1
|
Okita T, Kita S, Fukuda S, Kondo Y, Sakaue TA, Iioka M, Fukuoka K, Kawada K, Nagao H, Obata Y, Fujishima Y, Ebihara T, Matsumoto H, Nakagawa S, Kimura T, Nishizawa H, Shimomura I. Soluble T-cadherin secretion from endothelial cells is regulated via insulin/PI3K/Akt signalling. Biochem Biophys Res Commun 2024; 732:150403. [PMID: 39047402 DOI: 10.1016/j.bbrc.2024.150403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM AND OBJECTIVE Our recent report showed that soluble T-cadherin promotes pancreatic beta-cell proliferation. However, how and where the secretion of soluble T-cadherin is regulated remain unclear. METHODS AND RESULTS Soluble T-cadherin levels significantly increased in leptin receptor-deficient db/db mice with hypoinsulinaemia or in wild-type mice treated with insulin receptor blockade by S961. Similar results were observed in human subjects; Diabetic ketoacidosis patients at the time of hospitalization had increased plasma soluble T-cadherin levels, which decreased after insulin infusion therapy. Patients with recurrent ovarian cancer who were administered a phosphatidylinositol-3 kinase (PI3K)-alpha inhibitor (a new anticancer drug) had increased plasma soluble T-cadherin and plasma C-peptide levels. Endothelial cell-specific T-cadherin knockout mice, but not skeletal muscle- or cardiac muscle-specific T-cadherin knockout mice, showed a 26 % reduction in plasma soluble T-cadherin levels and a significant increase in blood glucose levels in streptozocin-induced diabetes. The secretion of soluble T-cadherin from human endothelial cells was approximately 20 % decreased by insulin and this decrease was canceled by blockade of insulin receptor/Akt signalling, not Erk signalling. CONCLUSION We conclude that insulin regulates soluble T-cadherin levels and soluble T-cadherin secretion from endothelial cells is positively regulated by insulin/insulin receptor/Akt signalling.
Collapse
Affiliation(s)
- Tomonori Okita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shiro Fukuda
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yuta Kondo
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Sakaue
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahito Iioka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keita Fukuoka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keitaro Kawada
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Nagao
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshinari Obata
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Ebihara
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoshi Nakagawa
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadashi Kimura
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hitoshi Nishizawa
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
3
|
Niimi K, Nakae J, Kubota Y, Inagaki S, Furuyama T. Macrophages play a crucial role in vascular smooth muscle cell coverage. Development 2024; 151:dev203080. [PMID: 39166965 DOI: 10.1242/dev.203080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The microvascular system consists of two cell types: endothelial and mural (pericytes and vascular smooth muscle cells; VSMCs) cells. Communication between endothelial and mural cells plays a pivotal role in the maintenance of vascular homeostasis; however, in vivo molecular and cellular mechanisms underlying mural cell development remain unclear. In this study, we found that macrophages played a crucial role in TGFβ-dependent pericyte-to-VSMC differentiation during retinal vasculature development. In mice with constitutively active Foxo1 overexpression, substantial accumulation of TGFβ1-producing macrophages and pericytes around the angiogenic front region was observed. Additionally, the TGFβ-SMAD pathway was activated in pericytes adjacent to macrophages, resulting in excess ectopic α-smooth muscle actin-positive VSMCs. Furthermore, we identified endothelial SEMA3C as an attractant for macrophages. In vivo neutralization of SEMA3C rescued macrophage accumulation and ectopic VSMC phenotypes in the mice, as well as drug-induced macrophage depletion. Therefore, macrophages play an important physiological role in VSMC development via the FOXO1-SEMA3C pathway.
Collapse
Affiliation(s)
- Kenta Niimi
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| | - Jun Nakae
- Department of Physiology, International University of Health and Welfare School of Medicine, 4-3 Kozu-no-Mori, Narita 286-8686, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinobu Inagaki
- Department of Physical Therapy, Osaka Yukioka College of Health Science, Sojiji 1-1-41, Ibaraki, Osaka 567-0801, Japan
| | - Tatsuo Furuyama
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
4
|
Nakanishi Y, Izumi M, Matsushita H, Koyama Y, Diez D, Takamatsu H, Koyama S, Nishide M, Naito M, Mizuno Y, Yamaguchi Y, Mae T, Noda Y, Nakaya K, Nojima S, Sugihara F, Okuzaki D, Ikawa M, Shimada S, Kang S, Kumanogoh A. Semaphorin 6D tunes amygdalar circuits for emotional, metabolic, and inflammatory outputs. Neuron 2024; 112:2955-2972.e9. [PMID: 39002542 DOI: 10.1016/j.neuron.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d-/- mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the β3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Hiroaki Matsushita
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Discovery Pharmacology Department, Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa 247-8530, Japan
| | - Yoshihisa Koyama
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Diego Diez
- Quantitative Immunology Research Unit, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Tomoki Mae
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yu Noda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kamon Nakaya
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sugihara
- Laboratory of Biofunctional Imaging, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Osaka 565-0871, Japan; Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, RIMD, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Sujin Kang
- Laboratory of Immune Regulation, WPI-IFReC, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Suehiro JI, Kimura T, Fukutomi T, Naito H, Kanki Y, Wada Y, Kubota Y, Takakura N, Sakurai H. Endothelial cell-specific LAT1 ablation normalizes tumor vasculature. JCI Insight 2024; 9:e171371. [PMID: 39163136 PMCID: PMC11457854 DOI: 10.1172/jci.insight.171371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Some endothelial cells in the tumor vasculature express a system L amino acid transporter, LAT1. To elucidate the role of LAT1 in tumor-related endothelial cells, tumor cells were injected into endothelial cell-specific LAT1 conditional knockout mice (Slc7a5flox/flox; Cdh5-Cre-ERT2), and we found that the shape of the tumor vasculature was normalized and the size and numbers of lung metastasis was reduced. TNF-α-induced expression of VCAM1 and E-selectin at the surface of HUVEC, both of which are responsible for enhanced monocyte attachment and premetastatic niche formation, was reduced in the presence of LAT1 inhibitor, nanvuranlat. Deprivation of tryptophan, a LAT1 substrate, mimicked LAT1 inhibition, which led to activation of MEK1/2-ERK1/2 pathway and subsequent cystathionine γ lyase (CTH) induction. Increased production of hydrogen sulfide (H2S) by CTH was at least partially responsible for tumor vascular normalization, leading to decreased leakiness and enhanced delivery of chemotherapeutic agents to the tumor.
Collapse
Affiliation(s)
- Jun-ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
6
|
Katoh M, Nomura S, Yamada S, Ito M, Hayashi H, Katagiri M, Heryed T, Fujiwara T, Takeda N, Nishida M, Sugaya M, Kato M, Osawa T, Abe H, Sakurai Y, Ko T, Fujita K, Zhang B, Hatsuse S, Yamada T, Inoue S, Dai Z, Kubota M, Sawami K, Ono M, Morita H, Kubota Y, Mizuno S, Takahashi S, Nakanishi M, Ushiku T, Nakagami H, Aburatani H, Komuro I. Vaccine Therapy for Heart Failure Targeting the Inflammatory Cytokine Igfbp7. Circulation 2024; 150:374-389. [PMID: 38991046 DOI: 10.1161/circulationaha.123.064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.
Collapse
Affiliation(s)
- Manami Katoh
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Seitaro Nomura
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Shintaro Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masamichi Ito
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan (H.H., H.N.)
| | - Mikako Katagiri
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Tuolisi Heryed
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takayuki Fujiwara
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Norifumi Takeda
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Maki Sugaya
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Miki Kato
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Hiroyuki Abe
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Yoshitaka Sakurai
- Diabetes and Metabolic Diseases, Graduate School of Medicine (Y.S.), The University of Tokyo, Japan
| | - Toshiyuki Ko
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Kanna Fujita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Bo Zhang
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Satoshi Hatsuse
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takanobu Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Shunsuke Inoue
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Zhehao Dai
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masayuki Kubota
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Kousuke Sawami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Minoru Ono
- Cardiothoracic Surgery (M.O.), The University of Tokyo, Japan
| | - Hiroyuki Morita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan (Y.K.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science (M. Nakanishi), The University of Tokyo, Japan
| | - Tetsuo Ushiku
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Hironori Nakagami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Issei Komuro
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| |
Collapse
|
7
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
8
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Verma M, Asakura Y, Wang X, Zhou K, Ünverdi M, Kann AP, Krauss RS, Asakura A. Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell. eLife 2024; 13:e73592. [PMID: 38842166 PMCID: PMC11216748 DOI: 10.7554/elife.73592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.
Collapse
Affiliation(s)
- Mayank Verma
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical CenterDallasUnited States
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Xuerui Wang
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Kasey Zhou
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Mahmut Ünverdi
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
10
|
Sultan I, Ramste M, Peletier P, Hemanthakumar KA, Ramanujam D, Tirronen A, von Wright Y, Antila S, Saharinen P, Eklund L, Mervaala E, Ylä-Herttuala S, Engelhardt S, Kivelä R, Alitalo K. Contribution of VEGF-B-Induced Endocardial Endothelial Cell Lineage in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res 2024; 134:1465-1482. [PMID: 38655691 DOI: 10.1161/circresaha.123.324136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ibrahim Sultan
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Markus Ramste
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pim Peletier
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
- RNATICS GmbH, Planegg, Germany (D.R.)
| | - Annakaisa Tirronen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Ylva von Wright
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland (L.E.)
| | - Eero Mervaala
- Department of Pharmacology (E.M.), Faculty of Medicine, University of Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
| | - Riikka Kivelä
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Stem Cells and Metabolism Research Program (R.K.), Faculty of Medicine, University of Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Finland (R.K.)
| | - Kari Alitalo
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| |
Collapse
|
11
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Ishibashi T, Inagaki T, Okazawa M, Yamagishi A, Ohta-Ogo K, Asano R, Masaki T, Kotani Y, Ding X, Chikaishi-Kirino T, Maedera N, Shirai M, Hatakeyama K, Kubota Y, Kishimoto T, Nakaoka Y. IL-6/gp130 signaling in CD4 + T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A 2024; 121:e2315123121. [PMID: 38602915 PMCID: PMC11032454 DOI: 10.1073/pnas.2315123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Akiko Yamagishi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yui Kotani
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Xin Ding
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tomomi Chikaishi-Kirino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Noriko Maedera
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Molecular Imaging in Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
13
|
Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Song H. Iron Oxide Nanoparticles Engineered Macrophage-Derived Exosomes for Targeted Pathological Angiogenesis Therapy. ACS NANO 2024; 18:7644-7655. [PMID: 38412252 PMCID: PMC10938920 DOI: 10.1021/acsnano.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.
Collapse
Affiliation(s)
- Haorui Zhang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Yu Mao
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Zheng Nie
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Qing Li
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Mengzhu Wang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Chang Cai
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Weiju Hao
- University
of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Xi Shen
- Department
of Ophthalmology, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ning Gu
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Shen
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Hongyuan Song
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
14
|
Watanabe-Takano H, Kato K, Oguri-Nakamura E, Ishii T, Kobayashi K, Murata T, Tsujikawa K, Miyata T, Kubota Y, Hanada Y, Nishiyama K, Watabe T, Fässler R, Ishii H, Mochizuki N, Fukuhara S. Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts. Nat Commun 2024; 15:1622. [PMID: 38438343 PMCID: PMC10912381 DOI: 10.1038/s41467-024-45910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin β1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin β1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin β1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Katsuhiro Kato
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichiro Tsujikawa
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Yasuyuki Hanada
- Department of Cardiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Koichi Nishiyama
- Laboratory for Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate, School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
15
|
Mannion AJ, Zhao H, Zhang Y, von Wright Y, Bergman O, Roy J, Saharinen P, Holmgren L. Regulation of YAP Promotor Accessibility in Endothelial Mechanotransduction. Arterioscler Thromb Vasc Biol 2024; 44:666-689. [PMID: 38299356 PMCID: PMC10880945 DOI: 10.1161/atvbaha.123.320300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Endothelial cells are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. The mechanoresponsive activity of YAP (Yes-associated protein) and its role in vascular development are well described; however, whether changes to transcription or epigenetic regulation of YAP are involved in these processes remains unanswered. Furthermore, how mechanical forces are transduced to the nucleus to drive transcriptional reprogramming in endothelial cells is poorly understood. The YAP target gene, AmotL2 (angiomotin-like 2), is a junctional mechanotransducer that connects cell-cell junctions to the nuclear membrane via the actin cytoskeleton. METHODS We applied mechanical manipulations including shear flow, stretching, and substrate stiffness to endothelial cells to investigate the role of mechanical forces in modulating YAP transcription. Using in vitro and in vivo endothelial depletion of AmotL2, we assess nuclear morphology, chromatin organization (using transposase-accessible chromatin sequencing), and whole-mount immunofluorescent staining of the aorta to determine the regulation and functionality of YAP. Finally, we use genetic and chemical inhibition to uncouple the nuclear-cytoskeletal connection to investigate the role of this pathway on YAP transcription. RESULTS Our results reveal that mechanical forces sensed at cell-cell junctions by the YAP target gene AmotL2 are directly involved in changes in global chromatin accessibility and activity of the histone methyltransferase EZH2, leading to modulation of YAP promotor activity. Functionally, shear stress-induced proliferation of endothelial cells in vivo was reliant on AmotL2 and YAP/TAZ (transcriptional coactivator with PDZ-binding motif) expression. Mechanistically, uncoupling of the nuclear-cytoskeletal connection from junctions and focal adhesions led to altered nuclear morphology, chromatin accessibility, and YAP promotor activity. CONCLUSIONS Our findings reveal a role for AmotL2 and nuclear-cytoskeletal force transmission in modulating the epigenetic and transcriptional regulation of YAP to maintain a mechano-enforced positive feedback loop of vascular homeostasis. These findings may offer an explanation as to the proinflammatory phenotype that leads to aneurysm formation observed in AmotL2 endothelial deletion models.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
- Department of Cell and Tissue Dynamics, Max Planck Institute of Molecular Biomedicine, Münster, Germany (A.J.M.)
| | - Honglei Zhao
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| | - Yuanyuan Zhang
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| | - Ylva von Wright
- Wihuri Research Institute, Biomedicum Helsinki, Finland (Y.v.W., P.S.)
| | - Otto Bergman
- Medicine (O.B.), Karolinska Institute, Stockholm, Sweden
| | - Joy Roy
- Molecular Medicine and Surgery (J.R.), Karolinska Institute, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (J.R.)
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, Finland (Y.v.W., P.S.)
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Finland (P.S.)
| | - Lars Holmgren
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Takahashi K, Kobayashi M, Katsumata H, Tokizaki S, Anzai T, Ikeda Y, Alcaide DM, Maeda K, Ishihara M, Tahara K, Kubota Y, Itoh F, Park J, Takahashi K, Matsunaga YT, Yoshimatsu Y, Podyma‐Inoue KA, Watabe T. CD40 is expressed in the subsets of endothelial cells undergoing partial endothelial-mesenchymal transition in tumor microenvironment. Cancer Sci 2024; 115:490-506. [PMID: 38111334 PMCID: PMC10859613 DOI: 10.1111/cas.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-β (TGF-β) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-β signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-β-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-β-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-β-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hisae Katsumata
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shiori Tokizaki
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Yukinori Ikeda
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | | | - Kentaro Maeda
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Makoto Ishihara
- Scientific Affairs Section, Life Science Sales Department, Life Science Business Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Katsutoshi Tahara
- Section 1, Product Design Department 2, Medical Product Design Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Yoshiaki Kubota
- Department of AnatomyKeio University School of MedicineTokyoJapan
| | - Fumiko Itoh
- Laboratory of Stem Cells RegulationsTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | | | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
- Division of Pharmacology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
17
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
18
|
Upreti S, Nag TC, Ghosh MP. Trolox aids coenzyme Q 10 in neuroprotection against NMDA induced damage via upregulation of VEGF in rat model of glutamate excitotoxicity. Exp Eye Res 2024; 238:109740. [PMID: 38056553 DOI: 10.1016/j.exer.2023.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Glutamate induced damage to retinal ganglion cells (RGCs) requires tight physiological regulation of the N-methyl-D-aspartate (NMDA) receptors. Previously, studies have demonstrated the neuroprotective abilities of antioxidants like coenzyme Q10 (CoQ10) and vitamin E analogs like α-tocopherol against neuropathies resulting from NMDA insult, but have failed to shed light on the effect of CoQ10 and trolox, a hydrophilic analog of vitamin E, on glaucomatous neurodegeneration. In the current study, we wanted to investigate whether the combined effect of trolox with CoQ10 could alleviate NMDA-induced death of retinal cells while also trying to elucidate the underlying mechanism in relation to the yet unexplained role of vascular endothelial growth factor (VEGF) in NMDA-mediated excitotoxicity. After successful NMDA-induced degeneration, we followed it up with the treatment of combination of Trolox and CoQ10. The structural damage by NMDA was repaired significantly and retina retained structural integrity comparable to levels of control in the treatment group of Trolox and CoQ10. Detection of ROS generation after NMDA insult showed that together, Trolox and CoQ10 could significantly bring down the high levels of free radicals while also rescuing mitochondrial membrane potential (MMP). A significant increase in NMDA receptor Grin2A by CoQ10 alone as well as by CoQ10 and trolox was accompanied by a lowered Grin2B receptor expression, suggesting neuroprotective action of Trolox and CoQ10. Subsequently, lowered VEGFR1 and VEGFR2 receptor expression by NMDA treatment also recovered when subjected to combined treatment of Trolox and CoQ10. Western blot analyses also indicated the same whereby Trolox and CoQ10 could increase the diminished levels of phosphorylated VEGFR2. Immunofluorescence studies also indicated a positive correlation between recovered VEGFR2 and NMDAR2A levels and diminished levels of NMDAR2D, confirming the results obtained by RT-PCR analysis. This is the first report in our knowledge that demonstrates the efficacy of trolox in combination with CoQ10 highlighting the importance of maintaining VEGF levels that are lowered in ocular diseases due to NMDA-related toxicities.
Collapse
Affiliation(s)
- Shikha Upreti
- Ocular Pharmacology and Therapeutics Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Madhumita P Ghosh
- Ocular Pharmacology and Therapeutics Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
19
|
Yamamoto K, Watanabe-Takano H, Oguri-Nakamura E, Matsuno H, Horikami D, Ishii T, Ohashi R, Kubota Y, Nishiyama K, Murata T, Mochizuki N, Fukuhara S. Rap1 small GTPase is essential for maintaining pulmonary endothelial barrier function in mice. FASEB J 2023; 37:e23310. [PMID: 38010922 DOI: 10.1096/fj.202300830rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hitomi Matsuno
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
20
|
Westenskow PD. Neurovascular signaling: Irrigating the retina. Curr Biol 2023; 33:R1193-R1194. [PMID: 37989097 DOI: 10.1016/j.cub.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A new study shows that retinal ganglion cell neurons can optimize local oxygen and nutrient availability at a key developmental timepoint in a surprising manner: by generating a temporally restricted burst of dopamine that patterns their dedicated vasculature.
Collapse
Affiliation(s)
- Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
21
|
Lee Q, Chan WC, Qu X, Sun Y, Abdelkarim H, Le J, Saqib U, Sun MY, Kruse K, Banerjee A, Hitchinson B, Geyer M, Huang F, Guaiquil V, Mutso AA, Sanders M, Rosenblatt MI, Maienschein-Cline M, Lawrence MS, Gaponenko V, Malik AB, Komarova YA. End binding-3 inhibitor activates regenerative program in age-related macular degeneration. Cell Rep Med 2023; 4:101223. [PMID: 37794584 PMCID: PMC10591057 DOI: 10.1016/j.xcrm.2023.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.
Collapse
Affiliation(s)
- Quinn Lee
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Xinyan Qu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ying Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Jonathan Le
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Uzma Saqib
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mitchell Y Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Avik Banerjee
- Department of Chemistry, The University of Illinois, Chicago, IL 60612, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Fei Huang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Victor Guaiquil
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Amelia A Mutso
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Mark I Rosenblatt
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
23
|
Horikami D, Sekihachi E, Omori K, Kobayashi Y, Kobayashi K, Nagata N, Kurata K, Uemura A, Murata T. Roles of lipocalin-type and hematopoietic prostaglandin D synthases in mouse retinal angiogenesis. J Lipid Res 2023; 64:100439. [PMID: 37666361 PMCID: PMC10571029 DOI: 10.1016/j.jlr.2023.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Normal angiogenesis is essential for retinal development and maintenance of visual function in the eye, and its abnormality can cause retinopathy and other eye diseases. Prostaglandin D2 is an anti-angiogenic lipid mediator produced by lipocalin-type PGD synthase (L-PGDS) or hematopoietic PGD synthase (H-PGDS). However, the exact role of these PGD synthases remains unclear. Therefore, we compared the roles of these synthases in murine retinal angiogenesis under physiological and pathological conditions. On postnatal day (P) 8, the WT murine retina was covered with an elongated vessel. L-PGDS deficiency, but not H-PGDS, reduced the physiological vessel elongation with sprouts increase. L-PGDS expression was observed in endothelial cells and neural cells. In vitro, L-PGDS inhibition increased the hypoxia-induced vascular endothelial growth factor expression in isolated endothelial cells, inhibited by a prostaglandin D2 metabolite, 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2) treatment. Pericyte depletion, using antiplatelet-derived growth factor receptor-β antibody, caused retinal hemorrhage with vessel elongation impairment and macrophage infiltration in the WT P8 retina. H-PGDS deficiency promoted hemorrhage but inhibited the impairment of vessel elongation, while L-PGDS did not. In the pericyte-depleted WT retina, H-PGDS was expressed in the infiltrated macrophages. Deficiency of the D prostanoid receptor also inhibited the vessel elongation impairment. These results suggest the endogenous role of L-PGDS signaling in physiological angiogenesis and that of H-PGDS/D prostanoid 1 signaling in pathological angiogenesis.
Collapse
Affiliation(s)
- Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Erika Sekihachi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yui Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kaori Kurata
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Iga T, Kobayashi H, Kusumoto D, Sanosaka T, Fujita N, Tai-Nagara I, Ando T, Takahashi T, Matsuo K, Hozumi K, Ito K, Ema M, Miyamoto T, Matsumoto M, Nakamura M, Okano H, Shibata S, Kohyama J, Kim KK, Takubo K, Kubota Y. Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis. Nat Cell Biol 2023; 25:1415-1425. [PMID: 37798545 PMCID: PMC10567563 DOI: 10.1038/s41556-023-01240-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/28/2023] [Indexed: 10/07/2023]
Abstract
Bone marrow endothelial cells (BMECs) play a key role in bone formation and haematopoiesis. Although recent studies uncovered the cellular taxonomy of stromal compartments in the bone marrow (BM), the complexity of BMECs is not fully characterized. In the present study, using single-cell RNA sequencing, we defined a spatial heterogeneity of BMECs and identified a capillary subtype, termed type S (secondary ossification) endothelial cells (ECs), exclusively existing in the epiphysis. Type S ECs possessed unique phenotypic characteristics in terms of structure, plasticity and gene expression profiles. Genetic experiments showed that type S ECs atypically contributed to the acquisition of bone strength by secreting type I collagen, the most abundant bone matrix component. Moreover, these cells formed a distinct reservoir for haematopoietic stem cells. These findings provide the landscape for the cellular architecture in the BM vasculature and underscore the importance of epiphyseal ECs during bone and haematopoietic development.
Collapse
Affiliation(s)
- Takahito Iga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Ando
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanawaga, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
25
|
Uçar MC, Hannezo E, Tiilikainen E, Liaqat I, Jakobsson E, Nurmi H, Vaahtomeri K. Self-organized and directed branching results in optimal coverage in developing dermal lymphatic networks. Nat Commun 2023; 14:5878. [PMID: 37735168 PMCID: PMC10514270 DOI: 10.1038/s41467-023-41456-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Branching morphogenesis is a ubiquitous process that gives rise to high exchange surfaces in the vasculature and epithelial organs. Lymphatic capillaries form branched networks, which play a key role in the circulation of tissue fluid and immune cells. Although mouse models and correlative patient data indicate that the lymphatic capillary density directly correlates with functional output, i.e., tissue fluid drainage and trafficking efficiency of dendritic cells, the mechanisms ensuring efficient tissue coverage remain poorly understood. Here, we use the mouse ear pinna lymphatic vessel network as a model system and combine lineage-tracing, genetic perturbations, whole-organ reconstructions and theoretical modeling to show that the dermal lymphatic capillaries tile space in an optimal, space-filling manner. This coverage is achieved by two complementary mechanisms: initial tissue invasion provides a non-optimal global scaffold via self-organized branching morphogenesis, while VEGF-C dependent side-branching from existing capillaries rapidly optimizes local coverage by directionally targeting low-density regions. With these two ingredients, we show that a minimal biophysical model can reproduce quantitatively whole-network reconstructions, across development and perturbations. Our results show that lymphatic capillary networks can exploit local self-organizing mechanisms to achieve tissue-scale optimization.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
| | - Emmi Tiilikainen
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Inam Liaqat
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emma Jakobsson
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Harri Nurmi
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
26
|
Fujiwara T, Takeda N, Hara H, Ishii S, Numata G, Tokiwa H, Katoh M, Maemura S, Suzuki T, Takiguchi H, Yanase T, Kubota Y, Nomura S, Hatano M, Ueda K, Harada M, Toko H, Takimoto E, Akazawa H, Morita H, Nishimura S, Komuro I. PGC-1α-mediated angiogenesis prevents pulmonary hypertension in mice. JCI Insight 2023; 8:e162632. [PMID: 37681410 PMCID: PMC10544206 DOI: 10.1172/jci.insight.162632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by a progressive narrowing of pulmonary arterioles. Although VEGF is highly expressed in lung of patients with PH and in animal PH models, the involvement of angiogenesis remains elusive. To clarify the pathophysiological function of angiogenesis in PH, we compared the angiogenic response in hypoxia (Hx) and SU5416 (a VEGFR2 inhibitor) plus Hx (SuHx) mouse PH models using 3D imaging. The 3D imaging analysis revealed an angiogenic response in the lung of the Hx-PH, but not of the severer SuHx-PH model. Selective VEGFR2 inhibition with cabozantinib plus Hx in mice also suppressed angiogenic response and exacerbated Hx-PH to the same extent as SuHx. Expression of endothelial proliferator-activated receptor γ coactivator 1α (PGC-1α) increased along with angiogenesis in lung of Hx-PH but not SuHx mice. In pulmonary endothelial cell-specific Ppargc1a-KO mice, the Hx-induced angiogenesis was suppressed, and PH was exacerbated along with increased oxidative stress, cellular senescence, and DNA damage. By contrast, treatment with baicalin, a flavonoid enhancing PGC-1α activity in endothelial cells, ameliorated Hx-PH with increased Vegfa expression and angiogenesis. Pulmonary endothelial PGC-1α-mediated angiogenesis is essential for adaptive responses to Hx and might represent a potential therapeutic target for PH.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hironori Hara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Ishii
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Sonoko Maemura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takaaki Suzuki
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Takiguchi
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tomonobu Yanase
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Therapeutic Strategy for Heart Failure, and
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
27
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
28
|
Yeh JL, Kuo CH, Shih PW, Hsu JH, I-Chen P, Huang YH. Xanthine derivative KMUP-1 ameliorates retinopathy. Biomed Pharmacother 2023; 165:115109. [PMID: 37406513 DOI: 10.1016/j.biopha.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Retinal neovascularization (RNV) and cell apoptosis observed in retinopathy are the most common cause of vision loss worldwide. Increasing vascular endothelial growth factor (VEGF), which was driven by hypoxia or inflammation, would result in RNV. This study investigated the anti-inflammatory and anti-apoptotic xanthine-based derivative KMUP-1 on hypoxia-induced conditions in vitro and in vivo. In the oxygen-induced retinopathy animal model, KMUP-1 mitigated vaso-obliteration and neovascularization. In the cell model of hypoxic endothelium cultured at 1% O2, KMUP-1 inhibited endothelial migration and tube formation and had no cytotoxic effect on cell growth. Upregulation of pro-angiogenic factors, HIF-1α and VEGF, and pro-inflammatory cytokines, IL-1β and TNF-α, expression in the retinal-derived endothelial cells, RF/6 A cells, upon hypoxia stimulation, was suppressed by KMUP-1 treatment. RF/6 A cells treated with KMUP-1 showed a reduction of PI3K/Akt, ERK, and RhoA/ROCKs signaling pathways and induction of protective pathways such as eNOS and soluble guanylyl cyclase at 1% O2. Furthermore, KMUP-1 decreased the expression of VEGF, ICAM-1, TNF-α, and IL-1β and increased the BCL-2/BAX ratio in the oxygen-induced retinopathy mouse retina samples. In conclusion, the results of this study suggest that KMUP-1 has potential therapeutic value in retinopathy due to its triple effects on anti-angiogenesis, anti-inflammation, and anti-apoptosis in hypoxic endothelium.
Collapse
Affiliation(s)
- Jwu-Lai Yeh
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Wen Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Peng I-Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Hsun Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
29
|
Qin W, Wan Q, Yan J, Han X, Lu W, Ma Z, Ye T, Li Y, Li C, Wang C, Tay FR, Niu L, Jiao K. Effect of Extracellular Ribonucleic Acids on Neurovascularization in Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301763. [PMID: 37395388 PMCID: PMC10502862 DOI: 10.1002/advs.202301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.
Collapse
Affiliation(s)
- Wen‐pin Qin
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Fei Yan
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Xiao‐Xiao Han
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Wei‐Cheng Lu
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Zhang‐Yu Ma
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yu‐Tao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Chang‐Jun Li
- Department of EndocrinologyEndocrinology Research CenterThe Xiangya Hospital of Central South UniversityChangshaHunan410008P. R. China
| | - Chen Wang
- Department of StomatologyThe Eighth Medical Center of PLA General HospitalHaidian DistrictBeijingP. R. China100091
| | - Franklin R. Tay
- Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
30
|
Akiyama T, Sadahiro T, Yamada Y, Fujita R, Abe Y, Nakano K, Honda S, Ema M, Kubota Y, Sakai S, Hizawa N, Ieda M. Flk1 Deficiency and Hypoxia Synergistically Promote Endothelial Dysfunction, Vascular Remodeling, and Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2023; 43:1668-1683. [PMID: 37534464 DOI: 10.1161/atvbaha.123.319266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The mechanisms underlying pulmonary hypertension (PH) remain largely unknown; further, why advanced vascular remodeling preferentially occurs in arterioles is yet to be answered. VEGF (vascular endothelial growth factor) regulates angiogenesis through Flk1 (fetal liver kinase 1) and Flt1 (fms-like tyrosine kinase 1) on endothelial cells (ECs), which may be related to PH pathogenesis. However, spatiotemporal expression patterns of Flk1 and Flt1 in the pulmonary vascular system and the role of endothelial Flk1 in PH development remain poorly understood. METHODS We analyzed multiple reporter mice, including Flk1-GFP (green fluorescent protein) bacterial artificial chromosome transgenic (Tg), Flt1-DsRed bacterial artificial chromosome Tg, and Flk1-GFP/Flt1-DsRed double Tg mice, to determine the spatiotemporal expression of Flk1 and Flt1 in hypoxia-induced PH. We also used Cdh5CreERT2/Flk1f/f/Tomato (Flk1-KO [knockout]) mice to induce EC-specific Flk1 deletion and lineage tracing in chronic hypoxia. RESULTS Flk1 was specifically expressed in the ECs of small pulmonary vessels, including arterioles. Conversely, Flt1 was more broadly expressed in the ECs of large- to small-sized vessels in adult mouse lungs. Intriguingly, Flk1+ ECs were transiently increased in hypoxia with proliferation, whereas Flt1 expression was unchanged. Flk1-KO mice did not exhibit pulmonary vascular remodeling nor PH in normoxia; however, the arteriolar ECs changed to a cuboidal shape with protrusion. In hypoxia, Flk1 deletion exacerbated EC dysfunction and reduced their number via apoptosis. Additionally, Flk1 deletion promoted medial thickening and neointimal formation in arterioles and worsened PH. Mechanistically, lineage tracing revealed that neointimal cells were derived from Flk1-KO ECs. Moreover, RNA sequencing in pulmonary ECs demonstrated that Flk1 deletion and hypoxia synergistically activated multiple pathways, including cell cycle, senescence/apoptosis, and cytokine/growth factor, concomitant with suppression of cell adhesion and angiogenesis, to promote vascular remodeling. CONCLUSIONS Flk1 and Flt1 were differentially expressed in pulmonary ECs. Flk1 deficiency and hypoxia jointly dysregulated arteriolar ECs to promote vascular remodeling. Thus, dysfunction of Flk1+ ECs may contribute to the pathogenesis of advanced vascular remodeling in pulmonary arterioles.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Respiratory Medicine (T.A., N.H.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taketaro Sadahiro
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yu Yamada
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Fujita
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Division of Regenerative Medicine, Transborder Medical Research Center (R.F.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuto Abe
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Nakano
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiichiro Honda
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masatsugu Ema
- Division of Regenerative Medicine, Transborder Medical Research Center (R.F.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshiaki Kubota
- Departments of Anatomy (Y.K.), Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Sakai
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Faculty of Health Science, Tsukuba University of Technology, Japan (S.S.)
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine (T.A., N.H.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masaki Ieda
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Cardiology (M.I.), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Eisa-Beygi S, Hu MM, Kumar SN, Jeffery BE, Collery RF, Vo NJ, Lamichanne BS, Yost HJ, Veldman MB, Link BA. Mesenchymal Stromal Cells Facilitate Tip Cell Fusion Downstream of BMP-Mediated Venous Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e231-e237. [PMID: 37128914 PMCID: PMC10330147 DOI: 10.1161/atvbaha.122.318622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Meng-Ming Hu
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Suresh N Kumar
- Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee
| | - Brooke E Jeffery
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
- Department of Ophthalmology and Visual Sciences (R.F.C.), Medical College of Wisconsin, Milwaukee
| | - Nghia Jack Vo
- Department of Radiology (N.V.), Medical College of Wisconsin, Milwaukee
- Department of Radiology, Pediatric Imaging and Interventional Radiology, Children's Hospital of Wisconsin, Milwaukee (N.V.)
| | - Bhawika S Lamichanne
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City (B.S.L., H.J.Y.)
| | - H Joseph Yost
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City (B.S.L., H.J.Y.)
| | - Matthew B Veldman
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
32
|
Faragher JL, Auger JL, Osinski V, Meier LA, Engelson BJ, Firulyova MM, Gonzalez-Torres MI, Brombacher F, Zaitsev K, Marath A, Binstadt BA. Autoimmune Valvular Carditis Requires Endothelial Cell TNFR1 Expression. Arterioscler Thromb Vasc Biol 2023; 43:943-957. [PMID: 37021574 PMCID: PMC10213135 DOI: 10.1161/atvbaha.122.319025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Inflammation is a key driver of cardiovascular pathology, and many systemic autoimmune/rheumatic diseases are accompanied by increased cardiac risk. In the K/B.g7 mouse model of coexisting systemic autoantibody-mediated arthritis and valvular carditis, valve inflammation depends on macrophage production of TNF (tumor necrosis factor) and IL-6 (interleukin-6). Here, we sought to determine if other canonical inflammatory pathways participate and to determine whether TNF signaling through TNFR1 (tumor necrosis factor receptor 1) on endothelial cells is required for valvular carditis. METHODS We first asked if type 1, 2, or 3 inflammatory cytokine systems (typified by IFNγ, IL-4, and IL-17, respectively) were critical for valvular carditis in K/B.g7 mice, using a combination of in vivo monoclonal antibody blockade and targeted genetic ablation studies. To define the key cellular targets of TNF, we conditionally deleted its main proinflammatory receptor, TNFR1, in endothelial cells. We analyzed how the absence of endothelial cell TNFR1 affected valve inflammation, lymphangiogenesis, and the expression of proinflammatory genes and molecules. RESULTS We found that typical type 1, 2, and 3 inflammatory cytokine systems were not required for valvular carditis, apart from a known initial requirement of IL-4 for autoantibody production. Despite expression of TNFR1 on a wide variety of cell types in the cardiac valve, deleting TNFR1 specifically on endothelial cells protected K/B.g7 mice from valvular carditis. This protection was accompanied by reduced expression of VCAM-1 (vascular cell adhesion molecule), fewer valve-infiltrating macrophages, reduced pathogenic lymphangiogenesis, and diminished proinflammatory gene expression. CONCLUSIONS TNF and IL-6 are the main cytokines driving valvular carditis in K/B.g7 mice. The interaction of TNF with TNFR1 specifically on endothelial cells promotes cardiovascular pathology in the setting of systemic autoimmune/rheumatic disease, suggesting that therapeutic targeting of the TNF:TNFR1 interaction could be beneficial in this clinical context.
Collapse
Affiliation(s)
- Jessica L. Faragher
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
| | - Jennifer L Auger
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
| | - Victoria Osinski
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
| | - Lee A Meier
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
- Department of Surgery, University of Colorado, Aurora, CO
| | - Brianna J Engelson
- Center for Immunology, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
| | - Maria M. Firulyova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | | | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Konstantin Zaitsev
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | | | - Bryce A Binstadt
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
- University of Minnesota, Minneapolis, MN
| |
Collapse
|
33
|
Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep 2023; 42:112411. [PMID: 37086408 PMCID: PMC10332406 DOI: 10.1016/j.celrep.2023.112411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
Collapse
Affiliation(s)
- Andrew C Cicchetto
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hannah Sunshine
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blake R Wilde
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Leslie Sedgeman
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Lee HJ, Lee J, Yang MJ, Kim YC, Hong SP, Kim JM, Hwang GS, Koh GY. Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes. Nat Commun 2023; 14:2754. [PMID: 37179330 PMCID: PMC10183046 DOI: 10.1038/s41467-023-38433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.
Collapse
Affiliation(s)
- Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jung Mo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Colleage of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
35
|
Hong SP, Yang MJ, Bae JH, Choi DR, Kim YC, Yang MS, Oh B, Kang KW, Lee SM, Kim B, Kim YD, Ahn JH, Koh GY. Three-dimensional morphologic and molecular atlases of nasal vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:449-466. [PMID: 39196043 PMCID: PMC11358012 DOI: 10.1038/s44161-023-00257-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 08/29/2024]
Abstract
Understanding the function of the nasal vasculature in homeostasis and pathogenesis of common nasal diseases is important. Here we describe an extensive network of venous sinusoids (VSs) in mouse and human nasal mucosa. The endothelium of the VSs expressed Prox1 (considered to be a constitutive marker of lymphatic endothelium) and high levels of VCAM-1 and exhibited unusual cell-to-cell junctions. VSs are supported by circular smooth muscle cells (SMCs) and surrounded by immune cells. The nasal mucosa also showed a rich supply of lymphatic vessels with distinctive features, such as the absence of the lymphatic marker LYVE1 and sharp-ended capillaries. In mouse models of allergic rhinitis or acute Coronavirus Disease 2019 (COVID-19) infection, Prox1+ VSs were regressed or compromised. However, in aged mice, the VSs lost the SMC support and were expanded and enlarged. Our findings demonstrate three-dimensional morphological and molecular heterogeneities of the nasal vasculature and offer insights into their associations with nasal inflammation, infection and aging.
Collapse
Affiliation(s)
- Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Du Ri Choi
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Myeon-Sik Yang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Byungkwan Oh
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Myeong Lee
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Yu J, Yin Y, Leng Y, Zhang J, Wang C, Chen Y, Li X, Wang X, Liu H, Liao Y, Jin Y, Zhang Y, Lu K, Wang K, Wang X, Wang L, Zheng F, Gu Z, Li Y, Fan Y. Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: current progress and future perspectives. Adv Drug Deliv Rev 2023; 197:114842. [PMID: 37105398 DOI: 10.1016/j.addr.2023.114842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Collapse
Affiliation(s)
- Jiaheng Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqi Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubing Leng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingcheng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanyun Chen
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaorui Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xudong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yishan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yihan Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Keyu Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kehao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| |
Collapse
|
37
|
Molecular and Cellular Regulations in the Development of the Choroidal Circulation System. Int J Mol Sci 2023; 24:ijms24065371. [PMID: 36982446 PMCID: PMC10048934 DOI: 10.3390/ijms24065371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.
Collapse
|
38
|
Vascular and Neuronal Network Formation Regulated by Growth Factors and Guidance Cues. Life (Basel) 2023; 13:life13020283. [PMID: 36836641 PMCID: PMC9965086 DOI: 10.3390/life13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Blood vessels and nerves are distributed throughout the body and show a high degree of anatomical parallelism and functional crosstalk. These networks transport oxygen, nutrients, and information to maintain homeostasis. Thus, disruption of network formation can cause diseases. Nervous system development requires the navigation of the axons of neurons to their correct destination. Blood vessel formation occurs via vasculogenesis and angiogenesis. Vasculogenesis is the process of de novo blood vessel formation, and angiogenesis is the process whereby endothelial cells sprout from pre-existing vessels. Both developmental processes require guidance molecules to establish precise branching patterns of these systems in the vertebrate body. These network formations are regulated by growth factors, such as vascular endothelial growth factor; and guidance cues, such as ephrin, netrin, semaphorin, and slit. Neuronal and vascular structures extend lamellipodia and filopodia, which sense guidance cues that are mediated by the Rho family and actin cytosol rearrangement, to migrate to the goal during development. Furthermore, endothelial cells regulate neuronal development and vice versa. In this review, we describe the guidance molecules that regulate neuronal and vascular network formation.
Collapse
|
39
|
Ichiyama Y, Matsumoto R, Obata S, Sawada O, Saishin Y, Kakinoki M, Sawada T, Ohji M. Assessment of mouse VEGF neutralization by ranibizumab and aflibercept. PLoS One 2022; 17:e0278951. [PMID: 36542626 PMCID: PMC9770341 DOI: 10.1371/journal.pone.0278951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the interaction between ranibizumab, aflibercept, and mouse vascular endothelial growth factor (VEGF), both in vivo and in vitro. METHODS In vivo, the effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced retinopathy (OIR) and the effect of multiple intraperitoneal injections of ranibizumab and aflibercept on neonatal mice were assessed. In vitro, the interaction of mouse VEGF-A with aflibercept or ranibizumab as the primary antibody was analyzed by Western blot. RESULTS In both experiments using intravitreal injections in OIR mice and multiple intraperitoneal injections in neonatal mice, anti-VEGF effects were observed with aflibercept, but not with ranibizumab. Western blot analysis showed immunoreactive bands for mouse VEGF-A in the aflibercept-probed blot, but not in the ranibizumab-probed blot. CONCLUSIONS Aflibercept but not ranibizumab interacts with mouse VEGF, both in vivo and in vitro. When conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but ranibizumab is not.
Collapse
Affiliation(s)
- Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
- * E-mail:
| | - Riko Matsumoto
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Shumpei Obata
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Osamu Sawada
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Yoshitsugu Saishin
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Masashi Kakinoki
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Tomoko Sawada
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| |
Collapse
|
40
|
Kawai K, Murakami T, Mori Y, Ishihara K, Dodo Y, Terada N, Nishikawa K, Morino K, Tsujikawa A. Clinically Significant Nonperfusion Areas on Widefield OCT Angiography in Diabetic Retinopathy. OPHTHALMOLOGY SCIENCE 2022; 3:100241. [PMID: 36545265 PMCID: PMC9762190 DOI: 10.1016/j.xops.2022.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Purpose To investigate the distribution of clinically significant nonperfusion areas (NPAs) on widefield OCT angiography (OCTA) images in patients with diabetes. Design Prospective, cross-sectional, observational study. Participants One hundred and forty-four eyes of 114 patients with diabetes. Methods Nominal 20 × 23 mm OCTA images were obtained using a swept-source OCTA device (Xephilio OCT-S1), followed by the creation of en face images 20-mm (1614 pixels) in diameter centering on the fovea. The nonperfusion squares (NPSs) were defined as the 10 × 10 pixel squares without retinal vessels, and the ratio of eyes with the NPSs to all eyes in each square was referred to as the NPS ratio. The areas with probabilistic differences (APD) for proliferative diabetic retinopathy (PDR) and nonproliferative diabetic retinopathy (NPDR) (APD[PDR] and APD[NPDR]) were defined as sets of squares with higher NPS ratios in eyes with PDR and NPDR, respectively. The P ratio (NPSs within APD[PDR] but not APD[NPDR]/all NPSs) was also calculated. Main Outcome Measures The probabilistic distribution of the NPSs and the association with diabetic retinopathy (DR) severity. Results The NPSs developed randomly in eyes with mild and moderate NPDR and were more prevalent in the extramacular areas and the temporal quadrant in eyes with severe NPDR and PDR. The APD(PDR) was distributed mainly in the extramacular areas, sparing the areas around the vascular arcades and radially peripapillary capillaries. The APD(PDR) contained retinal neovascularization more frequently than the non-APD(PDR) (P = 0.023). The P ratio was higher in eyes with PDR than in those with NPDR (P < 0.001). The multivariate analysis designated the P ratio (odds ratio, 8.293 × 107; 95% confidence interval, 6.529 × 102-1.053 × 1013; P = 0.002) and the total NPSs (odds ratio, 1.002; 95% confidence interval, 1.001-1.003; P < 0.001) as independent risk factors of PDR. Most eyes with NPDR and 4-2-1 rule findings of DR severity had higher P ratios but not necessarily greater NPS numbers. Conclusions The APD(PDR) is uniquely distributed on widefield OCTA images, and the NPA location patterns are associated with DR severity, independent of the entire area of NPAs. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Key Words
- APD, areas with probabilistic differences
- DR, diabetic retinopathy
- Diabetic retinopathy
- FA, fluorescein angiography
- IQR, interquartile range
- IRMA, intraretinal microvascular abnormality
- NPA, nonperfusion area
- NPDR, nonproliferative diabetic retinopathy
- NPS, nonperfusion square
- NV, neovascularization
- NVD, neovascularization of the disc
- NVE, retinal neovascularization
- Neovascularization
- Nonperfusion areas
- OCTA, OCT angiography
- PDR, proliferative diabetic retinopathy
- PRP, panretinal photocoagulation
- RPC, radial peripapillary capillary
- Semiautomatic quantification
- VA, visual acuity
- Widefield OCT angiography
Collapse
Affiliation(s)
| | - Tomoaki Murakami
- Correspondence: Tomoaki Murakami, MD, PhD, 54 Shougoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Watanabe C, Shibuya H, Ichiyama Y, Okamura E, Tsukiyama-Fujii S, Tsukiyama T, Matsumoto S, Matsushita J, Azami T, Kubota Y, Ohji M, Sugiyama F, Takahashi S, Mizuno S, Tamura M, Mizutani KI, Ema M. Essential Roles of Exocyst Complex Component 3-like 2 on Cardiovascular Development in Mice. Life (Basel) 2022; 12:life12111730. [PMID: 36362885 PMCID: PMC9694714 DOI: 10.3390/life12111730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
Angiogenesis is a process to generate new blood vessels from pre-existing vessels and to maintain vessels, and plays critical roles in normal development and disease. However, the molecular mechanisms underlying angiogenesis are not fully understood. This study examined the roles of exocyst complex component (Exoc) 3-like 2 (Exoc3l2) during development in mice. We found that Exoc3l1, Exoc3l2, Exoc3l3 and Exoc3l4 are expressed abundantly in endothelial cells at embryonic day 8.5. The generation of Exoc3l2 knock-out (KO) mice showed that disruption of Exoc3l2 resulted in lethal in utero. Substantial numbers of Exoc3l2 KO embryos exhibited hemorrhaging. Deletion of Exoc3l2 using Tie2-Cre transgenic mice demonstrated that Exoc3l2 in hematopoietic and endothelial lineages was responsible for the phenotype. Taken together, these findings reveal that Exoc3l2 is essential for cardiovascular and brain development in mice.
Collapse
Affiliation(s)
- Chisato Watanabe
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hirotoshi Shibuya
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Eiichi Okamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Setsuko Tsukiyama-Fujii
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| |
Collapse
|
42
|
Furuuchi R, Shimizu I, Yoshida Y, Katsuumi G, Suda M, Kubota Y, Walsh K, Minamino T. Endothelial SIRT-1 has a critical role in the maintenance of capillarization in brown adipose tissue. iScience 2022; 25:105424. [PMID: 36388988 PMCID: PMC9641227 DOI: 10.1016/j.isci.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Brown adipose tissue (BAT) has critical roles in thermogenesis and systemic metabolism. Capillary rarefaction was reported to develop in BAT with dietary obesity, and previous studies showed that suppression of vascular endothelial growth factor A (VEGF-A) reduced capillary density in BAT, promoting the functional decline of this organ. Capillarization is regulated through the balance between angiogenesis and vasculogenesis on the one hand and apoptosis of endothelial cells (ECs) on the other; however, the role of EC apoptosis in BAT remained to be explored. In studies testing the role of boysenberry polyphenols (BoyP) in BAT, we found that BoyP decreased EC apoptosis, enhanced capillarization in BAT, and ameliorated dietary BAT dysfunction, which was associated with the upregulation of nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin 1 (SIRT-1) in ECs. Our studies suggest that EC SIRT-1 would be one of the potential targets of BoyP that contributes to BAT capillarization and function.
Collapse
Affiliation(s)
- Ryo Furuuchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Bourbon Corporation, Niigata 945-8611, Japan,Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Corresponding author
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenneth Walsh
- Division of Cardiovascular Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan,Corresponding author
| |
Collapse
|
43
|
Naranjo O, Osborne O, Torices S, Toborek M. In Vivo Targeting of the Neurovascular Unit: Challenges and Advancements. Cell Mol Neurobiol 2022; 42:2131-2146. [PMID: 34086179 PMCID: PMC9056891 DOI: 10.1007/s10571-021-01113-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The blood-brain barrier (BBB) is essential for the homeostasis of the central nervous system (CNS). Functions of the BBB are performed by the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, basement membrane, and neurons. NVU cells interact closely and together are responsible for neurovascular coupling, BBB integrity, and transendothelial fluid transport. Studies have shown that NVU dysfunction is implicated in several acute and chronic neurological diseases, including Alzheimer's disease, multiple sclerosis, and stroke. The mechanisms of NVU disruption remain poorly understood, partially due to difficulties in selective targeting of NVU cells. In this review, we discuss the relative merits of available protein markers and drivers of the NVU along with recent advancements that have been made in the field to increase efficiency and specificity of NVU research.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Olivia Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
44
|
Yokomizo T, Ideue T, Morino-Koga S, Tham CY, Sato T, Takeda N, Kubota Y, Kurokawa M, Komatsu N, Ogawa M, Araki K, Osato M, Suda T. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 2022; 609:779-784. [DOI: 10.1038/s41586-022-05203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|
45
|
Takahashi K, Abe K, Kubota SI, Fukatsu N, Morishita Y, Yoshimatsu Y, Hirakawa S, Kubota Y, Watabe T, Ehata S, Ueda HR, Shimamura T, Miyazono K. An analysis modality for vascular structures combining tissue-clearing technology and topological data analysis. Nat Commun 2022; 13:5239. [PMID: 36097010 PMCID: PMC9468184 DOI: 10.1038/s41467-022-32848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The blood and lymphatic vasculature networks are not yet fully understood even in mouse because of the inherent limitations of imaging systems and quantification methods. This study aims to evaluate the usefulness of the tissue-clearing technology for visualizing blood and lymphatic vessels in adult mouse. Clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC) enables us to capture the high-resolution 3D images of organ- or area-specific vascular structures. To evaluate these 3D structural images, signals are first classified from the original captured images by machine learning at pixel base. Then, these classified target signals are subjected to topological data analysis and non-homogeneous Poisson process model to extract geometric features. Consequently, the structural difference of vasculatures is successfully evaluated in mouse disease models. In conclusion, this study demonstrates the utility of CUBIC for analysis of vascular structures and presents its feasibility as an analysis modality in combination with 3D images and mathematical frameworks.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Abe
- Laboratory of Medical Statistics, Pharmaceutical Science, Faculty of Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashi-Nada-ku, Kobe, Hyogo, 658-8558, Japan
| | - Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noriaki Fukatsu
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Hirakawa
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3125, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
46
|
Nakao K, Onishi F, Kiyama M, Minabe T. The Growth Factors of Subcutaneous Benign Lipoma: Consideration from Anatomical Position of Occurrence. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4524. [PMID: 36168603 PMCID: PMC9509021 DOI: 10.1097/gox.0000000000004524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Subcutaneous lipomas are the most common benign soft-tissue tumors. Theoretically, adipocyte sites could be the primary foci; however, lipomas are likely located in the occipital, neck, shoulder, torso, and thigh areas. To date, no study has reported the anatomical relationship between these subcutaneous structures and lipomas. Therefore, we aimed to investigate the anatomical locations of lipomas and considered their growth factors. In addition, we discussed the mechanism of fat amplification to improve the success of fat grafting. METHODS In the present study, lipomas measuring more than 5 cm in diameter from patients hospitalized between 2017 and 2021 were retrospectively examined using preoperative computed tomography and magnetic resonance imaging as well as clinical records with intraoperative pictures. RESULTS In total, 22 lipomas of 22 patients were examined. All lesions (100%) were accompanied by neurovascular perforators. Nineteen lesions (86%) were located deep in the superficial fascia, where it was clearly defined. Moreover, all lesions were located at the mobile adipofascial layer adjacent to an anchored fixed or less mobile structure. CONCLUSIONS Lipoma growth might require neurovascular perforators that supply both blood flow and continuous stretching stimuli. The mobile adipofascial layer with bones adjacent to a fixed or less mobile area might also be necessary to grow lipomas. If these findings can be used as clues to elucidate the mechanism of fat amplification in the future, it may lead to an improvement in the survival rate of fat grafts.
Collapse
Affiliation(s)
- Ko Nakao
- From the Department of Plastic and Reconstructive Surgery, Saitama Medical Center, Saitama, Japan
| | - Fumio Onishi
- From the Department of Plastic and Reconstructive Surgery, Saitama Medical Center, Saitama, Japan
| | - Maiko Kiyama
- From the Department of Plastic and Reconstructive Surgery, Saitama Medical Center, Saitama, Japan
| | - Toshiharu Minabe
- From the Department of Plastic and Reconstructive Surgery, Saitama Medical Center, Saitama, Japan
| |
Collapse
|
47
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
48
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
49
|
Rattner A, Wang Y, Nathans J. Signaling Pathways in Neurovascular Development. Annu Rev Neurosci 2022; 45:87-108. [PMID: 35803586 DOI: 10.1146/annurev-neuro-111020-102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States;
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
50
|
Vasculature atrophy causes a stiffened microenvironment that augments epidermal stem cell differentiation in aged skin. NATURE AGING 2022; 2:592-600. [PMID: 37117774 DOI: 10.1038/s43587-022-00244-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Stem cell loss causes tissue deterioration associated with aging. The accumulation of genomic and oxidative stress-induced DNA damage is an intrinsic cue for stem cell loss1,2; however, whether there is an external microenvironmental cue that triggers stem cell loss remains unclear. Here we report that the involution of skin vasculature causes dermal stiffening that augments the differentiation and hemidesmosome fragility of interfollicular epidermal stem cells (IFESCs) in aged mouse skin. Aging-related IFESC dysregulation occurs in plantar and tail skin, and is correlated with prolonged calcium influx, which is contributed by the mechanoresponsive ion channel Piezo1 (ref. 3). Epidermal deletion of Piezo1 ameliorated IFESC dysregulation in aged skin, whereas Piezo1 activation augmented IFESC differentiation and hemidesmosome fragility in young mice. The dermis stiffened with age, which was accompanied by dermal vasculature atrophy. Conversely, induction of the dermal vasculature softened the dermis and ameliorated IFESC dysregulation in aged skin. Single-cell RNA sequencing of dermal fibroblasts identified an aging-associated anti-angiogenetic secretory molecule, pentraxin 3 (ref. 4), which caused dermal sclerotization and IFESC dysregulation in aged skin. Our findings show that the vasculature softens the microenvironment for stem cell maintenance and provide a potential mechanobiology-based therapeutic strategy against skin disorders in aging.
Collapse
|