1
|
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish. Nat Commun 2024; 15:7589. [PMID: 39217144 PMCID: PMC11366026 DOI: 10.1038/s41467-024-51920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Amulya V Hejjaji
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Lena Steuter
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Nicole M Woodhead
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul Maier
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Alhajkadour
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Octavia Santis Larrain
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael Weber
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Khrievono Kikhi
- Flow Cytometry and Cell Sorting Core Facility, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Jan Huisken
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany.
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
2
|
Yang Y, Li S, Luo L. Responses of organ precursors to correct and incorrect inductive signals. Trends Cell Biol 2024; 34:484-495. [PMID: 37739814 DOI: 10.1016/j.tcb.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
During embryonic development, the inductive molecules produced by local origins normally arrive at their target tissues in a nondirectional, diffusion manner. The target organ precursor cells must correctly interpret these inductive signals to ensure proper specification/differentiation, which is dependent on two prerequisites: (i) obtaining cell-intrinsic competence; and (ii) receiving correct inductive signals while resisting incorrect ones. Gain of intrinsic competence could avoid a large number of misinductions because the incompetent cells are nonresponsive to inductive signals. However, in cases of different precursor cells with similar competence and located in close proximity, resistance to incorrect inductive signals is essential for accurate determination of cell fate. Here we outline the mechanisms of how organ precursors respond to correct and incorrect inductive signals.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Shuang Li
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China; School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Du A, Guo Z, Chen A, Xu L, Sun D, Han B. PC Gene Affects Milk Production Traits in Dairy Cattle. Genes (Basel) 2024; 15:708. [PMID: 38927644 PMCID: PMC11202589 DOI: 10.3390/genes15060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In previous work, we found that PC was differentially expressed in cows at different lactation stages. Thus, we deemed that PC may be a candidate gene affecting milk production traits in dairy cattle. In this study, we found the polymorphisms of PC by resequencing and verified their genetic associations with milk production traits by using an animal model in a cattle population. In total, we detected six single-nucleotide polymorphisms (SNPs) in PC. The single marker association analysis showed that all SNPs were significantly associated with the five milk production traits (p < 0.05). Additionally, we predicted that allele G of 29:g.44965658 in the 5' regulatory region created binding sites for TF GATA1 and verified that this allele inhibited the transcriptional activity of PC by the dual-luciferase reporter assay. In conclusion, we proved that PC had a prominent genetic effect on milk production traits, and six SNPs with prominent genetic effects could be used as markers for genomic selection (GS) in dairy cattle, which is beneficial for accelerating the improvement in milk yield and quality in Chinese Holstein cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.D.); (Z.G.); (A.C.); (L.X.); (D.S.)
| |
Collapse
|
4
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
5
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Zhao YX, Song JY, Bao XW, Zhang JL, Wu JC, Wang LY, He C, Shao W, Bai XL, Liang TB, Sheng JP. Single-cell RNA sequencing-guided fate-mapping toolkit delineates the contribution of yolk sac erythro-myeloid progenitors. Cell Rep 2023; 42:113364. [PMID: 37922312 DOI: 10.1016/j.celrep.2023.113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023] Open
Abstract
Erythro-myeloid progenitors of the yolk sac that originates during early embryo development has been suggested to generate tissue-resident macrophage, mast cell, and even endothelial cell populations from fetal to adult stages. However, the heterogeneity of erythro-myeloid progenitors (EMPs) is not well characterized. Here, we adapt single-cell RNA sequencing to dissect the heterogeneity of EMPs and establish several fate-mapping tools for each EMP subset to trace the contributions of different EMP subsets. We identify two primitive and one definitive EMP subsets from the yolk sac. In addition, we find that primitive EMPs are decoupled from definitive EMPs. Furthermore, we confirm that primitive and definitive EMPs give rise to microglia and other tissue-resident macrophages, respectively. In contrast, only Kit+ Csf1r- primitive EMPs generate endothelial cells transiently during early embryo development. Overall, our results delineate the contribution of yolk sac EMPs more clearly based on the single-cell RNA sequencing (scRNA-seq)-guided fate-mapping toolkit.
Collapse
Affiliation(s)
- Y X Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - J Y Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - X W Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - J L Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - J C Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - L Y Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - C He
- Infinity Scope Biotechnology Co., Ltd., Hangzhou 311200, China
| | - W Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - X L Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - T B Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - J P Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
7
|
Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood 2023; 142:519-532. [PMID: 37339578 PMCID: PMC10447622 DOI: 10.1182/blood.2022017934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 06/22/2023] Open
Abstract
Developmental hematopoiesis consists of multiple, partially overlapping hematopoietic waves that generate the differentiated blood cells required for embryonic development while establishing a pool of undifferentiated hematopoietic stem cells (HSCs) for postnatal life. This multilayered design in which active hematopoiesis migrates through diverse extra and intraembryonic tissues has made it difficult to define a roadmap for generating HSCs vs non-self-renewing progenitors, especially in humans. Recent single-cell studies have helped in identifying the rare human HSCs at stages when functional assays are unsuitable for distinguishing them from progenitors. This approach has made it possible to track the origin of human HSCs to the unique type of arterial endothelium in the aorta-gonad-mesonephros region and document novel benchmarks for HSC migration and maturation in the conceptus. These studies have delivered new insights into the intricate process of HSC generation and provided tools to inform the in vitro efforts to replicate the physiological developmental journey from pluripotent stem cells via distinct mesodermal and endothelial intermediates to HSCs.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Hanna K. A. Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Hicks MR, Pyle AD. The emergence of the stem cell niche. Trends Cell Biol 2023; 33:112-123. [PMID: 35934562 PMCID: PMC9868094 DOI: 10.1016/j.tcb.2022.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Stem cell niches are composed of dynamic microenvironments that support stem cells over a lifetime. The emerging niche is distinct from the adult because its main role is to support the progenitors that build organ systems in development. Emerging niches mature through distinct stages to form the adult niche and enable proper stem cell support. As a model of emerging niches, this review highlights how differences in the skeletal muscle microenvironment influence emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between progenitor and stem cells throughout development to adulthood. We describe new applications for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental principles and highlight potential applications for regeneration and therapeutics.
Collapse
Affiliation(s)
- Michael R Hicks
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - April D Pyle
- Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nat Commun 2023; 14:41. [PMID: 36596806 PMCID: PMC9810727 DOI: 10.1038/s41467-022-35744-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
During embryogenesis, haematopoietic and endothelial lineages emerge closely in time and space. It is thought that the first blood and endothelium derive from a common clonal ancestor, the haemangioblast. However, investigation of candidate haemangioblasts in vitro revealed the capacity for mesenchymal differentiation, a feature more compatible with an earlier mesodermal precursor. To date, no evidence for an in vivo haemangioblast has been discovered. Using single cell RNA-Sequencing and in vivo cellular barcoding, we have unravelled the ancestral relationships that give rise to the haematopoietic lineages of the yolk sac, the endothelium, and the mesenchyme. We show that the mesodermal derivatives of the yolk sac are produced by three distinct precursors with dual-lineage outcomes: the haemangioblast, the mesenchymoangioblast, and a previously undescribed cell type: the haematomesoblast. Between E5.5 and E7.5, this trio of precursors seeds haematopoietic, endothelial, and mesenchymal trajectories.
Collapse
|
10
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
11
|
Mattonet K, Riemslagh FW, Guenther S, Prummel KD, Kesavan G, Hans S, Ebersberger I, Brand M, Burger A, Reischauer S, Mosimann C, Stainier DYR. Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2. SCIENCE ADVANCES 2022; 8:eabn2082. [PMID: 36044573 PMCID: PMC9432843 DOI: 10.1126/sciadv.abn2082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 05/17/2023]
Abstract
Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.
Collapse
Affiliation(s)
- Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| | - Fréderike W. Riemslagh
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Stefan Guenther
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Karin D. Prummel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Gokul Kesavan
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60325, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60325, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| |
Collapse
|
12
|
Abstract
Formation of the vasculature is a critical step within the developing embryo and its disruption causes early embryonic lethality. This complex process is driven by a cascade of signaling events that controls differentiation of mesodermal progenitors into primordial endothelial cells and their further specification into distinct subtypes (arterial, venous, hemogenic) that are needed to generate a blood circulatory network. Hemogenic endothelial cells give rise to hematopoietic stem and progenitor cells that generate all blood cells in the body during embryogenesis and postnatally. We focus our discussion on the regulation of endothelial cell differentiation, and subsequent hemogenic specification, and highlight many of the signaling pathways involved in these processes, which are conserved across vertebrates. Gaining a better understanding of the regulation of these processes will yield insights needed to optimize the treatment of vascular and hematopoietic disease and generate human stem cell-derived vascular and hematopoietic cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jordon W Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Departments of Medicine and Genetics, Yale University School of Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
16
|
Gage BK, Merlin S, Olgasi C, Follenzi A, Keller GM. Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors. Cell Rep 2022; 39:110621. [PMID: 35385743 DOI: 10.1016/j.celrep.2022.110621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDR+CD235a/b+ mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDR+CD235a/b- mesoderm. When transplanted into immunocompromised hemophilia A mice (NSG-HA), these VECs engraft the liver, proliferate, and mature to functional LSECs that secrete bioactive FVIII capable of correcting the bleeding phenotype. Together, these findings highlight the importance of appropriate mesoderm induction for generating hPSC-derived LSECs capable of functioning in a preclinical model of hemophilia A.
Collapse
Affiliation(s)
- Blair K Gage
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada.
| | - Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
17
|
Dissecting the Complexity of Early Heart Progenitor Cells. J Cardiovasc Dev Dis 2021; 9:jcdd9010005. [PMID: 35050215 PMCID: PMC8779398 DOI: 10.3390/jcdd9010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
Early heart development depends on the coordinated participation of heterogeneous cell sources. As pioneer work from Adriana C. Gittenberger-de Groot demonstrated, characterizing these distinct cell sources helps us to understand congenital heart defects. Despite decades of research on the segregation of lineages that form the primitive heart tube, we are far from understanding its full complexity. Currently, single-cell approaches are providing an unprecedented level of detail on cellular heterogeneity, offering new opportunities to decipher its functional role. In this review, we will focus on three key aspects of early heart morphogenesis: First, the segregation of myocardial and endocardial lineages, which yields an early lineage diversification in cardiac development; second, the signaling cues driving differentiation in these progenitor cells; and third, the transcriptional heterogeneity of cardiomyocyte progenitors of the primitive heart tube. Finally, we discuss how single-cell transcriptomics and epigenomics, together with live imaging and functional analyses, will likely transform the way we delve into the complexity of cardiac development and its links with congenital defects.
Collapse
|
18
|
Zhang Q, Carlin D, Zhu F, Cattaneo P, Ideker T, Evans SM, Bloomekatz J, Chi NC. Unveiling Complexity and Multipotentiality of Early Heart Fields. Circ Res 2021; 129:474-487. [PMID: 34162224 DOI: 10.1161/circresaha.121.318943] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qingquan Zhang
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.)
| | - Daniel Carlin
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.)
| | - Fugui Zhu
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.)
| | - Paola Cattaneo
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.)
| | - Trey Ideker
- Medicine, Division of Genetics (T.I.).,Department of Computer Science and Engineering (T.I.).,Department of Bioengineering (T.I.).,Institute of Genomic Medicine (T.I., N.C.C.)
| | - Sylvia M Evans
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.).,Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences (S.M.E.), University of California San Diego, La Jolla, CA
| | - Joshua Bloomekatz
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.).,Now with Department of Biology, University of Mississippi, Oxford, MS (J.B.)
| | - Neil C Chi
- Medicine, Division of Cardiology (Q.Z., D.C., F.Z., P.C., S.M.E., J.B., N.C.C.).,Institute of Genomic Medicine (T.I., N.C.C.)
| |
Collapse
|
19
|
Lowe V, Wisniewski L, Pellet-Many C. The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8050049. [PMID: 34062899 PMCID: PMC8147271 DOI: 10.3390/jcdd8050049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In zebrafish, the spatiotemporal development of the vascular system is well described due to its stereotypical nature. However, the cellular and molecular mechanisms orchestrating post-embryonic vascular development, the maintenance of vascular homeostasis, or how coronary vessels integrate into the growing heart are less well studied. In the context of cardiac regeneration, the central cellular mechanism by which the heart regenerates a fully functional myocardium relies on the proliferation of pre-existing cardiomyocytes; the epicardium and the endocardium are also known to play key roles in the regenerative process. Remarkably, revascularisation of the injured tissue occurs within a few hours after cardiac damage, thus generating a vascular network acting as a scaffold for the regenerating myocardium. The activation of the endocardium leads to the secretion of cytokines, further supporting the proliferation of the cardiomyocytes. Although epicardium, endocardium, and myocardium interact with each other to orchestrate heart development and regeneration, in this review, we focus on recent advances in the understanding of the development of the endocardium and the coronary vasculature in zebrafish as well as their pivotal roles in the heart regeneration process.
Collapse
Affiliation(s)
- Vanessa Lowe
- Heart Centre, Barts & The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Laura Wisniewski
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
20
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
21
|
Shim WJ, Sinniah E, Xu J, Vitrinel B, Alexanian M, Andreoletti G, Shen S, Sun Y, Balderson B, Boix C, Peng G, Jing N, Wang Y, Kellis M, Tam PPL, Smith A, Piper M, Christiaen L, Nguyen Q, Bodén M, Palpant NJ. Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Syst 2020; 11:625-639.e13. [PMID: 33278344 PMCID: PMC7781436 DOI: 10.1016/j.cels.2020.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper’s transparent peer review process is included in the Supplemental Information. Perturbing genes controlling cell decisions have major implications in development or disease. However, identifying key regulatory genes from the thousands expressed in a cell is challenging. TRIAGE is a computational method that distills patterns of epigenetic repression across diverse cell types to infer regulatory genes using input gene expression data from any cell type. Demonstrating its utility, we combine single-cell RNA-seq and TRIAGE to identify and experimentally confirm novel regulators of heart development in evolutionarily distant species.
Collapse
Affiliation(s)
- Woo Jun Shim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Burcu Vitrinel
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Gaia Andreoletti
- Institute for Computational Health Sciences, University of California, San Francisco, CA 94158, USA
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Carles Boix
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Patrick P L Tam
- The University of Sydney, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Aaron Smith
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Abstract
Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bailey Dye
- Biomedical Sciences Graduate Program at The Ohio State University, Columbus, Ohio 43210, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
23
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
24
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
25
|
Chestnut B, Casie Chetty S, Koenig AL, Sumanas S. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. Nat Commun 2020; 11:2796. [PMID: 32493965 PMCID: PMC7271194 DOI: 10.1038/s41467-020-16515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Center for Cardiovascular Research, Washington University School of Medicine, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Yin HM, Yan LF, Liu Q, Peng Z, Zhang CY, Xia Y, Su D, Gu AH, Zhou Y. Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. SCIENCE ADVANCES 2020; 6:eaay9466. [PMID: 32494702 PMCID: PMC7202888 DOI: 10.1126/sciadv.aay9466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/27/2020] [Indexed: 05/10/2023]
Abstract
The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3 -/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3 -/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.
Collapse
Affiliation(s)
- Hui-Min Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Feng Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Yuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Su
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| |
Collapse
|
27
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
28
|
Romano O, Petiti L, Felix T, Meneghini V, Portafax M, Antoniani C, Amendola M, Bicciato S, Peano C, Miccio A. GATA Factor-Mediated Gene Regulation in Human Erythropoiesis. iScience 2020; 23:101018. [PMID: 32283524 PMCID: PMC7155206 DOI: 10.1016/j.isci.2020.101018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors. GATA2/1 binding to regulatory regions and transcriptional changes during erythropoiesis GATA1 sustains KIT expression in human erythroid progenitors
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Michel Portafax
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
29
|
Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biol 2020; 21:59. [PMID: 32138752 PMCID: PMC7059722 DOI: 10.1186/s13059-020-01973-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9, endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and function.
Collapse
|
30
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
31
|
Pucéat M. [The primary cilia at the heart of mitral valve prolapse pathogeny]. Med Sci (Paris) 2019; 35:836-838. [PMID: 31845873 DOI: 10.1051/medsci/2019163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michel Pucéat
- Inserm U1251, université Aix-Marseille, MMG, 27 boulevard Jean Moulin, 13885 Marseille, France
| |
Collapse
|
32
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
33
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
34
|
Castaño J, Aranda S, Bueno C, Calero-Nieto FJ, Mejia-Ramirez E, Mosquera JL, Blanco E, Wang X, Prieto C, Zabaleta L, Mereu E, Rovira M, Jiménez-Delgado S, Matson DR, Heyn H, Bresnick EH, Göttgens B, Di Croce L, Menendez P, Raya A, Giorgetti A. GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports 2019; 13:515-529. [PMID: 31402335 PMCID: PMC6742600 DOI: 10.1016/j.stemcr.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023] Open
Abstract
In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.
Collapse
Affiliation(s)
- Julio Castaño
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Eva Mejia-Ramirez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, 08908 Spain
| | - Enrique Blanco
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Xiaonan Wang
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Lorea Zabaleta
- Laboratory of Hematological Diseases, Fundación Inbiomed, San Sebastian, 20009, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Rovira
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Berthold Göttgens
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Centro de Investigación Biomedica en Red en Cancer (CIBERONIC) ISCIII, Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Alessandra Giorgetti
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
35
|
Abstract
Evidence of the diversity and multi-layered organization of the hematopoietic system is leading to new insights that may inform ex vivo production of blood cells. Interestingly, not all long-lived hematopoietic cells derive from hematopoietic stem cells (HSCs). Here we review the current knowledge on HSC-dependent cell lineages and HSC-independent tissue-resident hematopoietic cells and how they arise during embryonic development. Classical embryological and genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information on the molecular/cell trajectories that form the complete hematopoietic system. We also discuss the current developmentally informed efforts toward generating engraftable and multilineage blood cells.
Collapse
Affiliation(s)
- Elaine Dzierzak
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
36
|
Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Sci Rep 2019; 9:11953. [PMID: 31420575 PMCID: PMC6697751 DOI: 10.1038/s41598-019-48321-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
The endocardium is the endothelial component of the vertebrate heart and plays a key role in heart development. Where, when, and how the endocardium segregates during embryogenesis have remained largely unknown, however. We now show that Nkx2-5+ cardiac progenitor cells (CPCs) that express the Sry-type HMG box gene Sox17 from embryonic day (E) 7.5 to E8.5 specifically differentiate into the endocardium in mouse embryos. Although Sox17 is not essential or sufficient for endocardium fate, it can bias the fate of CPCs toward the endocardium. On the other hand, Sox17 expression in the endocardium is required for heart development. Deletion of Sox17 specifically in the mesoderm markedly impaired endocardium development with regard to cell proliferation and behavior. The proliferation of cardiomyocytes, ventricular trabeculation, and myocardium thickening were also impaired in a non-cell-autonomous manner in the Sox17 mutant, likely as a consequence of down-regulation of NOTCH signaling. An unknown signal, regulated by Sox17 and required for nurturing of the myocardium, is responsible for the reduction in NOTCH-related genes in the mutant embryos. Our results thus provide insight into differentiation of the endocardium and its role in heart development.
Collapse
|
37
|
Abstract
Endocardial cells are specialized endothelial cells that form the innermost layer of the heart wall. By virtue of genetic lineage-tracing technology, many of the unexpected roles of endocardium during murine heart development, diseases, and regeneration have been identified recently. In addition to heart valves developed from the well-known endothelial to mesenchymal transition, recent fate-mapping studies using mouse models reveal that multiple cardiac cell lineages are also originated from the endocardium. This review focuses on a variety of different cell types that are recently reported to be endocardium derived during murine heart development, diseases, and regeneration. These multiple cell fates underpin the unprecedented roles of endocardial progenitors in function, pathological progression, and regeneration of the heart. Because emerging studies suggest that developmental mechanisms can be redeployed and recapitulated in promoting heart disease development and also cardiac repair and regeneration, understanding the mechanistic regulation of endocardial plasticity and modulation of their cell fate conversion may uncover new therapeutic potential in facilitating heart regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Kathy O Lui
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Bin Zhou
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| |
Collapse
|
38
|
When blood development meets single-cell transcriptomics. BLOOD SCIENCE 2019; 1:65-68. [PMID: 35402794 PMCID: PMC8974905 DOI: 10.1097/bs9.0000000000000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022] Open
Abstract
Blood cells arise during embryonic development by three temporally distinct waves. Belonging to the third wave, hematopoietic stem cells (HSCs) are generated from hemogenic endothelium via endothelial-to-hematopoietic transition in mid-gestational embryos. Recently, studies combined with single-cell transcriptomics have provided massive new insights into the molecular evolutions and the underlying mechanisms of distinct waves of hematopoietic specification. In this review, we discuss the current single-cell profiling techniques, the most recent novel findings involved in the generation of distinct waves of blood cells, especially the HSCs, using single-cell transcriptional profiling combined with functional evaluations, and the perspectives to use the accumulating huge single-cell transcriptional data sets to study developmental hematopoiesis.
Collapse
|
39
|
Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, Caputo L, Günther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans SM, Sun Y, Dobreva G. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res 2019; 29:486-501. [PMID: 31024170 PMCID: PMC6796926 DOI: 10.1038/s41422-019-0168-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. Using an Isl1 hypomorphic mouse line which shows congenital heart defects, genome-wide profiling of Isl1 binding together with RNA- and ATAC-sequencing of cardiac progenitor cells and their derivatives, we uncover a regulatory network downstream of Isl1 that orchestrates cardiogenesis. Mechanistically, we show that Isl1 binds to compacted chromatin and works in concert with the Brg1-Baf60c-based SWI/SNF complex to promote permissive cardiac lineage-specific alterations in the chromatin landscape not only of genes with critical functions in cardiac progenitor cells, but also of cardiomyocyte structural genes that are highly expressed when Isl1 itself is no longer present. Thus, the Isl1/Brg1-Baf60c complex plays a crucial role in orchestrating proper cardiogenesis and in establishing epigenetic memory of cardiomyocyte fate commitment.
Collapse
Affiliation(s)
- Rui Gao
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | - Julio Cordero
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Jiang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Luca Caputo
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yonggang Ren
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia M Evans
- Department of Medicine, Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Gergana Dobreva
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty, University of Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Neri T, Hiriart E, van Vliet PP, Faure E, Norris RA, Farhat B, Jagla B, Lefrancois J, Sugi Y, Moore-Morris T, Zaffran S, Faustino RS, Zambon AC, Desvignes JP, Salgado D, Levine RA, de la Pompa JL, Terzic A, Evans SM, Markwald R, Pucéat M. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat Commun 2019; 10:1929. [PMID: 31028265 PMCID: PMC6486645 DOI: 10.1038/s41467-019-09459-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish. There are few human models that can recapitulate valve development in vitro. Here, the authors derive human pre-valvular endocardial cells (HPVCs) from iPSCs and show they can recapitulate early valvulogenesis, and patient derived HPVCs have features of mitral valve prolapse and identified SHH dysregulation.
Collapse
Affiliation(s)
- Tui Neri
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,Istituto di Ricerca Genetica e Biomedica, UOS di Milano, CNR, Rozzano, 20138, Italy
| | - Emilye Hiriart
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Patrick P van Vliet
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA.,Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, H7G 4W7, QC, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Emilie Faure
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Russell A Norris
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Batoul Farhat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Bernd Jagla
- Institut Pasteur - Cytometry and Biomarkers Unit of Technology and Service, Center for Translational Science and Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, 75015, Paris, France
| | - Julie Lefrancois
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Yukiko Sugi
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Thomas Moore-Morris
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Stéphane Zaffran
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | | | - Alexander C Zambon
- Department of Biopharmaceutical Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - David Salgado
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02111, USA
| | - Jose Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, E-28029, Spain
| | - André Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55901, USA
| | - Sylvia M Evans
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA
| | - Roger Markwald
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Michel Pucéat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France. .,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France. .,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada.
| |
Collapse
|
41
|
Foley TE, Hess B, Savory JGA, Ringuette R, Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development 2019; 146:146/7/dev170498. [PMID: 30936115 DOI: 10.1242/dev.170498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
Abstract
Murine cardiac and hematopoietic progenitors are derived from Mesp1+ mesoderm. Cdx function impacts both yolk sac hematopoiesis and cardiogenesis in zebrafish, suggesting that Cdx family members regulate early mesoderm cell fate decisions. We found that Cdx2 occupies a number of transcription factor loci during embryogenesis, including key regulators of both cardiac and blood development, and that Cdx function is required for normal expression of the cardiogenic transcription factors Nkx2-5 and Tbx5 Furthermore, Cdx and Brg1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, co-occupy a number of loci, suggesting that Cdx family members regulate target gene expression through alterations in chromatin architecture. Consistent with this, we demonstrate loss of Brg1 occupancy and altered chromatin structure at several cardiogenic genes in Cdx-null mutants. Finally, we provide evidence for an onset of Cdx2 expression at E6.5 coinciding with egression of cardiac progenitors from the primitive streak. Together, these findings suggest that Cdx functions in multi-potential mesoderm to direct early cell fate decisions through transcriptional regulation of several novel target genes, and provide further insight into a potential epigenetic mechanism by which Cdx influences target gene expression.
Collapse
Affiliation(s)
- Tanya E Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Randy Ringuette
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
42
|
Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, Reik W, Srinivas S, Simons BD, Nichols J, Marioni JC, Göttgens B. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 2019; 566:490-495. [PMID: 30787436 PMCID: PMC6522369 DOI: 10.1038/s41586-019-0933-9] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.
Collapse
Affiliation(s)
- Blanca Pijuan-Sala
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Carolina Guibentif
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tom W Hiscock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Richard C V Tyser
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Debbie Lee Lian Ho
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Benjamin D Simons
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
44
|
Massaia A, Chaves P, Samari S, Miragaia RJ, Meyer K, Teichmann SA, Noseda M. Single Cell Gene Expression to Understand the Dynamic Architecture of the Heart. Front Cardiovasc Med 2018; 5:167. [PMID: 30525044 PMCID: PMC6258739 DOI: 10.3389/fcvm.2018.00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
The recent development of single cell gene expression technologies, and especially single cell transcriptomics, have revolutionized the way biologists and clinicians investigate organs and organisms, allowing an unprecedented level of resolution to the description of cell demographics in both healthy and diseased states. Single cell transcriptomics provide information on prevalence, heterogeneity, and gene co-expression at the individual cell level. This enables a cell-centric outlook to define intracellular gene regulatory networks and to bridge toward the definition of intercellular pathways otherwise masked in bulk analysis. The technologies have developed at a fast pace producing a multitude of different approaches, with several alternatives to choose from at any step, including single cell isolation and capturing, lysis, RNA reverse transcription and cDNA amplification, library preparation, sequencing, and computational analyses. Here, we provide guidelines for the experimental design of single cell RNA sequencing experiments, exploring the current options for the crucial steps. Furthermore, we provide a complete overview of the typical data analysis workflow, from handling the raw sequencing data to making biological inferences. Significantly, advancements in single cell transcriptomics have already contributed to outstanding exploratory and functional studies of cardiac development and disease models, as summarized in this review. In conclusion, we discuss achievable outcomes of single cell transcriptomics' applications in addressing unanswered questions and influencing future cardiac clinical applications.
Collapse
Affiliation(s)
- Andrea Massaia
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patricia Chaves
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Samari
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Kerstin Meyer
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Sarah Amalia Teichmann
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
What do the lineage tracing studies tell us? Consideration for hematopoietic stem cell origin, dynamics, and leukemia-initiating cells. Int J Hematol 2018; 109:35-40. [PMID: 30264284 DOI: 10.1007/s12185-018-2537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
The recent advance of technologies enables us to trace the cell fate in vivo by marking the cells that express the gene of interest or by barcoding them at a single cell level. Various tamoxifen-inducible Cre-recombinase mice combined with Rosa-floxed lines are utilized. In this review, with the results revealed by lineage tracing assays, we re-visit the long-standing debate for the origin of hematopoietic stem cells in the mouse embryo, and introduce the view of native hematopoiesis, and possible leukemic-initiating cells emerged during fetal stages.
Collapse
|
46
|
Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018; 9:3634. [PMID: 30194383 PMCID: PMC6128860 DOI: 10.1038/s41467-018-05573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Maxwell Bay
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Petko Fiziev
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Nicholas W Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Mila Scheinberg
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Cockeysville, MD, 21030, USA
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - A Noelle Larson
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott M Riester
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hanna Ka Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Computer Science Department, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Bonaguidi
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA. .,Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA. .,Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
47
|
Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, Yu X, Gao S, Ouyang K, Yang HT. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 2018; 9:274-288. [PMID: 28419336 DOI: 10.1093/jmcb/mjx014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.
Collapse
Affiliation(s)
- Yi-Jie Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jijun Huang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huayuan Tang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Wang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiujian Yu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
48
|
Palpant NJ, Wang Y, Hadland B, Zaunbrecher RJ, Redd M, Jones D, Pabon L, Jain R, Epstein J, Ruzzo WL, Zheng Y, Bernstein I, Margolin A, Murry CE. Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 2018; 20:1597-1608. [PMID: 28813672 DOI: 10.1016/j.celrep.2017.07.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022] Open
Abstract
We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from different mesodermal origins. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified candidate regulators of mesodermal lineage determination. HOPX, a non-DNA-binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. Using HOPX reporter and knockout hESCs, we show that HOPX regulates blood formation. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis, acting at least in part through failure to suppress Wnt/β-catenin signaling. Thus, chromatin state analysis permits identification of regulators of mesodermal specification, including a conserved role for HOPX in governing primitive hematopoiesis.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Yuliang Wang
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rebecca J Zaunbrecher
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Meredith Redd
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel Jones
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Walter L Ruzzo
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam Margolin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles E Murry
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 9:513-527. [PMID: 28793247 PMCID: PMC5550222 DOI: 10.1016/j.stemcr.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Understanding molecules involved in differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes and endothelial cells is important in advancing hPSCs for cell therapy and drug testing. Here, we report that LGR5, a leucine-rich repeat-containing G-protein-coupled receptor, plays a critical role in hPSC differentiation into cardiomyocytes and endothelial cells. LGR5 expression was transiently upregulated during the early stage of cardiomyocyte differentiation, and knockdown of LGR5 resulted in reduced expression of cardiomyocyte-associated markers and poor cardiac differentiation. In contrast, knockdown of LGR5 promoted differentiation of endothelial-like cells with increased expression of endothelial cell markers and appropriate functional characteristics, including the ability to form tube-like structures and to take up acetylated low-density lipoproteins. Furthermore, knockdown of LGR5 significantly reduced the proliferation of differentiated cells and increased the nuclear translocation of β-catenin and expression of Wnt signaling-related genes. Therefore, regulation of LGR5 may facilitate efficient generation of cardiomyocytes or endothelial cells from hPSCs. LGR5 expression is upregulated in the early stage of cardiomyocyte differentiation Knockdown of LGR5 inhibits differentiation of cardiomyocytes Knockdown of LGR5 increases differentiation of endothelial cells Knockdown of LGR5 decreases the expression of Wnt signaling-related genes
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Cinsley Gentillon
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to understand developmental processes and cell fate decisions. Mol Syst Biol 2018; 14:e8046. [PMID: 29661792 PMCID: PMC5900446 DOI: 10.15252/msb.20178046] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
High-throughput -omics techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision-making is inherently a unicellular process to which "bulk" -omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single-cell methods bridge this gap, allowing high-throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single-cell gene expression data and highlight areas of developmental biology where single-cell techniques have made important contributions. These include understanding of cell-to-cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis.
Collapse
Affiliation(s)
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, München, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, München, Germany
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|