1
|
Wang Q, Qin D, Ni E, Fang K, Wang Q, Li H, Huang JA, Liu Z, Wu H. Widely targeted metabolomics analysis flavonoid metabolites in different purple teas. Food Chem 2025; 474:142933. [PMID: 39904087 DOI: 10.1016/j.foodchem.2025.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Purple teas are gaining popularity due to their significant health benefits. This study analyzed flavonoid metabolites in the second leaves of three purple tea varieties with stable purple shoots-'Hongfei' (HF), 'Danfei' (DF), and 'Ziya 24' (ZY24)-using UPLC-MS/MS, with 'Yinghong 9' (YH9), a green tea, as the control. The most abundant anthocyanins were cyanidin-3-O-glucoside, cyanidin-O-syringic acid, and pelargonidin-3-O-glucoside in HF, while ZY24 and DF accumulated additional delphinidin and petunidin derivatives. DF also contained malvidin-3-O-galactoside. Furthermore, 22 significantly enriched non-anthocyanin flavonoids were identified as potential co-pigments contributing to the vibrant leaf coloration. These findings reveal key anthocyanin and flavonoid profiles responsible for the distinct purple hues in the tender shoots of different purple tea varieties.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Erdong Ni
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| |
Collapse
|
2
|
Wu D, Guan L, Wu Y, Wang Y, Gao R, Zhong J, Zhang Q, Wang S, Zhang X, Zhang G, Huang J, Gao Y. Multi-Omics Analyses Offer Novel Insights into the Selection of Sugar and Lipid Metabolism During Maize Domestication and Improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2377-2395. [PMID: 39601310 DOI: 10.1111/pce.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Over thousands of years of domestication, maize has undergone significant environmental changes. Understanding the genetic and metabolic trace during maize evolution can better contribute to molecular breeding and nutrition quality improvement. This study examines the metabolic profiles and transcriptomes of maize kernels from teosinte, landrace, and maize accessions at 15 days post-pollination. Differentially accumulated metabolites were enriched in sugar and lipid metabolism pathways. The metabolic selection profile exhibited four distinct patterns: continuous increases, constant decrease, initial decline or stability followed by an increase, and initial growth or stability followed by a subsequent decline. Sugars and JA were positive selection while LPCs/LPEs were negative selection during evolution. The expression level of genes related to sugar accumulation was significantly higher in maize, contrasting with enhanced glycolysis and lipid metabolism activity in teosinte. The correlation network highlighted distinct hormonal regulation of sugar and lipid metabolism. We identified 27 candidate genes associated with sugar, lipid, and JA that have undergone strong selection by population genomic regions. The positive selection of the PLD may explain the negative selection of LPCs/LPEs due to substrate competition. These findings enhance our understanding of the evolutionary trajectory of primary metabolism in maize and provide valuable resources for breeding and improvement.
Collapse
Affiliation(s)
- Di Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Le Guan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yingxue Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Ruiqi Gao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianbin Zhong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiunan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shifeng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xudong Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guochao Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanqiang Gao
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Patil YP, Wagh DS, Barvkar VT, Gawari SK, Pisalwar PD, Ahmed S, Joshi RS. Altered Octopamine synthesis impairs tyrosine metabolism affecting Helicoverpa armigera vitality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106323. [PMID: 40015913 DOI: 10.1016/j.pestbp.2025.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Tyramine β-hydroxylase (TβH) is a key enzyme in the biosynthesis of octopamine (OA), a vital neurohormone in invertebrates. This study explores the expression patterns and functional role of Helicoverpa armigera TβH (HaTβH) across various tissues and developmental stages. HaTβH expression was highest in the head and adult male stages, reflecting tissue-specific and developmental regulation. HaTβH silencing significantly increased locomotion and decreased feeding behavior. OA supplementation in silenced insects or HaTβH overexpression showed a contrary effect on locomotory and feeding behavior. In silico screening and inhibitory assays identified tomatidine, a tomato-derived metabolite, as a potent HaTβH inhibitor with strong binding affinity. In vivo bioassays confirmed tomatidine's inhibitory effects, reducing feeding and increasing mortality in H. armigera. Modulation in HaTβH expression or activity disturbs the tyrosine metabolic pathway, with altered levels of tyramine, octopamine, and dopamine. These results highlight HaTβH as a key regulator of OA biosynthesis, influencing insect feeding, locomotion, and overall survival. The present study also introduces tomatidine as a potential candidate for insect control, given its ability to disrupt HaTβH function. This work provides new insights into the physiological roles of HaTβH and offers promising avenues for developing targeted pest management strategies.
Collapse
Affiliation(s)
- Yogita P Patil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Deepti S Wagh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shyam K Gawari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Priyanka D Pisalwar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shadab Ahmed
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wang X, Wang Y, Zheng Z, Cui Y. GPA1 is a determinant of leaf width and fruit size in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112336. [PMID: 39622387 DOI: 10.1016/j.plantsci.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The identification and dissection of the genetic foundations underlying natural variations in crop species are critical for understanding their phenotypic diversity and for subsequent application in selective breeding. In this research, we identify a natural polymorphism in the promoter region of the G protein α subunit 1 (GPA1) gene, which is associated with the width of the tomato leaves. This may be an evolutionary consequence resulting from the domestication processes aimed at increasing fruit size. A functional disruption of the GPA1 gene resulted in a significant reduction in both the leaf size and the fruit mass in tomatoes compared to the wild type. Further exploration revealed that the intrinsic variation present in the GPA1 promoter region is responsible for the differential expression of the GPA1 gene. Distinct GPA1 haplotypes show a significant correlation with geographic distribution, suggesting that the polymorphisms within the GPA1 locus confer adaptive advantages for modulating leaf morphology in tomatoes, reflecting evolutionary responses to regional environmental pressures. Consequently, our findings provide new insights into the genetic diversity underlying leaf morphology and offer a valuable genetic resource for the selective breeding of cultivated tomato varieties.
Collapse
Affiliation(s)
- Xiang Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Youwei Wang
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ziyi Zheng
- The State Key Laboratory of Subtropical Silviculture, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
| |
Collapse
|
5
|
He B, Wei Y, Wang Y, Zhong Y, Fan M, Gong Q, Lu S, Hassan MU, Li X. Silicon application improves tomato yield and nutritional quality. BMC PLANT BIOLOGY 2025; 25:252. [PMID: 39994511 PMCID: PMC11852564 DOI: 10.1186/s12870-025-06249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Silicon (Si) is a beneficial nutrient well-known for its functions in enhancing plant resistance to abiotic and biotic stresses. How Si application affects tomato yield and quality and underlying physiological mechanisms remain largely unclear. RESULTS Our pot experiment showed that Si application (45 kg ha⁻¹ Na₂SiO₃) significantly promoted accumulation of nitrogen, phosphorus, potassium, and Si in the shoot of soil-cultured tomato in the greenhouse. Such improved mineral nutrition favored Si-applied plant performance in terms of plant height, stem diameter, single fruit weight, and yield, as indicated by significant increases of 11.34%, 53.57%, 62.12%, and 33.81%, respectively, when compared to the control (0 kg ha⁻¹ Na₂SiO₃). Higher catalase and superoxide dismutase activities in contrast to lower concentrations of hydrogen peroxide and malondialdehyde in the fruit suggested that Si application facilitated plant health. Importantly, Si upregulated expression of phytoene synthase and carotenoid isomerase and enhanced corresponding enzyme activities, resulting in higher lycopene concentrations in the fruit. Si also stimulated expression of vitamin C synthesis genes (GDP-D-mannose-3', 5'-isomerase, GDP-L-galactose phosphorylase, dehydroascorb-ate reductase, and monodehydroascorbate reductase) for higher levels of vitamin C accumulation. CONCLUSION Si promoted tomato health, yield, and nutritional quality at the physiological and molecular level, favoring quality fruit production towards sustainable agricultural development.
Collapse
Affiliation(s)
- Boyi He
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuxuan Wei
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Fan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qinyi Gong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sibo Lu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mahmood Ul Hassan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Bai F, Wu M, Huang W, Xu W, Wang Y, Zhang Y, Zhong Z, Hong Y, Pirrello J, Bouzayen M, Liu M. Removal of toxic steroidal glycoalkaloids and bitterness in tomato is controlled by a complex epigenetic and genetic network. SCIENCE ADVANCES 2025; 11:eads9601. [PMID: 39970214 PMCID: PMC11837996 DOI: 10.1126/sciadv.ads9601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The steroidal glycoalkaloids (SGAs) produced in Solanaceae crops, including tomato, are antinutritional because of their cellular toxicity and resultant bitter taste to humans. To make fruits palatable, SGA profiles shift from bitter and toxic α-tomatine to nonbitter and nontoxic esculeoside A during the ripening process. However, the mechanisms regulating this conversion remain unclear. In this study, we showed that removal of toxic and bitter SGAs is under the control of DNA demethylation, ethylene, and key transcription factors by forming a feedback loop that governs the expression of key GLYCOALKALOID METABOLISM (GAME) genes during ripening. Moreover, the ethylene-inducible transcription factors NON-RIPENING, RIPENING INHIBITOR, and FRUITFULL1 coordinately regulate the expression of GAME31, GAME40, GAME5, and the glycoalkaloid transporter gene GORKY, whereas jasmonic acid-induced MYC2 modulates the transcription of GAME36. Furthermore, DNA demethylation mediated by the DEMETER-LIKE 2 drives SGA detoxification during tomato domestication.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, Guang Dong 518083, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yikui Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhenhui Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Huang S, Li X, An K, Xu C, Liu Z, Wang G, Hou H, Zhang R, Wang Y, Yuan H, Luo J. Metabolomic Analysis Reveals the Diversity of Defense Metabolites in Nine Cereal Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:629. [PMID: 40006888 PMCID: PMC11859589 DOI: 10.3390/plants14040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cereal crops are important staple foods, and their defense metabolites hold significant research importance. In this study, we employed LC-MS-based untargeted and widely-targeted metabolomics to profile the leaf metabolome of nine cereal species, including rice, wheat, maize, barley, sorghum, common oat, foxtail millet, broomcorn millet, and adlay. A total of 9869 features were detected, among them, 1131 were annotated, encompassing 18 classes such as flavonoids, lipids, and alkaloids. Results revealed that 531 metabolites were detected in all species, while each cereal crop possessed 4 to 12 unique metabolites. Focusing on defense metabolites, we identified eight benzoxazinoids uniquely present in maize, wheat, and adlay. Hierarchical clustering based on metabolite abundance divided all metabolites into nine clusters, and subsequent pathway enrichment analysis revealed that the stress-related flavonoid biosynthesis pathway was enriched in multiple clusters. Further analysis showed that four downstream compounds of HBOA (2-hydroxy-1,4-benzoxazin-3-one) in the benzoxazinoid biosynthesis pathway were enriched in maize. Wheat uniquely accumulated the 4'-methylated product of tricin, trimethoxytricetin, whereas adlay accumulated the tricin precursor tricetin in the flavonoid biosynthesis pathway. In summary, this study elucidates the metabolic diversity in defense metabolites among various cereal crops, providing valuable background information for the improvement of stress resistance in cereal crops.
Collapse
Affiliation(s)
- Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Xindong Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Kejin An
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zhenhuan Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Guan Wang
- Yazhouwan National Laboratory, Sanya 572025, China;
| | - Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Yutong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Honglun Yuan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
- Yazhouwan National Laboratory, Sanya 572025, China;
| |
Collapse
|
8
|
Liu X, Chen J, Ma R, Zhao L, Lian C, Chen S, Ma Y. Metabolic profiling and transcriptome analysis of Sinomenium acutum provide insights into the biosynthesis of structurally diverse benzylisoquinoline alkaloids. Sci Rep 2025; 15:5877. [PMID: 39966592 PMCID: PMC11836279 DOI: 10.1038/s41598-025-90334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Sinomenium acutum, a traditional medicinal plant, has been utilized for millennia to alleviate various forms of rheumatic pain symptoms. The structurally diverse benzylisoquinoline alkaloids (BIAs) found in S. acutum are the primary contributors to its therapeutic efficacy, with sinomenine being the principal bioactive constituent. In this study, we employed an integrated transcriptomic and metabolomic approach to investigate BIA biosynthesis in S. acutum. Transcriptome sequencing, functional annotation, and differential gene expression analysis were combined with metabolite profiling to predict biosynthetic pathways of structurally diverse BIAs and screen candidate genes. Metabolomic analysis revealed significant stem-enriched accumulation of BIAs compared to leaves. Furthermore, we proposed a biosynthetic pathway of sinomenine and hypothesized that 34 key candidate genes, including cytochrome P450 (CYP450s), reductases, 2-oxoglutarate-dependent dioxygenases (2-ODDs), and O-methyltransferases (O-MTs), might be involved in its biosynthetic process. This study provides a foundation for understanding the biosynthesis of structurally diverse BIA compounds in S. acutum and offers critical insights for future characterization of functional genetic elements.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Jicong Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou, 450046, People's Republic of China.
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng District, Beijing, 100700, People's Republic of China.
| |
Collapse
|
9
|
Chen Y, Wang X, Colantonio V, Gao Z, Pei Y, Fish T, Ye J, Courtney L, Thannhauser TW, Ye Z, Liu Y, Fei Z, Liu M, Giovannoni JJ. Ethylene response factor SlERF.D6 promotes ripening in part through transcription factors SlDEAR2 and SlTCP12. Proc Natl Acad Sci U S A 2025; 122:e2405894122. [PMID: 39928866 PMCID: PMC11848416 DOI: 10.1073/pnas.2405894122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/19/2024] [Indexed: 02/12/2025] Open
Abstract
Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here, we identified and functionally characterized an Ethylene Response Factor (ERF) gene, SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening. SlERF.D6 loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered in SlERF.D6 expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall, and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed, indicating tissue-specific activity of this transcription factor (TF). Analysis of SlERF.D6 interaction with target promoters revealed an APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) TF (SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third TF gene, SlTCP12, is a target of SlDEAR2, presenting a tricomponent module of ripening control residing in the larger SlERF.D6 regulatory network.
Collapse
Affiliation(s)
- Yao Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Vincent Colantonio
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Tara Fish
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Jie Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Lance Courtney
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Theodore W. Thannhauser
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei230036, People’s Republic of China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| |
Collapse
|
10
|
Li M, Sun C, Wu S. Unlocking sweetness: Gene editing of SlCDPKs to improve tomato flavor. MOLECULAR PLANT 2025; 18:189-191. [PMID: 39741418 DOI: 10.1016/j.molp.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Meng Li
- College of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Chao Sun
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Shuang Wu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| |
Collapse
|
11
|
Zhang X, Tian X, Luo J, Wang X, He S, Sun G, Dong R, Dai P, Wang X, Pan Z, Chen B, Hu D, Wang L, Pang B, Xing A, Fu G, Wang B, Cui J, Ma L, Du X. Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17248. [PMID: 39935137 DOI: 10.1111/tpj.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene GhUGT88F3 for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in GhUGT88F3 in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor GhMYB330 was found to positively regulate GhUGT88F3 expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both GhUGT88F3 and GhMYB330 overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xinquan Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruidan Dong
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aishuang Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoquan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lei Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| |
Collapse
|
12
|
Sholola MJ, Goggans ML, Dzakovich MP, Francis DM, Jacobi SK, Cooperstone JL. Discovery of steroidal alkaloid metabolites and their accumulation in pigs after short-term tomato consumption. Food Chem 2025; 463:141346. [PMID: 39306997 DOI: 10.1016/j.foodchem.2024.141346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024]
Abstract
Studies suggest steroidal alkaloids contribute to the health properties of tomato-rich diets. Untargeted studies have detected tomato steroidal alkaloid metabolites in plasma, tissues, and urine, but concentrations remain unknown. Here we utilize UHPLC-MS/MS to characterize 31 steroidal alkaloid metabolites representing 10 unique masses, and a validated UHPLC-MS method to quantify them in blood plasma. In a two-week parallel-arm study, piglets (n = 20) were fed diets containing 10 % tomato powder or a macronutrient-matched control. Concentrations averaged to 107.7 nmol/L plasma, comprising of phase I (66 %) and phase II (4.5 %) metabolites. Primary phase I metabolites were hydroxylated isomers. MS/MS fragments (m/z 253, 271, 289) in conjunction with analysis of diet profile provided higher confidence when identifying hydroxylated metabolites. These results are the first to report quantitative levels of steroidal alkaloid metabolites in plasma, contributing to an understanding of physiologically relevant concentrations. This data is useful for contextualizing research on the health benefits of tomatoes.
Collapse
Affiliation(s)
- Maria J Sholola
- Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory L Goggans
- Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael P Dzakovich
- Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Francis
- Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| | - Sheila K Jacobi
- Animal Science, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica L Cooperstone
- Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Fernie AR, Martinez-Rivas F. Br(e)aking the tomato fruit size-sweetness trade-off. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00351-0. [PMID: 39809655 DOI: 10.1016/j.tplants.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The study by Zhang et al. demonstrated that two kinases (SlCDPK27 and SlCDPK26) regulate the sugar content in tomato fruits with little impact on morphology. They act as sugar breaks by phosphorylating a sucrose synthase, promoting its degradation and unveiling the mechanism by which sugar content can be increased without yield penalty.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Felix Martinez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
14
|
Wang M, Song T, Jin Q, Zhang Z, Shen Y, Lv G, Fan L, Feng W, Qu Y, Wang M, Shen M, Lou H, Cai W. From White to Reddish-Brown: The Anthocyanin Journey in Stropharia rugosoannulata Driven by Auxin and Genetic Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:954-966. [PMID: 39719358 DOI: 10.1021/acs.jafc.4c10753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Stropharia rugosoannulata, or wine-cap Stropharia, is a well-known edible mushroom cultivated globally. The pileipellis color is a crucial quality attribute of S. rugosoannulata, exhibiting significant variation throughout its developmental stages. However, the pigment types and regulatory mechanisms behind color variation remain unclear. The metabolome analysis found that the anthocyanin biosynthesis pathway was significantly enriched and anthocyanins accumulated steadily in fruiting bodies during three developmental stages. The pileipellis pigment was extracted, and HPLC-MS confirmed the presence of anthocyanins. Notably, significant differences in anthocyanin content were observed among the various colored varieties. Thus, anthocyanins contribute to the pileipellis color of S. rugosoannulata. Through further investigation, this study elucidated, for the first time, the relationship between the "SrNFYA-SrDRF2" regulatory module and anthocyanin accumulation. Combined multiomics assays and HPLC analysis revealed that auxin functions as a signaling molecule that regulates the accumulation of anthocyanins in the pileipellis. Subsequently, the hub gene of anthranilate synthase for auxin synthesis was identified as SrTRP1, and the transcription factor SrMYB1 was verified as a regulator of SrTRP1, influencing auxin accumulation. These findings provide a valuable resource for the targeted enhancement of the quality of S. rugosoannulata.
Collapse
Affiliation(s)
- Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zuofa Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guoying Lv
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yingmin Qu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Mengyu Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Meng Shen
- Jiaxing Academy of Agricultural Science, Jiaxing, Zhejiang 314024, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
15
|
Alseekh S, Klemmer A, Yan J, Guo T, Fernie AR. Embracing plant plasticity or robustness as a means of ensuring food security. Nat Commun 2025; 16:461. [PMID: 39774717 PMCID: PMC11706996 DOI: 10.1038/s41467-025-55872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
The dual challenges of global population explosion and environmental deterioration represent major hurdles for 21st Century agriculture culminating in an unprecedented demand for food security. In this Review, we revisit historical concepts of plasticity and canalization before integrating them with contemporary studies of genotype-environment interactions (G×E) that are currently being carried out at the genome-wide level. In doing so we address both fundamental questions regarding G×E and potential strategies to best secure yields in both current and future climate scenarios.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
16
|
Li Y, Luo J. From steroidal glycoalkaloids to steroidal saponins: Biosynthesis and ecological role in the Solanum genus. MOLECULAR PLANT 2025; 18:22-24. [PMID: 39600099 DOI: 10.1016/j.molp.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
17
|
Yuan Y, Ma X, Li C, Zhong X, Li Y, Zhao J, Zhang X, Zhou Z. Integration of transcriptome and metabolome reveals key regulatory defense pathways associated with high temperature stress in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2025; 25:6. [PMID: 39748295 PMCID: PMC11694469 DOI: 10.1186/s12870-024-05876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied. In this study, we identified a heat-tolerant cucumber Gy14 and a heat-sensitive cucumber 32X. RNA-seq analysis of Gy14 and 32X under high temperature stress showed that some differentially expressed genes (DEGs) were related to the biosynthesis of secondary metabolites. Metabolomic analysis revealed that there were more phenylpropanoids and their downstream derivatives in Gy14 compared to that in 32X under Re_2d condition (2 normal days recovery after heat). Integrated analysis of transcriptome and metabolome revealed that these upregulated genes played a pivotal role in flavonoid biosynthesis. Moreover, high temperature stress significantly induced the expression of the gibberellin (GA) biosynthesis genes and exogenous application of GA3 alleviated the damage of high temperature to cucumber seedlings. Together, these findings provided new insights into the transcriptome response and metabolomic reprogramming of cucumber against high temperature stress.
Collapse
Affiliation(s)
- Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xiao Ma
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Chuang Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xitong Zhong
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yuyan Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jianyu Zhao
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
19
|
Qiang Q, Zhang Z, Li X, Li C, Mao M, Ding X, Zhang J, Li S, Lai Z, Yang J, Cao P, Ye W, Wang S, Yang J. The amino acid permease SlAAP6 contributes to tomato growth and salt tolerance by mediating branched-chain amino acid transport. HORTICULTURE RESEARCH 2025; 12:uhae286. [PMID: 39882176 PMCID: PMC11775608 DOI: 10.1093/hr/uhae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids in tomato (Solanum lycopersicum) required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato amino acid permease 6 (SlAAP6) gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs. Overexpression of SlAAP6 (SlAAP6-OE) in tomato raised the BCAA content and elevated the fresh weight, while SlAAP6 knockouts (slaap6) showed reduced levels of neutral and basic amino acids in seedling tissues and lower total free amino acid distribution to shoots. In comparison to wild type and slaap6 mutants, SlAAP6-OE alleviated root limited growth by elevated BCAA transport and upregulated the expression of root-growth-related genes by increasing BCAAs in vivo. As SlAAP6 serves as a positive regulator for BCAA abundance, SlAAP6-OE lines showed greater salinity tolerance, while slaap6 mutants exhibited increased salt sensitivity. The salt tolerance of SlAAP6-OE plants was further enhanced by the application of exogenous BCAAs. In addition, BCAA supplementation reduced the accumulation of H2O2 in root under salt stress conditions. Based on these findings, SlAAP6-mediated uptake and transport of BCAAs facilitated growth and salt tolerance in tomato. By characterizing this key amino acid transporter, this study provides a novel approach to simultaneously enhance tomato nutritional quality, growth and development, and stress resistance through genetic improvement.
Collapse
Affiliation(s)
- Qi Qiang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Mengdi Mao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Shixuan Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Zesen Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| |
Collapse
|
20
|
Yang Q, Cai L, Wang M, Gan G, Li W, Li W, Jiang Y, Yuan Q, Qin C, Yu C, Wang Y. CRISPR/cas9 Allows for the Quick Improvement of Tomato Firmness Breeding. Curr Issues Mol Biol 2024; 47:9. [PMID: 39852124 PMCID: PMC11763693 DOI: 10.3390/cimb47010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F1 hybrids to enhance firmness. However, the undesirable traits introduced by these mutants often lead to a decline in the quality of the varieties. CRISPR/Cas9 has emerged as a crucial tool in accelerating plant breeding and improving specific target traits as technology iterates. In this study, we used a CRISPR/Cas9 system to simultaneously knock out two genes, FIS1 and PL, which negatively regulate firmness in tomato. We generated single and double gene knockout mutants utilizing the tomato genetic transformation system. The fruit firmness of all knockout mutants exhibited a significant enhancement, with the most pronounced improvement observed in the double mutant. Furthermore, we assessed other quality-related traits of the mutants; our results indicated that the fruit quality characteristics of the gene-edited lines remained statistically comparable to those of the wild type. This approach enabled us to create transgenic-free mutants with diverse genotypes across fewer generations, facilitating rapid improvements in tomato firmness. This study offers significant insights into molecular design breeding strategies for tomato.
Collapse
Affiliation(s)
- Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Mila Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Qi Yuan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Chunchun Qin
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| |
Collapse
|
21
|
Zeng Z, Li Y, Zhu M, Wang X, Wang Y, Li A, Chen X, Han Q, Nieuwenhuizen NJ, Ampomah-Dwamena C, Deng X, Cheng Y, Xu Q, Xiao C, Zhang F, Atkinson RG, Zeng Y. Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle. PLANT PHYSIOLOGY 2024; 197:kiae567. [PMID: 39673719 DOI: 10.1093/plphys/kiae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/16/2024]
Abstract
Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core. Kiwifruit spatiotemporal regulatory networks (KSRN) were constructed by integrating the 1,243 identified metabolites and co-expressed genes into 10 different clusters and 11 modules based on their biological functions. These networks allowed the generation of a global map for the major metabolic and transcriptional changes occurring throughout the life cycle of different kiwifruit tissues and discovery of the underlying regulatory networks. KSRN predictions confirmed previously established regulatory networks, including the spatiotemporal accumulation of anthocyanin and ascorbic acid (AsA). More importantly, the networks led to the functional characterization of three transcription factors: an A. chinensis ethylene response factor 1, which negatively controls sugar accumulation and ethylene production by perceiving the ripening signal, a basic-leucine zipper 60 (AcbZIP60) transcription factor, which is involved in the biosynthesis of AsA as part of the L-galactose pathway, and a transcription factor related to apetala 2.4 (RAP2.4), which directly activates the expression of the kiwi fruit aroma terpene synthase gene AcTPS1b. Our findings provide insights into spatiotemporal changes in kiwifruit metabolism and generate a valuable resource for the study of metabolic regulatory processes in kiwifruit as well as other fruits.
Collapse
Affiliation(s)
- Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, P.R. China
| | - Xiaoyao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qianrong Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
22
|
Liu Z, Fan L, Shu S, Qanmber G, Chen E, Huang J, Li F, Yang Z. Cotton metabolism regulatory network: Unraveling key genes and pathways in fiber development and growth regulation. PLANT COMMUNICATIONS 2024:101221. [PMID: 39673124 DOI: 10.1016/j.xplc.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Cotton (Gossypium hirsutum L.) is one of the world's most important commercial crops. However, the dynamics of metabolite abundance and potential regulatory networks throughout its life cycle remain poorly understood. In this study, we developed a cotton metabolism regulatory network (CMRN) that spans various developmental stages and encompasses 2138 metabolites and 90 309 expressed genesin upland cotton. By integrating high-resolution spatiotemporal metabolome and transcriptome data, we identified 1958 differentially accumulated metabolites and 13 597 co-expressed differentially expressed genes between the dwarf mutant pagoda1 and its wild-type counterpart Zhongmiansuo 24. These metabolites and genes were categorized into seven clusters based on tissue-specific accumulation patterns and gene expression profiles across different developmental stages. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed significant differential enrichment in the fatty acid elongation pathway, particularly in fibers. The differential involvement of genes and metabolites in very-long-chain fatty acid (VLCFA) synthesis led to the identification of GhKCS1b_Dt as a key gene. Overexpression of GhKCS1b_Dt significantly promoted fiber elongation, while its silencing markedly inhibited cotton fiber growth, affirming its positive regulatory role in fiber elongation. This dataset provides a valuable resource for further research into metabolic pathways and gene regulatory networks, offering novel insights for advancing cotton breeding strategies.
Collapse
Affiliation(s)
- Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Sheng Shu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| |
Collapse
|
23
|
Pu W, Yu Y, Shi X, Shao Y, Ye B, Chen Y, Song Q, Shen J, Li H. The Effect of Seasonal and Annual Variation on the Quality of Polygonatum Cyrtonema Hua Rhizomes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3459. [PMID: 39771157 PMCID: PMC11676584 DOI: 10.3390/plants13243459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This study aims to reveal the interannual and seasonal variations in functional components in Polygonatum cyrtonema Hua. rhizomes and evaluate whether the variations significantly affect the quality of rhizomes as a traditional Chinese herbal medicine. The interannual and seasonal variations in total flavonoid content and total saponin content were analyzed. The global dynamic variation in secondary metabolites in the rhizomes during a five-year growth period and in two traditional harvesting seasons were investigated based on metabolomics method. Results clearly showed that the functional components in P. cyrtonema rhizomes exhibited a significant increase in accumulation during the one- to four-year growth period and a significant decrease in accumulation during the four- to five-year growth period. The most active accumulation occurred during the three- to four-year growth period. Drastic variations in functional components occurred from spring to autumn. The significant interannual variation and drastic seasonal variation were strongly associated with the enrichment in some pathways related to the biosynthesis of secondary metabolites and the metabolisms of amino acids. The interannual and seasonal variations in functional components significantly affected the quality of P. cyrtonema rhizomes. The four-year-old rhizomes had the most superior quality due to their higher content of functional components and much more newly formed components. The rhizomes harvested in spring or autumn had unequal quality because of their significant differences in composition and content of functional components. Specifically, the rhizomes from spring contained more flavonoids, alkaloids, and phenolic acids, while those from autumn comprised more steroids. In conclusion, this study reveals that the interannual and seasonal variations in functional components can significantly affect the quality of P. cyrtonema rhizomes as a traditional Chinese herbal medicine. This study provides foundational insights and theoretical guidance for determining an optimal cultivation period to obtain medicinal rhizomes with superior quality. It also offers a strategy for harvesting medicinal rhizomes in two different seasons to achieve unequal quality.
Collapse
Affiliation(s)
- Weiting Pu
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (W.P.)
| | - Yefei Yu
- Zhejiang Dapanshan National Natural Reserve Administration, Panan 322300, China;
| | - Xiaoxiao Shi
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Ye Shao
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (W.P.)
| | - Bihuan Ye
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Youwu Chen
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qiyan Song
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Jianjun Shen
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Haibo Li
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| |
Collapse
|
24
|
Yang L, Qin W, Wei X, Liu R, Yang J, Wang Z, Yan Q, Zhang Y, Hu W, Han X, Gao C, Zhan J, Gao B, Ge X, Li F, Yang Z. Regulatory networks of coresident subgenomes during rapid fiber cell elongation in upland cotton. PLANT COMMUNICATIONS 2024; 5:101130. [PMID: 39257006 PMCID: PMC11671760 DOI: 10.1016/j.xplc.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Cotton, an intriguing plant species shaped by polyploidization, evolution, and domestication, holds particular interest due to the complex mechanisms governing fiber traits across its two subgenomes. However, the regulatory elements or transcriptional networks between subgenomes during fiber elongation remain to be fully clarified. Here, we analyzed 1462 cotton fiber samples to reconstruct the gene-expression regulatory networks that influence fiber cell elongation. Inter-subgenome expression quantitative trait loci (eQTLs) largely dictate gene transcription, with a notable tendency for the D subgenome to regulate A-subgenome eGenes. This regulation reveals synchronized homoeologous gene expression driven by co-localized eQTLs and divergent patterns that diminish genetic correlations, thus leading to preferential expression in the A and D subgenomes. Hotspot456 emerged as a key regulator of fiber initiation and elongation, and artificial selection of trans-eQTLs in hotspot456 that positively regulate KCS1 has facilitated cell elongation. Experiments designed to clarify the roles of trans-eQTLs in improved fiber breeding confirmed the inhibition of GhTOL9 by a specific trans-eQTL via GhWRKY28, which negatively affects fiber elongation. We propose a model in which the GhWRKY28-GhTOL9 module regulates this process through the ESCRT (endosomal sorting complex required for transport) pathway. This research significantly advances our understanding of cotton's evolutionary and domestication processes and the intricate regulatory mechanisms that underlie significant plant traits.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqiang Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xi Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Rui Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jiaxiang Yang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Zhi Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qingdi Yan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yihao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Wei Hu
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chenxu Gao
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Jingjing Zhan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baibai Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Ge
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Fuguang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Zhaoen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| |
Collapse
|
25
|
Han L, Gao Z, Li L, Li C, Yan H, Xiao B, Ma Y, Wang H, Yang C, Xun H. Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3445. [PMID: 39683238 DOI: 10.3390/plants13233445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Salinity stress influences plants throughout their entire life cycle. However, little is known about the response of plants to long-term salinity stress (LSS). In this study, Puccinellia tenuiflora, a perennial halophyte grass, was exposed to 300 mM NaCl for two years (completely randomized experiment design with three biological replicates). We measured the photosynthetic parameters and plant hormones and employed a widely targeted metabolomics approach to quantify metabolites. Our results revealed that LSS induced significant metabolic changes in P. tenuiflora, inhibiting the accumulation of 11 organic acids in the leaves and 24 organic acids in the roots and enhancing the accumulation of 15 flavonoids in the leaves and 11 phenolamides in the roots. The elevated accumulation of the flavonoids and phenolamides increased the ability of P. tenuiflora to scavenge reactive oxygen species. A comparative analysis with short-term salinity stress revealed that the specific responses to long-term salinity stress (LSS) included enhanced flavonoid accumulation and reduced amino acid accumulation, which contributed to the adaptation of P. tenuiflora to LSS. LSS upregulated the levels of abscisic acid in the leaves and ACC (a direct precursor of ethylene) in the roots, while it downregulated the levels of cytokinins and jasmonic acids in both the organs. These tolerance-associated changes in plant hormones would be expected to reprogram the energy allocation among growth, pathogen defense, and salinity stress response. We propose that abscisic acid, ethylene, cytokinins, and jasmonic acids may interact with each other to construct a salinity stress response network during the adaptation of P. tenuiflora to LSS, which mediates salinity stress response and significant metabolic changes. Our results provided novel insights into the plant hormone-regulated metabolic response of the plants under LSS, which can enhance our understanding of plant salinity tolerance.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Gao
- Tourism and Geographical Science Institute, Baicheng Normal University, Baicheng 137000, China
| | - Luhao Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changyou Li
- School of Life Science, Jilin Normal University, Siping 136000, China
| | - Houxing Yan
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Binbin Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yimeng Ma
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130018, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
26
|
Li X, Liu X, Pan F, Hu J, Han Y, Bi R, Zhang C, Liu Y, Wang Y, Liang Z, Zhu C, Guo Y, Huang Z, Wang X, Du Y, Liu L, Li J. Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato. BMC Genomics 2024; 25:1170. [PMID: 39627739 PMCID: PMC11613539 DOI: 10.1186/s12864-024-11101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND As two of the most impactful abiotic stresses, salt and drought strongly affect tomato growth and development, especially at the seedling stage. However, dissection of the genetic basis underlying salt/drought tolerance at seedling stage in tomato remains limited in scope. RESULTS Here, we reported an analysis of major quantitative trait locus (QTL) and potential causal genetic variations in seedling stage salt/drought tolerance in recombinant inbred lines (n = 201) of S. pimpinellifolium and S. lycopersicum parents by whole genome resequencing. A total of 5 QTLs on chromosome 1, 3, 5, 7 and 12 for salt tolerance (ST) and 15 QTLs on chromosome 1, 3, 4, 8, 9, 10, 12 for drought tolerance (DT) were identified by linkage mapping. The proportion of phenotypic variation explained (PVE%) by these QTLs ranged from 4.91 to 15.86. Two major QTLs qST7 and qDT1-3 were detected in both two years, for which two candidate genes (methionine sulfoxide reductase SlMSRB1 and brassinosteroid insensitive 1-like receptor SlBRL1) and the potential functional variations were further analyzed. Taking advantage of the tomato population resequencing data, the frequency changes of the potential favorable QTL allele for seedling stage ST/DT during tomato breeding were explored. CONCLUSIONS These results will be beneficial for the exploration of salt/drought tolerance genes at seedling stages, laying a foundation for marker-assisted breeding for seedling stage salt/drought tolerance.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Pan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junling Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunhao Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ripu Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot, 010031, China
| | - Yong Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot, 010031, China
| | - Zengwen Liang
- Shandong Yongsheng Agricultural Development Co., Ltd., Weifang, Shandong, 262700, China
| | - Can Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanmei Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zejun Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchen Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
27
|
Wang Z, Hong Y, Li D, Wang Z, Chao ZF, Yu Y, Zhu G, Zhu JK. Association analysis provides insights into molecular evolution in salt tolerance during tomato domestication. PLANT PHYSIOLOGY 2024; 196:2721-2729. [PMID: 39331524 DOI: 10.1093/plphys/kiae516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Salt stress impairs plant growth and development, generally resulting in crop failure. Tomato domestication gave rise to a dramatic decrease in salt tolerance caused by the genetic variability of the wild ancestors. However, the nature of artificial selection in reducing tomato salt tolerance remains unclear. Here, we generated and analyzed datasets on the survival rates and sodium (Na+) and potassium (K+) concentrations of hundreds of tomato varieties from wild ancestors to contemporary breeding accessions under high salinity. Genome-wide association studies revealed that natural variation in the promoter region of the putative K+ channel regulatory subunit-encoding gene KSB1 (potassium channel beta subunit in Solanum lycopersicum) is associated with the survival rates and root Na+/K+ ratios in tomato under salt stress. This variation is deposited in tomato domestication sweeps and contributes to modified expression of KSB1 by a salt-induced transcription factor SlHY5 in response to high salinity. We further found that KSB1 interacts with the K+ channel protein KSL1 to maintain cellular Na+ and K+ homeostasis, thus enhancing salt tolerance in tomato. Our findings reveal the crucial role of the SlHY5-KSB1-KSL1 module in regulating ion homeostasis and salt tolerance during tomato domestication, elucidating that selective pressure imposed by humans on the evolutionary process provides insights into further crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yechun Hong
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dianjue Li
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
| | - Zhiqiang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Fei Chao
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongdong Yu
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Guangtao Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Wang Z, Zhao Y, Zheng M, Yu S, Gao Y, Zhu G, Zhu J, Hua K, Wang Z. A natural variation contributes to sugar accumulation in fruit during tomato domestication. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3520-3522. [PMID: 39269883 PMCID: PMC11606417 DOI: 10.1111/pbi.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Zhiqiang Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Yarong Zhao
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Minmin Zheng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai Chenshan Botanical GardenShanghaiChina
| | - Shuojun Yu
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Yang Gao
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Guangtao Zhu
- The AGISCAAS‐YNNU Joint Academy of Potato SciencesYunnan Normal UniversityKunmingChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Kai Hua
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai Chenshan Botanical GardenShanghaiChina
| | - Zhen Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
29
|
Xie Y, Xu Y, Jia H, Wang K, Chen S, Ma T, Deng Y, Lang Z, Niu Q. Tomato MADS-RIN regulates GAME5 expression to promote non-bitter glycoalkaloid biosynthesis in fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2500-2514. [PMID: 39504234 DOI: 10.1111/tpj.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
A well-known defense-associated steroidal glycoalkaloid (SGA) metabolic shift eliminates the bitterness and toxicity of ripe tomato fruits. This study was conducted to clarify the effects of MADS-RIN (RIN) and its cofactors on SGA metabolism in tomato fruits. Using a CRISPR/Cas9-based gene-editing system, we mutated RIN and two cofactor genes (FUL1 and FUL2). The observed changes to fruit color and size in the mutants reflected the overlapping and distinct effects of RIN, FUL1, and FUL2 on fruit ripening. According to a UPLC-MS/MS analysis, the RIN and cofactor mutants had decreased levels of the relatively non-toxic metabolite esculeoside A, but they accumulated toxic SGA pathway intermediates, suggesting RIN and its cofactors are directly involved in esculeoside A biosynthesis. Transcriptome and qPCR analyses detected the downregulated expression of GAME5, which encodes a key enzyme mediating esculeoside A biosynthesis. ChIP-seq and ChIP-qPCR analyses confirmed GAME5 is targeted by RIN. RIN was observed to activate GAME5 transcription by binding to two non-canonical CArG-boxes in the GAME5 promoter. Additionally, RIN promotes SGA metabolism independently of ethylene. Collectively, these findings enhance our understanding of the molecular mechanism governing tomato fruit ripening and SGA biosynthesis. Furthermore, they may be useful for improving tomato fruit quality and safety.
Collapse
Affiliation(s)
- Yinhuan Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yaping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ke Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yuanwei Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
30
|
Zhang P, He Y, Huang S. Unlocking epigenetic breeding potential in tomato and potato. ABIOTECH 2024; 5:507-518. [PMID: 39650134 PMCID: PMC11624185 DOI: 10.1007/s42994-024-00184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/11/2024]
Abstract
Tomato (Solanum lycopersicum) and potato (Solanum tuberosum), two integral crops within the nightshade family, are crucial sources of nutrients and serve as staple foods worldwide. Molecular genetic studies have significantly advanced our understanding of their domestication, evolution, and the establishment of key agronomic traits. Recent studies have revealed that epigenetic modifications act as "molecular switches", crucially regulating phenotypic variations essential for traits such as fruit ripening in tomatoes and tuberization in potatoes. This review summarizes the latest findings on the regulatory mechanisms of epigenetic modifications in these crops and discusses the integration of biotechnology and epigenomics to enhance breeding strategies. By highlighting the role of epigenetic control in augmenting crop yield and adaptation, we underscores its potential to address the challenges posed by a growing global population as well as changing climate.
Collapse
Affiliation(s)
- Pingxian Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325 China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
31
|
Wijesingha Ahchige M, Fisher J, Sokolowska E, Lyall R, Illing N, Skirycz A, Zamir D, Alseekh S, Fernie AR. The variegated canalized-1 tomato mutant is linked to photosystem assembly. Comput Struct Biotechnol J 2024; 23:3967-3988. [PMID: 39582891 PMCID: PMC11584773 DOI: 10.1016/j.csbj.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The recently described canal-1 tomato mutant, which has a variegated leaf phenotype, has been shown to affect canalization of yield. The corresponding protein is orthologous to AtSCO2 -SNOWY COTYLEDON 2, which has suggested roles in thylakoid biogenesis. Here we characterize the canal-1 mutant through a multi-omics approach, by comparing mutant to wild-type tissues. While white canal-1 leaves are devoid of chlorophyll, green leaves of the mutant appear wild-type-like, despite an impaired protein function. Transcriptomic data suggest that green mutant leaves compensate for this impaired protein function by upregulation of transcription of photosystem assembly and photosystem component genes, thereby allowing adequate photosystem establishment, which is reflected in their wild-type-like proteome. White canal-1 leaves, however, likely fail to reach a certain threshold enabling this overcompensation, and plastids get trapped in an undeveloped state, while additionally suffering from high light stress, indicated by the overexpression of ELIP homolog genes. The metabolic profile of white and to a lesser degree also green tissues revealed upregulation of amino acid levels, that was at least partially mediated by transcriptional and proteomic upregulation. These combined changes are indicative of a stress response and suggest that white tissues behave as carbon sinks. In summary, our work demonstrates the relevance of the SCO2 protein in both photosystem assembly and as a consequence in the canalization of yield.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Josef Fisher
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Ewelina Sokolowska
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rafe Lyall
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Aleksandra Skirycz
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dani Zamir
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| |
Collapse
|
32
|
Cai D, Dong Y, Wang L, Zhao S. Integrated metabolomics and transcriptomics analysis provides insights into biosynthesis and accumulation of flavonoids and glucosinolates in different radish varieties. Curr Res Food Sci 2024; 10:100938. [PMID: 39717680 PMCID: PMC11665663 DOI: 10.1016/j.crfs.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Radish is an important vegetable worldwide, with wide medicinal functions and health benefits. The quality of radish, strongly affected by phytochemicals like flavonoids and glucosinolates, are quite different depending on the radish varieties. However, the comprehensive accumulation profiles of secondary metabolites and their molecular regulatory mechanisms in different radish cultivars remain unclear thus far. Herein, we comprehensively analyzed the secondary metabolite and gene expression profiles of the flesh and skin of four popular radish varieties with different flesh and/or skin colors, using UPLC-MS/MS-based metabolomics and transcriptomics approach combined with RT-qPCR. The results showed that altogether 352 secondary metabolites were identified in radish, of which flavonoids and phenolic acids accounted for 60.51% of the total. The flesh and skin of each variety exhibited distinct metabolic profiles, making them unique in coloration, flavor, taste, and nutritional quality. The differential metabolites were mostly enriched in flavonoid biosynthesis, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and glucosinolate biosynthesis pathway. Further, 19 key genes regulating the differential accumulation of flavonoids among different radish varieties were identified, such as RsCHS, RsCCOAMT, RsF3H, RsFLS, RsCYP75B1, RsDFR, and RsANS that were significantly upregulated in red-colored radish tissue. Also, 10 key genes affecting the differential accumulation of glucosinolates among different varieties were identified, such as RsCYP83B1, RsSUR1, and RsST5a that were significantly increased in the skin of green radish. Moreover, systematical biosynthetic pathways of flavonoids and glucosinolates and co-expression networks between genes and metabolites were constructed based on integrative analysis between metabolomics and transcriptomics. Our findings provide a novel insight into the mechanisms of radish quality formation, thereby providing a molecular basis for breeding and cultivation of radish with excellent nutritional quality.
Collapse
Affiliation(s)
- Da Cai
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanjie Dong
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shancang Zhao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| |
Collapse
|
33
|
Radványi D, Csambalik L, Szakál D, Gere A. Identification of Cherry Tomato Volatiles Using Different Electron Ionization Energy Levels. Molecules 2024; 29:5567. [PMID: 39683727 DOI: 10.3390/molecules29235567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A comprehensive analysis of the volatile components of 11 different cherry tomato pastes (Tesco Extra, Orange, Zebra, Yellow, Round Netherland, Mini San Marzano, Spar truss, Tesco Sunstream, Paprikakertész, Mc Dreamy, and Tesco Eat Fresh) commercially available in Hungary was performed. In order to ensure the reliability and accuracy of the measurement, the optimal measurement conditions were first determined. SPME (solid-phase microextraction) fiber coating, cherry tomato paste treatment, and SPME sampling time and temperature were optimized. CAR/PDMS (carboxen/polydimethylsiloxane) fiber coating with a film thickness of 85 µm is suggested at a 60 °C sampling temperature and 30 min extraction time. A total of 64 common compounds was found in the prepared, mashed cherry tomato samples, in which 59 compounds were successfully identified. Besides the already published compounds, new, cherry tomato-related compounds were found, such as 3 methyl 2 butenal, heptenal, Z-4-heptenal, E-2-heptenal, E-carveol, verbenol, limonene oxide, 2-decen-1-ol, Z-4-decen-1-al, caryophyllene oxide, and E,E-2,4-dodecadienal. Supervised and unsupervised classification methods have been used to classify the tomato varieties based on their volatiles, which identified 16 key components that enable the discrimination of the samples with a high accuracy.
Collapse
Affiliation(s)
- Dalma Radványi
- Department of Hospitality, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, 9-11 Alkotmány út, H-1054 Budapest, Hungary
| | - László Csambalik
- Department of Agroecology and Organic Farming, Institute of Sustainable Development and Economics, Hungarian University of Agricultural and Life Sciences, 29-43 Villányi út, H-1118 Budapest, Hungary
| | - Dorina Szakál
- Department of Hospitality, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, 9-11 Alkotmány út, H-1054 Budapest, Hungary
| | - Attila Gere
- Department of Postharvest Science, Trade, Supply Chain and Sensory Evaluation, Institute of Food Science and Technology, Hungarian University of Agricultural and Life Sciences, 29-43 Villányi út, H-1118 Budapest, Hungary
| |
Collapse
|
34
|
Chai S, Yang J, Zhang X, Shang X, Lang L. Unraveling the Anthocyanin Regulatory Mechanisms of White Mutation in Verbena stricta by Integrative Transcriptome and Metabolome Analysis. Genes (Basel) 2024; 15:1496. [PMID: 39766764 PMCID: PMC11675223 DOI: 10.3390/genes15121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Verbena stricta is a perennial herb of the Verbenaceae family, known for its medicinal properties, wide adaptability, and high resistance. Methods: This research investigated the metabolic pathways of flower color change by combining transcriptome and metabolomics analyses. Results: In purple flowers and white variants, a total of 118 differentially accumulated metabolites (DAMs), including 20 anthocyanins, and 7627 differentially expressed genes (DEGs) were found. The downregulation of delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, and delphinidin-3-O-(6″-O-p-coumaroyl) glucoside, along with the absence of petunidin and malvidin derivatives, may explain the loss of pigmentation in the white-flower mutant. Fourteen candidate genes involved in anthocyanin biosynthesis were identified, among which the expression of Flavonoid 3', 5'-hydroxylase (F3'5'H) was significantly downregulated, notably limiting flux through the delphinidin pathway and reducing delphinidin accumulation. This limitation in upstream reactions, coupled with the multi-shunt process in downstream reactions, completely blocked the production of petunidin and malvidin. Conclusions: These findings offer new opinions on the anthocyanin metabolites and key genes responsible for the floral pigmentation in V. stricta. Additionally, the white variant provides a valuable platform for future research into the ornamental flower color of the Verbenaceae family.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Lang
- Institute of Flowers, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (S.C.); (J.Y.); (X.Z.); (X.S.)
| |
Collapse
|
35
|
Fernie AR, de Vries S, de Vries J. Evolution of plant metabolism: the state-of-the-art. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230347. [PMID: 39343029 PMCID: PMC11449224 DOI: 10.1098/rstb.2023.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication and functionalization experienced in land plants. Unlike prokaryotic microbes, which display frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced relatively few gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner using existing networks as a starting point and under various evolutionary constraints. That said, until recently, the evolution of only a handful of metabolic traits had been extensively investigated and as such, the evolution of metabolism has received a fraction of the attention of, the evolution of development, for example. Advances in metabolomics and next-generation sequencing have, however, recently led to a deeper understanding of how a wide range of plant primary and specialized (secondary) metabolic pathways have evolved both as a consequence of natural selection and of domestication and crop improvement processes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
36
|
Lu S, Sun Y, Liu X, Wang F, Luan S, Wang H. The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato. Int J Biol Macromol 2024; 282:137294. [PMID: 39510459 DOI: 10.1016/j.ijbiomac.2024.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H2S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H2S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H2S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H2S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.
Collapse
Affiliation(s)
- Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Luan
- Department of Plant and Microbial biology, University of California, Berkeley, CA 94720, USA.
| | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
37
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
38
|
Zhang J, Lyu H, Chen J, Cao X, Du R, Ma L, Wang N, Zhu Z, Rao J, Wang J, Zhong K, Lyu Y, Wang Y, Lin T, Zhou Y, Zhou Y, Zhu G, Fei Z, Klee H, Huang S. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 2024; 635:647-656. [PMID: 39537922 PMCID: PMC11578880 DOI: 10.1038/s41586-024-08186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit1-4. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality5-7. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited SlCDPK27 and SlCDPK26 knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.
Collapse
Affiliation(s)
- Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jie Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiguo Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Jianglei Rao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Zhong
- Agriculture and Food Standardization Institute, China National Institute of Standardization, Beijing, China
| | - Yaqing Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Harry Klee
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
39
|
Zhang S, Wu Y, Ren Y, Xu Y, An H, Zhao Q, Wang Y, Li H. Widely metabolomic combined with transcriptome analysis to build a bioactive compound regulatory network for the fruit growth cycle in Pseudocydonia sinensis. Food Chem 2024; 456:139933. [PMID: 38852462 DOI: 10.1016/j.foodchem.2024.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Neglected and underutilised plants such as Pseudocydonia sinensis (Chinese quince) have garnered global interest as invaluable sources of natural bioactive compounds. Herein, a wide-targeted metabolomics-based approach revealed 1199 concurrent metabolites, with further analysis of their fluctuations across with the five stages of fruit growth. The bioactive compounds in Chinese quince primarily comprised sugars and organic acids, flavonoids, and terpenoids. Moreover, 395 metabolites were identified as having medicinal properties and rutin was the most content of them. Transcriptome analysis further provided a molecular basis for the metabolic changes observed during fruit development. By thoroughly analysing metabolite and transcriptome data, we revealed changes in bioactive compounds and related genes throughout fruit development. This study has yielded valuable insights into the ripening process of Chinese quince fruit, presenting substantial implications for industrial applications, particularly in quality control.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yang Wu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yaping Xu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Hong An
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yu Wang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Houhua Li
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Bruda EA, Xia R, Zhang R, Wang H, Yu Q, Hu M, Wang F. Evaluation on the Efficacy of Farrerol in Inhibiting Shoot Blight of Larch ( Neofusicoccum laricinum). PLANTS (BASEL, SWITZERLAND) 2024; 13:3004. [PMID: 39519925 PMCID: PMC11547970 DOI: 10.3390/plants13213004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Neofusicoccum laricinum is the causal agent of larch shoot blight, a fungal disease affecting several species of larch. It causes severe damage, including stunting and mortality. This study aims to address the severe impact of larch shoot blight by evaluating the effect of farrerol on the inhibition of Neofusicoccum laricinum in Larix olgensis. We used LC-MS/MS and weighted gene co-expression network analysis to investigate farrerol's effects on Neofusicoccum laricinum and identify associated genes in resistant and susceptible larch. Our study identified significant differences in metabolite profiles between resistant and susceptible cultivars, with higher concentrations of farrerol showing complete inhibition of N. laricinum. Additionally, specific genes associated with farrerol content were up-regulated in resistant larch. Farrerol at higher concentrations completely inhibited N. laricinum, showing a strong correlation with increased disease resistance. This research suggests that farrerol enhances disease resistance in larch and provides a foundation for developing disease-resistant larch varieties based on antifungal metabolite traits.
Collapse
Affiliation(s)
- Evaristo A. Bruda
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
| | - Rui Xia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haoru Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
| | - Qi Yu
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
| | - Mengyao Hu
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
| | - Feng Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin 150040, China; (E.A.B.); (R.X.); (R.Z.); (H.W.); (Q.Y.); (M.H.)
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
41
|
Zhang G, Yang Z, Zhou S, Zhu J, Liu X, Luo J. Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice. PLANT CELL REPORTS 2024; 43:264. [PMID: 39414689 DOI: 10.1007/s00299-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
KEY MESSAGE Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.
Collapse
Affiliation(s)
- Guofang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhuang Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jinjin Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- Yazhou Bay National Laboratory, Sanya, 572025, China.
| |
Collapse
|
42
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Li H, Ma W, Wang X, Hu H, Cao L, Ma H, Lin J, Zhong M. A WUSCHEL-related homeobox transcription factor, SlWOX4, negatively regulates drought tolerance in tomato. PLANT CELL REPORTS 2024; 43:253. [PMID: 39370470 DOI: 10.1007/s00299-024-03333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE CRISPR/Cas9-mediated knockout of SlWOX4 gene in tomato enhances tolerance to drought stress. Drought stress is one of the major abiotic factors that seriously affects plant growth and crop yield. WUSCHEL-related homeobox (WOX) transcription factors are involved in plant growth, development and stress response. However, little is known about the role of WOX genes in drought tolerance in tomato. Here, SlWOX4, a member of the WOX family in tomato, was functionally characterized in mediating drought tolerance. SlWOX4 was homologous to Nicotiana tabacum NtWOX4 with a conserved HD domain, and was localized in the nucleus. SlWOX4 was significantly down-regulated by drought and abscisic acid (ABA) treatments. The loss-of-function mutations of SlWOX4 produced using the CRISPR-Cas9 system in tomato improved drought tolerance by reducing water loss rate and enhancing stomatal closure. In addition, the wox4 lines exhibited reduced accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), increased antioxidant enzyme activity, proline contents and ABA contents under drought stress. Moreover, gene editing of SlWOX4 in tomato enhanced drought tolerance by regulating the expression of genes encoding antioxidants and ABA signaling molecules. In summary, SlWOX4 gene might negatively regulate drought stress tolerance in tomato and has great potential as a drought-resistant crop-breeding target genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wanying Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiao Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Hu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Cao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
44
|
Li D, Geng Z, Xia S, Feng H, Jiang X, Du H, Wang P, Lian Q, Zhu Y, Jia Y, Zhou Y, Wu Y, Huang C, Zhu G, Shang Y, Li H, Städler T, Yang W, Huang S, Zhang C. Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato. Nat Commun 2024; 15:8652. [PMID: 39368981 PMCID: PMC11455918 DOI: 10.1038/s41467-024-53044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
The genetic analysis of potato is hampered by the complexity of tetrasomic inheritance. An ongoing effort aims to transform the clonally propagated tetraploid potato into a seed-propagated diploid crop, which would make genetic analyses much easier owing to disomic inheritance. Here, we construct and report the large-scale genetic and heterotic characteristics of a diploid F2 potato population derived from the cross of two highly homozygous inbred lines. We investigate 20,382 traits generated from multi-omics dataset and identify 25,770 quantitative trait loci (QTLs). Coupled with gene expression data, we construct a systems-genetics network for gene discovery in potatoes. Importantly, we explore the genetic basis of heterosis in this population, especially for yield and male fertility heterosis. We find that positive heterotic effects of yield-related QTLs and negative heterotic effects of metabolite QTLs (mQTLs) contribute to yield heterosis. Additionally, we identify a PME gene with a dominance heterotic effect that plays an important role in male fertility heterosis. This study provides genetic resources for the potato community and will facilitate the application of heterosis in diploid potato breeding.
Collapse
Affiliation(s)
- Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shixuan Xia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiuhan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yanhui Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yuxin Jia
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Yao Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chenglong Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, 100081, Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, 572024, Sanya, China
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
- Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China.
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
45
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Yu L, Dittrich ACN, Zhang X, Brock JR, Thirumalaikumar VP, Melandri G, Skirycz A, Edger PP, Thorp KR, Hinze L, Pauli D, Nelson AD. Regulation of a single inositol 1-phosphate synthase homeologue by HSFA6B contributes to fibre yield maintenance under drought conditions in upland cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2756-2772. [PMID: 39031479 PMCID: PMC11536448 DOI: 10.1111/pbi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/22/2024]
Abstract
Drought stress substantially impacts crop physiology resulting in alteration of growth and productivity. Understanding the genetic and molecular crosstalk between stress responses and agronomically important traits such as fibre yield is particularly complicated in the allopolyploid species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes of 22 genetically and phenotypically diverse upland cotton accessions grown under well-watered and water-limited conditions in the Arizona low desert were sequenced. Gene co-expression analyses were performed, uncovering a group of stress response genes, in particular transcription factors GhDREB2A-A and GhHSFA6B-D, associated with improved yield under water-limited conditions in an ABA-independent manner. DNA affinity purification sequencing (DAP-seq), as well as public cistrome data from Arabidopsis, were used to identify targets of these two TFs. Among these targets were two lint yield-associated genes previously identified through genome-wide association studies (GWAS)-based approaches, GhABP-D and GhIPS1-A. Biochemical and phylogenetic approaches were used to determine that GhIPS1-A is positively regulated by GhHSFA6B-D, and that this regulatory mechanism is specific to Gossypium spp. containing the A (old world) genome. Finally, an SNP was identified within the GhHSFA6B-D binding site in GhIPS1-A that is positively associated with yield under water-limiting conditions. These data lay out a regulatory connection between abiotic stress and fibre yield in cotton that appears conserved in other systems such as Arabidopsis.
Collapse
Affiliation(s)
- Li'ang Yu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | | | - Xiaodan Zhang
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Jordan R. Brock
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Venkatesh P. Thirumalaikumar
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Purdue Proteomics FacilityBindley biosciences, Purdue UniversityWest LafayetteINUSA
| | | | - Aleksandra Skirycz
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Kelly R. Thorp
- United States Department of Agriculture‐Agricultural Research Service, Arid Land Agricultural Research CenterMaricopaAZUSA
| | - Lori Hinze
- United States Department of Agriculture‐Agricultural Research Service, Southern Plains Agricultural Research CenterCollege StationTXUSA
| | - Duke Pauli
- School of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Agroecosystem Research in the Desert (ARID)University of ArizonaTucsonAZUSA
| | | |
Collapse
|
47
|
Dong S, Zhang J, Ling J, Xie Z, Song L, Wang Y, Zhao L, Zhao T. Comparative analysis of physical traits, mineral compositions, antioxidant contents, and metabolite profiles in five cherry tomato cultivars. Food Res Int 2024; 194:114897. [PMID: 39232525 DOI: 10.1016/j.foodres.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.
Collapse
Affiliation(s)
- Shuchao Dong
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Jingwen Zhang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Jiayi Ling
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225100, China
| | - Zixin Xie
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Liuxia Song
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Liping Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| | - Tongmin Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| |
Collapse
|
48
|
Gao H, Li F, Chen X, You Z, Wei L, Liu Y, Liu P, He M, Hong M, Zhu H, Duan X, Jiang Y, Yun Z. The role of hydrogen-rich water in delaying the pulp breakdown of litchi fruit during postharvest storage. Food Chem 2024; 453:139694. [PMID: 38776793 DOI: 10.1016/j.foodchem.2024.139694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated that hydrogen-rich water (HW) treatment can delay fruit ripening and senescence. However, little is known about the HW-delaying pulp breakdown. In this study, eight physiological characteristics revealed that HW treatment delayed both pericarp browning and pulp breakdown of litchi fruit. To gain a comprehensive understanding of the changes in litchi pulp, a combination of multiple metabolomics and gene expression analyses was conducted, assessing 67 primary metabolites, 103 volatiles, 31 amino acids, and 13 crucial metabolite-related genes. Results showed that HW treatment promoted starch degradation, decelerated cell wall degradation and glycolysis, and maintained the flavor and quality of litchi fruit. Furthermore, HW treatment stimulated the production of volatile alcohols, aldehydes, ketones, olefins, and amino acids, which might play a vital role in HW-delaying pulp breakdown. This study sheds light on the mechanism by which HW delayed pulp breakdown by investigating small molecule metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Huijun Gao
- Institute of Fruit Tree Research, Guangdong, Academy of Agricultural Sciences, Guangzhou, China
| | - Feiyan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xi Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ziming You
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanlong Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ping Liu
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Mingyang He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Min Hong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Hong Zhu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Yun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
49
|
Zhang R, Zhou J, Zhang X, Hou H, Liu X, Yang C, Shen S, Luo J. Insights into Tissue-Specific Specialized Metabolism in Wampee ( Clausena lansium (Lour.) Skeels) Varieties. Foods 2024; 13:3092. [PMID: 39410126 PMCID: PMC11475070 DOI: 10.3390/foods13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wampee (Clausena lansium (Lour.) Skeels) has natural bioactive components with diverse health benefits, but its detailed metabolism and tissue distribution are not fully understood. Here, widely targeted metabolomics analysis methods were employed to analyze the wampee fruit (peel, pulp, and seed) of 17 different varieties. A total of 1286 metabolites were annotated, including lipids, flavonoids, polyphenols, carbazole alkaloids, coumarins, and organic acids, among others. The quantitative analysis and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) analysis indicated remarkable variations in metabolite categories and content in the peel, pulp, and seed of wampee fruit. Additionally, the difference analysis found that the metabolic components of peel contributed dominantly to the differences among varieties, and 7 potential biomarkers were identified. In this study, a comprehensive metabolome landscape of wampee fruit was established, which provided important information for the isolation and identification of functional components, food industry application, and nutritional improvement breeding.
Collapse
Affiliation(s)
- Ran Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xiaoxuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Huanteng Hou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.Z.); (J.Z.); (X.Z.); (H.H.); (X.L.); (C.Y.); (S.S.)
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
50
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|