targeting the protein-RNA interaction of LIN28 and let-7 is a promising strategy for the development of novel anticancer therapeutics. However, a limited number of small-molecule inhibitors disrupting the LIN28-let-7 interaction with potent efficacy are available. Herein, we developed a novel LIN28-inhibiting strategy by targeting selective hotspot amino acids at the LIN28-let-7 binding interface with small-molecule-based bifunctional conjugates. Starting from reported small-molecule LIN28 inhibitors, we identified a feasible linker-attachment position after performing a structure-activity relationship exploration based on the LIN28-targeting chromenopyrazoles. In parallel, a virtual alanine scan identified hotspot residues at the protein-RNA binding interface, based on which we designed a set of peptides to enhance the interaction with the identified hotspot residues. Conjugation of the tailor-designed peptides with linker-attached chromenopyrazoles yielded a series of bifunctional small-molecule-peptide conjugates, represented by compound 83 (PH-223), as a new LIN28-targeting chemical modality. Our result demonstrated an unexplored rational design approach using bifunctional conjugates to target protein-RNA interactions.
Collapse
Affiliation(s)
- Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
25
|
Yamashita S, Tomita K. Mechanism of U6 snRNA oligouridylation by human TUT1. Nat Commun 2023; 14:4686. [PMID: 37563152 PMCID: PMC10415362 DOI: 10.1038/s41467-023-40420-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
U6 snRNA is a catalytic RNA responsible for pre-mRNA splicing reactions and undergoes various post-transcriptional modifications during its maturation process. The 3'-oligouridylation of U6 snRNA by the terminal uridylyltransferase, TUT1, provides the Lsm-binding site in U6 snRNA for U4/U6 di-snRNP formation and this ensures pre-mRNA splicing. Here, we present the crystal structure of human TUT1 (hTUT1) complexed with U6 snRNA, representing the post-uridylation of U6 snRNA by hTUT1. The N-terminal ZF-RRM and catalytic palm clamp the single-stranded AUA motif between the 5'-short stem and the 3'-telestem of U6 snRNA, and the ZF-RRM specifically recognizes the AUA motif. The ZF and the fingers hold the telestem, and the 3'-end of U6 snRNA is placed in the catalytic pocket of the palm for oligouridylation. The oligouridylation of U6 snRNA depends on the internal four-adenosine tract in the 5'-part of the telestem of U6 snRNA, and hTUT1 adds uridines until the internal adenosine tract can form base-pairs with the 3'-oligouridine tract. Together, the recognition of the specific structure and sequence of U6 snRNA by the multi-domain TUT1 protein and the intrinsic sequence and structure of U6 snRNA ensure the oligouridylation of U6 snRNA.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
26
|
Xuan D, Du C, Zhao W, Zhou J, Dai S, Zhang T, Wu M, Tian J. Downregulation of β-Catenin Contributes to type II Alveolar Epithelial Stem Cell Resistance to Epithelial-Mesenchymal Transition by Lowing Lin28/let-7 Ratios in Fibrosis-Resistant Mice after Thoracic Irradiation. Radiat Res 2023; 200:32-47. [PMID: 37141224 DOI: 10.1667/rade-22-00165.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Transdifferentiation of type II alveolar cells (AECII) is a major cause for radiation-induced lung fibrosis (RILF). Cell differentiation phenotype is determined by Lin28 (undifferentiated marker) and let-7 (differentiated marker) in a see-saw-pattern. Therefore, differentiation phenotype can be extrapolated based on Lin28/let-7 ratio. Lin28 is activated by β-catenin. To the best of our knowledge this study was the first to use the single primary AECII freshly isolated from irradiated lungs of fibrosis-resistant C3H/HeNHsd strain to further confirm RILF mechanism by comparing its differences in AECII phenotype status/state and cell differentiation regulators to fibrosis-prone C57BL/6j mice. Results showed that radiation pneumonitis and fibrotic lesions were seen in C3H/HeNHsd and C57BL/6j mouse strains, respectively. mRNAs of E-cadherin, EpCAM, HOPX and proSP-C (epithelial phenotype biomarkers) were significantly downregulated in single primary AECII isolated from irradiated lungs of both strains. Unlike C57BL/6j, α-SMA and Vimentin (mesenchymal phenotype biomarkers) were not upregulated in single AECII from irradiated C3H/HeNHsd. Profibrotic molecules, TGF-β1 mRNA was upregulated and β-catenin was significantly downregulated in AECII after irradiation (both P < 0.01). In contrast, transcriptions for GSK-3β, TGF-β1 and β-catenin were enhanced in isolated single AECII from irradiated C57BL/6j (P < 0.01-P < 0.001). The Lin28/let-7 ratios were much lower in single primary AECII from C3H/HeNHsd after irradiation vs. C57BL/6j. In conclusion, AECII from irradiated C3H/HeNHsd did not undergo epithelial-mesenchymal transition (EMT) and lower ratios of Lin28/let-7 contributed to AECII relatively higher differentiated status, leading to increased susceptibility to radiation stress and a failure in transdifferentiation in the absence of β-catenin. Reducing β-catenin expression and the ratios of Lin28/let-7 may be a promising strategy to prevent radiation fibrosis.
Collapse
Affiliation(s)
- Dandan Xuan
- Experimental Animal Platform, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Du
- Experimental Animal Platform, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Wendi Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jianwei Zhou
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Shan Dai
- Experimental Animal Platform, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Mengge Wu
- Fuwai Central China Cardiovascular Hospital, Animal experimental center of Central China Subcenter of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jian Tian
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA, Gorhe D, Guttman M, Jovanovic M. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543769. [PMID: 37333139 PMCID: PMC10274648 DOI: 10.1101/2023.06.05.543769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
Collapse
Affiliation(s)
- Erica Wolin
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Jimmy K. Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R. Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Andrew A. Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Isabel N. Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Ahmed A. Abdou
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| |
Collapse
|
28
|
Lee DW, Shin S, Kim JH, Lee C, Kim IY, Oh IH. Antisense Oligonucleotides against Let-7 Enhance the Therapeutic Potential of Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108639. [PMID: 37239986 DOI: 10.3390/ijms24108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Let-7 miRNAs have pleiotropic cellular functions in cell proliferation, migration, and regenerative processes. Here, we investigate whether the inhibition of let-7 miRNAs with antisense oligonucleotides (ASOs) can be a transient and safe strategy enhancing the therapeutic potential of mesenchymal stromal cells (MSCs) to overcome their limitations in cell therapeutic trials. We first identified major subfamilies of let-7 miRNAs preferentially expressed in MSCs, and efficient ASO combinations against these selected subfamilies that mimic the effects of LIN28 activation. When let-7 miRNAs were inhibited with an ASO combination (anti-let7-ASOs), MSCs exhibited higher proliferation with delayed senescence during the passaging into a culture. They also exhibited increased migration and enhanced osteogenic differentiation potential. However, these changes in MSCs were not accompanied by cell-fate changes into pericytes or the additional acquisition of stemness, but instead occurred as functional changes accompanied by changes in proteomics. Interestingly, MSCs with let-7 inhibition exhibited metabolic reprogramming characterized by an enhanced glycolytic pathway, decreased reactive oxygen species, and lower transmembrane potential in mitochondria. Moreover, let-7-inhibited MSCs promoted the self-renewal of neighboring hematopoietic progenitor cells, and enhanced capillary formation in endothelial cells. These findings together show that our optimized ASO combination efficiently reprograms the MSC functional state, allowing for more efficient MSC cell therapy.
Collapse
Affiliation(s)
- Dae-Won Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
| | - Sungho Shin
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Ho Kim
- Regen Innopharm Inc., Seoul 06591, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
- Regen Innopharm Inc., Seoul 06591, Republic of Korea
| |
Collapse
|
29
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA Editing Catalytic Complexes in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537538. [PMID: 37131796 PMCID: PMC10153193 DOI: 10.1101/2023.04.19.537538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multi-protein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the ZFs, an intrinsically disordered region (IDR) and several within or near the C-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
30
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Ray D, Laverty KU, Jolma A, Nie K, Samson R, Pour SE, Tam CL, von Krosigk N, Nabeel-Shah S, Albu M, Zheng H, Perron G, Lee H, Najafabadi H, Blencowe B, Greenblatt J, Morris Q, Hughes TR. RNA-binding proteins that lack canonical RNA-binding domains are rarely sequence-specific. Sci Rep 2023; 13:5238. [PMID: 37002329 PMCID: PMC10066285 DOI: 10.1038/s41598-023-32245-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.
Collapse
Affiliation(s)
- Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kaitlin U Laverty
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kate Nie
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Reuben Samson
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara E Pour
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cyrus L Tam
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Niklas von Krosigk
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hamed Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Benjamin Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jack Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Quaid Morris
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
32
|
RPflex: A Coarse-Grained Network Model for RNA Pocket Flexibility Study. Int J Mol Sci 2023; 24:ijms24065497. [PMID: 36982570 PMCID: PMC10058308 DOI: 10.3390/ijms24065497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
RNA regulates various biological processes, such as gene regulation, RNA splicing, and intracellular signal transduction. RNA’s conformational dynamics play crucial roles in performing its diverse functions. Thus, it is essential to explore the flexibility characteristics of RNA, especially pocket flexibility. Here, we propose a computational approach, RPflex, to analyze pocket flexibility using the coarse-grained network model. We first clustered 3154 pockets into 297 groups by similarity calculation based on the coarse-grained lattice model. Then, we introduced the flexibility score to quantify the flexibility by global pocket features. The results show strong correlations between the flexibility scores and root-mean-square fluctuation (RMSF) values, with Pearson correlation coefficients of 0.60, 0.76, and 0.53 in Testing Sets I–III. Considering both flexibility score and network calculations, the Pearson correlation coefficient was increased to 0.71 in flexible pockets on Testing Set IV. The network calculations reveal that the long-range interaction changes contributed most to flexibility. In addition, the hydrogen bonds in the base–base interactions greatly stabilize the RNA structure, while backbone interactions determine RNA folding. The computational analysis of pocket flexibility could facilitate RNA engineering for biological or medical applications.
Collapse
|
33
|
Zhu H, Wang J, Zhang Q, Pan X, Zhang J. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. Pharmacol Ther 2023; 244:108371. [PMID: 36871783 DOI: 10.1016/j.pharmthera.2023.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Targeted Protein Degradation is an emerging and rapidly developing technique for designing and treating new drugs. With the emergence of a promising class of pharmaceutical molecules, Heterobifunctional Proteolysis-targeting chimeras (PROTACs), TPD has become a powerful tool to completely tackle pathogenic proteins with traditional small molecule inhibitors. However, the conventional PROTACs have gradually exposed potential disadvantages of poor oral bioavailability and pharmacokinetic (PK) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics due to their larger molecular weight and more complex structure than the conventional small-molecule inhibitors. Therefore, 20 years after the concept of PROTAC was proposed, more and more scientists are committed to developing new TPD technology to overcome its defects. And several new technologies and means have been explored based on "PROTAC" to target "undruggable proteins". Here, we aim to comprehensively summarize and profoundly analyze the research progress of targeted protein degradation based on PROTAC targeting the degradation of "undruggable" targets. In order to clarify the significance of emerging and highly effective strategies based PROTACs in the treatment of various diseases especially in overcoming drug resistance in cancer, we will focus on the molecular structure, action mechanism, design concepts, development advantages and challenges of these emerging methods(e.g., aptamer-PROTAC conjugates, antibody-PROTACs and folate-PROTACs).
Collapse
Affiliation(s)
- Huanjie Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
34
|
Yamamoto H, Uchida Y, Kurimoto R, Chiba T, Matsushima T, Ito Y, Inotsume M, Miyata K, Watanabe K, Inada M, Goshima N, Uchida T, Asahara H. RNA-binding protein LIN28A upregulates transcription factor HIF1α by posttranscriptional regulation via direct binding to UGAU motifs. J Biol Chem 2023; 299:102791. [PMID: 36509142 PMCID: PMC9823215 DOI: 10.1016/j.jbc.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates angiogenesis under hypoxic conditions. To investigate the posttranscriptional regulatory mechanism of HIF1α, we performed a cell-based screening to reveal potential cis-elements and the regulatory RNA-binding proteins that act as trans-factors. We found that LIN28A promoted HIF1α protein expression independently of the downregulation of microRNA let-7, which is also directly mediated by LIN28A. Transcriptome analysis and evaluation of RNA stability using RNA-seq and SLAM-seq analyses, respectively, revealed that LIN28A upregulates HIF1A expression via mRNA stabilization. To investigate the physical association of LIN28A with HIF1A mRNA, we performed enhanced crosslinking immunoprecipitation in 293FT cells and integrally analyzed the transcriptome. We observed that LIN28A associates with HIF1A mRNA via its cis-element motif "UGAU". The "UGAU" motifs are recognized by the cold shock domain of LIN28A, and the introduction of a loss-of-function mutation to the cold shock domain diminished the upregulatory activities performed by LIN28A. Finally, the microvessel density assay showed that the expression of LIN28A promoted angiogenesis in vivo. In conclusion, our study elucidated the role of LIN28A in enhancing the HIF1α axis at the posttranscription layer.
Collapse
Affiliation(s)
- Hiroto Yamamoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Anesthesiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Maiko Inotsume
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Miyata
- Department Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kenta Watanabe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoki Goshima
- Biomedicinal Information Research Center, The National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; Department of Human Science, Faculty of Human Science, Musashino University, Tokyo, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, California, USA.
| |
Collapse
|
35
|
Rosenblum SL, Garner AL. Optimization of RiPCA for the Live-Cell Detection of Pre-MicroRNA-Protein Interactions. Chembiochem 2022; 23:e202200508. [PMID: 36322053 PMCID: PMC9831681 DOI: 10.1002/cbic.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Advancements in methods for identifying RNA-protein interactions (RPIs) on a large scale has necessitated the development of assays for validation of these interactions, particularly in living cells. We previously reported the development of RiPCA (RNA interaction with protein-mediated complementation assay) to enable the cellular detection of the well-characterized interaction between the pre-microRNA, pre-let-7, and its RNA-binding protein (RBP) partner Lin28. In this study, the applicability of RiPCA for the detection of putative pre-miRNA-protein interactions was explored using an improved RiPCA protocol, termed RiPCA 2.0. RiPCA 2.0 was adapted to detect the sequence specificity of the RBPs hnRNP A1, Msi1, and Msi2 for reported pre-microRNA binding partners. Additionally, the ability of RiPCA 2.0 to detect site-specific binding was explored. Collectively, this work highlights the versatility of RiPCA 2.0 in detecting cellular RPIs.
Collapse
Affiliation(s)
| | - Amanda L. Garner
- Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichigan48109USA
| |
Collapse
|
36
|
Discovery of Novel Lin28 Inhibitors to Suppress Cancer Cell Stemness. Cancers (Basel) 2022; 14:cancers14225687. [PMID: 36428779 PMCID: PMC9688808 DOI: 10.3390/cancers14225687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Lin28 is a pluripotency factor that regulates cancer cell stem-like phenotypes to promote cancer development and therapy-resistant tumor progression. It acts through its cold shock domain and zinc knuckle domain (ZKD) to interact with the Let-7 pre-microRNA and block Let-7 biosynthesis. Chemical inhibition of Lin28 from interacting with Let-7 presents a therapeutic strategy for cancer therapy. Herein, we present the computer-aided development of small molecules by in silico screening 18 million compounds from the ZINC20 library, followed by the biological validation of 163 predicted compounds to confirm 15 new Lin28 inhibitors. We report three lead compounds, Ln7, Ln15, and Ln115, that target the ZKD of both Lin28A and Lin28B isoforms and block Lin28 from binding Let-7. They restore Let-7 expression and suppress tumor oncogenes such as SOX2 in cancer cells and show strong inhibitory effects on cancer cell stem-like phenotypes. However, minimal impacts of these compounds were observed on Lin28-negative cells, confirming the on-target effects of these compounds. We conclude from this study the discovery of several new Lin28 inhibitors as promising candidate compounds that warrant further drug development into potential anticancer therapies.
Collapse
|
37
|
San A, Palmieri D, Saxena A, Singh S. In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin-miRNA interactions. Proteins 2022; 90:1837-1850. [PMID: 35514080 DOI: 10.1002/prot.26355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2023]
Abstract
RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for posttranscriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL-miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.
Collapse
Affiliation(s)
- Avdar San
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
38
|
Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022; 76:102442. [PMID: 36067707 PMCID: PMC9509664 DOI: 10.1016/j.sbi.2022.102442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.
Collapse
Affiliation(s)
- Victor M Ruiz-Arroyo
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. https://twitter.com/@Ruiz_Arroy0
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
40
|
Zhang L, Jiang X, Wang G, Kanda T, Yokosuka O, Zhai C, Zhang L, Liu P, Zhao Z, Li Z. Effects of Let-7c on the processing of hepatitis B virus associated liver diseases. Infect Agent Cancer 2022; 17:46. [PMID: 36057607 PMCID: PMC9440497 DOI: 10.1186/s13027-022-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background The most common type of cancer of the digestive system is hepatocellular carcinoma. In China, many patients harbour HBV. The lin28B/Let-7c/MYC axis is associated with the occurrence of many cancers. Therefore, we aimed to illuminate the function of the lin28B/Let-7c/MYC axis in hepatocellular carcinoma. We aimed to evaluate the critical involvement of lin28B and Let-7c in the carcinogenesis of human hepatocellular carcinoma (B-HCC). Methods Data from the GEO database were used to analyse differentially expressed genes and IRGs. A protein − protein interaction (PPI) network and Venn diagram were generated to analyse relationships. Real-time RT-PCR, Western blotting, and cell counting kit-8 assays were used to examine the association of lin28B, Let-7c, and MYC with cell proliferation. Results A total of 2552 functionally annotated differentially expressed RNAs were analysed in HBV patients from the GSE135860 database. In addition, 46 let-7c target genes were screened in HBV patients, and the interactions were analysed through PPI network analysis. The results confirmed that Let-7c and its target genes play a key role in HBV-related diseases. Next, we discovered a gradual decrease in Let-7c expression during the progression from HBV-associated chronic hepatitis (B-CH) and HBV-associated liver cirrhosis (B-LC) to B-HCC. We found evidence for a negative association between lin28B expression and Let-7c expression. The expression of MYC was obviously upregulated when Let-7c was inhibited. Conclusion Our results highlight that Let-7c and lin28B participate in the carcinogenesis of HBV-associated diseases through the lin28B/Let-7c/MYC axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00458-8.
Collapse
Affiliation(s)
- Like Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.,Division of Gastroenterology and Hepatology Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Congjie Zhai
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Lei Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Peng Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Zhongxin Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| |
Collapse
|
41
|
Laverty KU, Jolma A, Pour SE, Zheng H, Ray D, Morris Q, Hughes TR. PRIESSTESS: interpretable, high-performing models of the sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res 2022; 50:e111. [PMID: 36018788 DOI: 10.1093/nar/gkac694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022] Open
Abstract
Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.
Collapse
Affiliation(s)
- Kaitlin U Laverty
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Sara E Pour
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Chaudhary A, Chaurasia PK, Kushwaha S, Chauhan P, Chawade A, Mani A. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. Int J Biol Macromol 2022; 220:743-753. [PMID: 35987358 DOI: 10.1016/j.ijbiomac.2022.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay
| | - Pankaj Kumar Chaurasia
- PG Department of Chemistry, L.S. College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
43
|
Diaz B, Mederos C, Tan K, Tse-Dinh YC. Microbial Type IA Topoisomerase C-Terminal Domain Sequence Motifs, Distribution and Combination. Int J Mol Sci 2022; 23:ijms23158709. [PMID: 35955842 PMCID: PMC9369019 DOI: 10.3390/ijms23158709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Type IA topoisomerases have highly conserved catalytic N-terminal domains for the cleaving and rejoining of a single DNA/RNA strand that have been extensively characterized. In contrast, the C-terminal region has been less covered. Two major types of small tandem C-terminal domains, Topo_C_ZnRpt (containing C4 zinc finger) and Topo_C_Rpt (without cysteines) were initially identified in Escherichia coli and Mycobacterium tuberculosis topoisomerase I, respectively. Their structures and interaction with DNA oligonucleotides have been revealed in structural studies. Here, we first present the diverse distribution and combinations of these two structural elements in various bacterial topoisomerase I (TopA). Previously, zinc fingers have not been seen in type IA topoisomerases from well-studied fungal species within the phylum Ascomycota. In our extended studies of C-terminal DNA-binding domains, the presence of zf-GRF and zf-CCHC types of zinc fingers in topoisomerase III (Top3) from fungi species in many phyla other than Ascomycota has drawn our attention. We secondly analyze the distribution and combination of these fungal zf-GRF- and zf-CCHC-containing domains. Their potential structures and DNA-binding mechanism are evaluated. The highly diverse arrangements and combinations of these DNA/RNA-binding domains in microbial type IA topoisomerase C-terminal regions have important implications for their interactions with nucleic acids and protein partners as part of their physiological functions.
Collapse
Affiliation(s)
- Brenda Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Christopher Mederos
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| |
Collapse
|
44
|
Shang R, Kretov DA, Adamson SI, Treiber T, Treiber N, Vedanayagam J, Chuang J, Meister G, Cifuentes D, Lai E. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic Acids Res 2022; 50:7637-7654. [PMID: 35801921 PMCID: PMC9303283 DOI: 10.1093/nar/gkac568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
45
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
46
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Adipose-derived exosomes block muscular stem cell proliferation in aged mouse by delivering miRNA Let-7d-3p that targets transcription factor HMGA2. J Biol Chem 2022; 298:102098. [PMID: 35679898 PMCID: PMC9257422 DOI: 10.1016/j.jbc.2022.102098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is an aging-associated attenuation of muscular volume and strength and is the major cause of frailty and falls in elderly individuals. The number of individuals with sarcopenia is rapidly increasing worldwide; however, little is known about the underlying mechanisms of the disease. Sarcopenia often copresents with obesity, and some patients with sarcopenia exhibit accumulation of peri-organ or intra-organ adipose tissue as ectopic fat deposition, including atrophied skeletal muscle. In this study, we showed that transplantation of the perimuscular adipose tissue (PMAT) to the hindlimb thigh muscles of young mice decreased the number of integrin α7/CD29-double positive muscular stem/progenitor cells and that the reaction was mediated by PMAT-derived exosomes. We also found that the inhibition of cell proliferation was induced by Let-7d-3p miRNA that targets HMGA2, which is an important transcription factor for stem cell self-renewal, in muscular stem/progenitor cells and the composite molecular reaction in aged adipocytes. Reduction of Let-7 miRNA repressor Lin28 A/B and activation of nuclear factor-kappa B signaling can lead to the accumulation of Let-7d-3p in the exosomes of aged PMAT. These findings suggest a novel crosstalk between adipose tissue and skeletal muscle in the development of aging-associated muscular atrophy and indicate that adipose tissue–derived miRNAs may play a key role in sarcopenia.
Collapse
|
48
|
Knörlein A, Sarnowski CP, de Vries T, Stoltz M, Götze M, Aebersold R, Allain FHT, Leitner A, Hall J. Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nat Commun 2022; 13:2719. [PMID: 35581222 PMCID: PMC9114321 DOI: 10.1038/s41467-022-30284-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Photo-induced cross-linking is a mainstay technique to characterize RNA-protein interactions. However, UV-induced cross-linking between RNA and proteins at “zero-distance” is poorly understood. Here, we investigate cross-linking of the RBFOX alternative splicing factor with its hepta-ribonucleotide binding element as a model system. We examine the influence of nucleobase, nucleotide position and amino acid composition using CLIR-MS technology (crosslinking-of-isotope-labelled-RNA-and-tandem-mass-spectrometry), that locates cross-links on RNA and protein with site-specific resolution. Surprisingly, cross-linking occurs only at nucleotides that are π-stacked to phenylalanines. Notably, this π-stacking interaction is also necessary for the amino-acids flanking phenylalanines to partake in UV-cross-linking. We confirmed these observations in several published datasets where cross-linking sites could be mapped to a high resolution structure. We hypothesize that π-stacking to aromatic amino acids activates cross-linking in RNA-protein complexes, whereafter nucleotide and peptide radicals recombine. These findings will facilitate interpretation of cross-linking data from structural studies and from genome-wide datasets generated using CLIP (cross-linking-and-immunoprecipitation) methods. Although UV-induced cross-linking is a widely used method to study RNA-protein complexes, the cross-linking reactions are poorly understood. Here, the authors show that π-stacking interactions between nucleobases and aromatic amino acids play a key role in the cross-linking process.
Collapse
Affiliation(s)
- Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Chris P Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Moritz Stoltz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Tsai YS, Huang CI, Tsai PC, Yeh ML, Huang CF, Hsieh MH, Liu TW, Lin YH, Liang PC, Lin ZY, Chen SC, Huang JF, Chuang WL, Dai CY, Yu ML. Circulating Let-7 Family Members as Non-Invasive Biomarkers for Predicting Hepatocellular Carcinoma Risk after Antiviral Treatment among Chronic Hepatitis C Patients. Cancers (Basel) 2022; 14:2023. [PMID: 35454929 PMCID: PMC9030777 DOI: 10.3390/cancers14082023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
HCC, a leading cause of cancer-related mortality, is diagnosed at advanced stages. Although antiviral therapy has reduced the risk of HCC among chronic hepatitis C (CHC) patients, the risk of HCC remains, thus, highlighting the unmet need for continuous surveillance. Therefore, stable and cost-effective biomarkers, such as circulating microRNAs, must be identified. We aimed to clarify whether serum levels of the Let-7 family can predict HCC risk in patients with CHC using univariate and multivariate Cox’s proportional hazards model. We analyzed the sera of 54 patients with CHC who developed HCC after antiviral therapy and compared the data with those of 173 patients without HCC development. The Let-7 family (except for let-7c) exhibited significant negative correlations with the fibrosis score (r = −0.2736 to −0.34, p = 0.0002 to <0.0001). After Cox’s regression model was used to adjust for age, sex, HCV genotype, and FIB-4 ≥ 3.25, patients with CHC with let-7i median ≥ −1.696 (adjusted hazard ratio [aHR] = 0.31, 95% CI: 0.08−0.94, p = 0.0372) in the sustained virologic response (SVR) groups and ≥−1.696 (aHR = 0.09, 95% CI: 0.08−0.94, p = 0.0022) in the non-SVR group were less likely to develop HCC. Thus, circulating let-7i can be used for early CHC surveillance in patients with HCC risk after antiviral treatment.
Collapse
Affiliation(s)
- Yi-Shan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ta-Wei Liu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
50
|
Moon HJ, Lee NY, Do EK, Lee SY, Park GT, Lim JK, Seo JK, Kim JH. Kap1 Regulates the Stability of Lin28A in Embryonic Stem Cells. Stem Cells 2022; 40:385-396. [PMID: 35262736 DOI: 10.1093/stmcls/sxac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022]
Abstract
Lin28A is an RNA-binding protein that controls mammalian development and maintenance of the pluripotency of embryonic stem cells (ESCs) via regulating the processing of the microRNA let-7. Lin28A is highly expressed in ESCs, and ectopic expression of this protein facilitates reprogramming of somatic cells to induced pluripotent stem cells. However, the mechanisms underlying the post-translational regulation of Lin28A protein stability in ESCs remain unclear. In the present study, we identified Kap1 (KRAB-associated protein 1) as a novel Lin28A-binding protein using affinity purification and mass spectrometry. Kap1 specifically interacted with the N-terminal region of Lin28A through its coiled-coil domain. Kap1 overexpression significantly attenuated Lin28A ubiquitination and increased its stability. However, small interfering RNA-mediated knockdown of Kap1 promoted the ubiquitination of Lin28A, leading to its proteasomal degradation. Trim71, an E3 ubiquitin ligase, induced Lin28A degradation and Kap1 knockdown accelerated the Trim71-dependent degradation of Lin28A. Mutation of the lysine 177 residue of Lin28A to arginine abrogated the ubiquitination and degradation of Lin28A which were accelerated by Kap1 silencing. Moreover, Kap1 overexpression led to the accumulation of Lin28A in the cytoplasm, but not in the nucleus, and reduced the levels of let-7 subtypes. These results suggest that Kap1 plays a key role in regulation of the stability of Lin28A by modulating the Trim71-mediated ubiquitination and subsequent degradation of Lin28A, thus playing a pivotal role in the regulation of ESC self-renewal and pluripotency.
Collapse
Affiliation(s)
- Hye Ji Moon
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Republic of Korea.,Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Na Yeon Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Kyoung Do
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seo Yul Lee
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Republic of Korea.,Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Gyu Tae Park
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Republic of Korea.,Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Kyong Lim
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Republic of Korea.,Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Kon Seo
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jae Ho Kim
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Republic of Korea.,Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|