1
|
Zhang Q, Zheng J, Sun H, Zheng J, Ma Y, Ji Q, Chen D, Tang Z, Zhang J, He Y, Song T. The Notch Signaling Pathway: A Potential Target for Mental Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05034-w. [PMID: 40372672 DOI: 10.1007/s12035-025-05034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The highly conserved Notch signaling pathway plays a critical role in cell fate determination during metazoan development through cell-to-cell communication. The classical pathway consists of Notch receptors, ligands, intracellular effectors, DNA-binding proteins, and other regulatory molecules. Recent research has highlighted its involvement in the pathogenesis of several diseases. In autism, bipolar disorder, and schizophrenia, the Notch signaling pathway is implicated in key processes such as neuronal development and synaptic plasticity. Furthermore, it has been shown to play significant roles in other mental health conditions, including anxiety, depression, post-traumatic stress disorder, and neurocognitive disorders. However, the precise mechanisms underlying the contribution of Notch to these conditions remain poorly understood. This review examines the current understanding of the Notch signaling pathway in mental disorders, highlighting its role in their pathophysiology and summarizing therapeutic strategies aimed at modulating this pathway to improve mental health outcomes.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jingxuan Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongqin Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Engineering Research Center of Key Technologies for Industrial Development of Dendrobium in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Erdmann É, Agolli S, Fix S, Cottard F, Keyser C, Zvenigorosky V, Gonzalez A, Haili Z, Kieffer B, Céraline J. Human-specific genomic evolution of a regulatory network enables fine-tuning of N-cadherin gene expression. Cell Mol Life Sci 2025; 82:196. [PMID: 40343501 PMCID: PMC12064536 DOI: 10.1007/s00018-025-05725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Androgen receptor (AR), a member of the nuclear receptor superfamily controls prostate epithelial cell plasticity by repressing a panel of genes involved in epithelial-mesenchymal transition (EMT), including the human CDH2 gene encoding N-cadherin. At the opposite, pathological AR variants such as AR-V7 associated with prostate tumor progression upregulate those EMT genes. Here, focusing on the human CDH2 gene, we show that this duality between AR and AR-V7 relies on a potential human accelerated region present in the intron 1. This fastest-evolving region of the human genome is actually a variable number tandem repeat (VNTR) comprising 24 repetitions of a DNA sequence that englobes binding sites for steroid hormone receptors, recombination signal binding protein for immunoglobulin kappa j region (RBPJ) an effector of the Notch pathway, and zinc finger e-box binding homeobox 1 (ZEB1). Genomic DNA sequencing, multiple sequence alignment, data mining, as well as protein-DNA interaction and gene expression analyses indicate that this VNTR constitutes a potential transcriptional hub for different transcription factors to control human CDH2 expression. Also, our data suggest that prostate tumor cells may unlock an up to now unknown molecular mechanism associated with a fine-tuned control of human CDH2 gene expression.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Savera Agolli
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Simon Fix
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Félicie Cottard
- CNRS UMR 7242, ESBS, Université de Strasbourg, Illkirch, 67404, France
| | | | | | - Angéla Gonzalez
- Strasbourg Institute of Legal Medicine, Strasbourg, 67085, France
| | - Zakary Haili
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Bruno Kieffer
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Jocelyn Céraline
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, Strasbourg, 67085, France.
- CNRS UMR 7104, INSERM U1258, IGBMC, 1, rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
3
|
Liu Y, Li M, Segal A, Zhang M, Sestan N. Decoding human brain evolution: Insights from genomics. Curr Opin Neurobiol 2025; 92:103033. [PMID: 40334295 DOI: 10.1016/j.conb.2025.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/13/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
The human brain has undergone remarkable structural and functional specializations compared to that of nonhuman primates (NHPs), underlying the advanced cognitive abilities unique to humans. However, the cellular and genetic basis driving these specializations remains largely unknown. Comparing humans to our closest living relatives, chimpanzee and other great apes, is essential for identifying truly human-specific features. Recent comparative studies with closely related NHPs at the single-cell resolution using multimodal genomic profiling, assisted with high-throughput functional screening have provided unprecedented insights into human-specific brain features and their genetic underpinnings. In this review, we synthesize the current knowledge of human brain evolution at cellular and molecular levels, emphasizing how genetic changes have shaped these adaptations. We also discuss the emerging opportunities presented by new technologies and comprehensive atlases for advancing our understanding of human brain evolution.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingli Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ashlea Segal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Wu-Tsai Institute, Yale University, New Haven, CT, 06520, USA
| | - Menglei Zhang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Wu-Tsai Institute, Yale University, New Haven, CT, 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Konstantinides N, Desplan C. Neuronal Circuit Evolution: From Development to Structure and Adaptive Significance. Cold Spring Harb Perspect Biol 2025; 17:a041493. [PMID: 38951021 PMCID: PMC11688512 DOI: 10.1101/cshperspect.a041493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Neuronal circuits represent the functional units of the brain. Understanding how the circuits are generated to perform computations will help us understand how the brain functions. Nevertheless, neuronal circuits are not engineered, but have formed through millions of years of animal evolution. We posit that it is necessary to study neuronal circuit evolution to comprehensively understand circuit function. Here, we review our current knowledge regarding the mechanisms that underlie circuit evolution. First, we describe the possible genetic and developmental mechanisms that have contributed to circuit evolution. Then, we discuss the structural changes of circuits during evolution and how these changes affected circuit function. Finally, we try to put circuit evolution in an ecological context and assess the adaptive significance of specific examples. We argue that, thanks to the advent of new tools and technologies, evolutionary neurobiology now allows us to address questions regarding the evolution of circuitry and behavior that were unimaginable until very recently.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
5
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, et alYoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O'Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. Nature 2025; 641:401-418. [PMID: 40205052 PMCID: PMC12058530 DOI: 10.1038/s41586-025-08816-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The most dynamic and repetitive regions of great ape genomes have traditionally been excluded from comparative studies1-3. Consequently, our understanding of the evolution of our species is incomplete. Here we present haplotype-resolved reference genomes and comparative analyses of six ape species: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan and siamang. We achieve chromosome-level contiguity with substantial sequence accuracy (<1 error in 2.7 megabases) and completely sequence 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, to provide in-depth evolutionary insights. Comparative analyses enabled investigations of the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference genome. Such regions include newly minted gene families in lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes and subterminal heterochromatin. This resource serves as a comprehensive baseline for future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- German Primate Center, Primate Genetics Laboratory, Goettingen, Germany
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Riley J Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Christine R Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P Chan
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of Bioinformatics and Population Genetics, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Loftus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F I Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Saswat K Mohanty
- Department of Biology, Penn State University, University Park, PA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA, USA
| | - Matt Pennell
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Francisca R Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Samuel Sacco
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA, USA
| | - Dongmin R Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Alexander P Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael G Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Sarah A Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yixin Zhu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zachary A Szpiech
- Department of Biology, Penn State University, University Park, PA, USA
| | - Christian D Huber
- Department of Biology, Penn State University, University Park, PA, USA
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Miriam K Konkel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA.
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Budisteanu M, Papuc SM, Erbescu A, Glangher A, Andrei E, Rad F, Hinescu ME, Arghir A. Review of structural neuroimaging and genetic findings in autism spectrum disorder - a clinical perspective. Rev Neurosci 2025; 36:295-314. [PMID: 39566028 DOI: 10.1515/revneuro-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by deficits in social relationships and communication and restrictive, repetitive behaviors and interests. ASDs form a heterogeneous group from a clinical and genetic perspective. Currently, ASDs diagnosis is based on the clinical observation of the individual's behavior. The subjective nature of behavioral diagnoses, in the context of ASDs heterogeneity, contributes to significant variation in the age at ASD diagnosis. Early detection has been proved to be critical in ASDs, as early start of appropriate therapeutic interventions greatly improve the outcome for some children. Structural magnetic resonance imaging (MRI) is widely used in the diagnostic work-up of neurodevelopmental conditions, including ASDs, mostly for brain malformations detection. Recently, the focus of brain imaging shifted towards quantitative MRI parameters, aiming to identify subtle changes that may establish early detection biomarkers. ASDs have a strong genetic component; deletions and duplications of several genomic loci have been strongly associated with ASDs risk. Consequently, a multitude of neuroimaging and genetic findings emerged in ASDs in the recent years. The association of gross or subtle changes in brain morphometry and volumes with different genetic defects has the potential to bring new insights regarding normal development and pathomechanisms of various disorders affecting the brain. Still, the clinical implications of these discoveries and the impact of genetic abnormalities on brain structure and function are unclear. Here we review the literature on brain imaging correlated with the most prevalent genomic imbalances in ASD, and discuss the potential clinical impact.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 031593, Calea Vacaresti 187, Bucharest, Romania
| | - Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Adelina Glangher
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
| | - Emanuela Andrei
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Florina Rad
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| |
Collapse
|
8
|
Nomura T, Ohtaka-Maruyama C. Genetic and developmental bases for mammalian neocortical evolution. Dev Growth Differ 2025; 67:116-118. [PMID: 40156326 DOI: 10.1111/dgd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
The mammalian neocortex is characterized by tangential surface expansion and a six-layer layered structure. However, developmental mechanisms underlying the evolution of the neocortex remain to be elucidated. We hold the symposium entitled "Genetic and developmental bases for mammalian neocortical evolution" was held on June 22, 2024, at Kyoto as an official symposium in the annual meeting of Japanese Society for Developmental Biologists. Selected speakers presented their recent findings on mammalian neocortical development and evolution, sharing exciting results with the audience.
Collapse
Affiliation(s)
- Tadashi Nomura
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Eşiyok N, Liutikaite N, Haffner C, Peters J, Heide S, Oegema CE, Huttner WB, Heide M. A dyad of human-specific NBPF14 and NOTCH2NLB orchestrates cortical progenitor abundance crucial for human neocortex expansion. SCIENCE ADVANCES 2025; 11:eads7543. [PMID: 40138416 PMCID: PMC11939065 DOI: 10.1126/sciadv.ads7543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
We determined the roles of two coevolved and coexpressed human-specific genes, NBPF14 and NOTCH2NLB, on the abundance of the cortical progenitors that underlie the evolutionary expansion of the neocortex, the seat of higher cognitive abilities in humans. Using automated microinjection into apical progenitors (APs) of embryonic mouse neocortex and electroporation of APs in chimpanzee cerebral organoids, we show that NBPF14 promotes the delamination of AP progeny, by promoting oblique cleavage plane orientation during AP division, leading to increased abundance of the key basal progenitor type, basal radial glia. In contrast, NOTCH2NLB promotes AP proliferation, leading to expansion of the AP pool. When expressed together, NBPF14 and NOTCH2NLB exert coordinated effects, resulting in expansion of basal progenitors while maintaining self-renewal of APs. Hence, these two human-specific genes orchestrate the behavior of APs, and the lineages of their progeny, in a manner essential for the evolutionary expansion of the human neocortex.
Collapse
Affiliation(s)
- Nesil Eşiyok
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Neringa Liutikaite
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Sabrina Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
10
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
11
|
González-Sastre R, Coronel R, Mateos-Martínez P, Maeso L, Llorente-Beneyto E, Luque A, Anta B, López-Alonso V, Liste I. Protocol for generating human cerebral organoids from two-dimensional cultures of pluripotent stem cells bypassing embryoid body aggregation. STAR Protoc 2025; 6:103678. [PMID: 40073022 PMCID: PMC11950768 DOI: 10.1016/j.xpro.2025.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Human cerebral organoids (hCOs) provide an excellent model for the study of human brain development and disease. Here, we present a protocol to obtain hCOs directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures, avoiding cell dissociation and posterior embryoid body (EB) aggregation. We describe steps for subjecting 2D cultures to a neural fate and subsequently developing hCOs. We then detail the evaluation of different cellular types. For complete details on the use and execution of this protocol, please refer to González-Sastre et al.1.
Collapse
Affiliation(s)
- Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain; Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain; Doctoranda en la Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), Programa en Ciencias Biomédicas y Salud Pública
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain.
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain; Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain; Doctoranda en la Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), Programa en Ciencias Biomédicas y Salud Pública
| | - Laura Maeso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain
| | - Elena Llorente-Beneyto
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain; Doctoranda en la Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), Programa en Ciencias Biomédicas y Salud Pública
| | - Alfonso Luque
- Unidad de Endotelio Funcional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain
| | - Berta Anta
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain.
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain.
| |
Collapse
|
12
|
Real TD, Hebbar P, Yoo D, Antonacci F, Pačar I, Diekhans M, Mikol GJ, Popoola OG, Mallory BJ, Vollger MR, Dishuck PC, Guitart X, Rozanski AN, Munson KM, Hoekzema K, Ranchalis JE, Neph SJ, Sedeño-Cortes AE, Paten B, Salama SR, Stergachis AB, Eichler EE. Genetic diversity and regulatory features of human-specific NOTCH2NL duplications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643395. [PMID: 40166283 PMCID: PMC11956922 DOI: 10.1101/2025.03.14.643395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
NOTCH2NL (NOTCH2-N-terminus-like) genes arose from incomplete, recent chromosome 1 segmental duplications implicated in human brain cortical expansion. Genetic characterization of these loci and their regulation is complicated by the fact they are embedded in large, nearly identical duplications that predispose to recurrent microdeletion syndromes. Using nearly complete long-read assemblies generated from 67 human and 12 ape haploid genomes, we show independent recurrent duplication among apes with functional copies emerging in humans ~2.1 million years ago. We distinguish NOTCH2NL paralogs present in every human haplotype (NOTCH2NLA) from copy number variable ones. We also characterize large-scale structural variation, including gene conversion, for 28% of haplotypes leading to a previously undescribed paralog, NOTCH2tv. Finally, we apply Fiber-seq and long-read transcript sequencing to human cortical neurospheres to characterize the regulatory landscape and find that the most fixed paralogs, NOTCH2 and NOTCH2NLA, harbor the greatest number of paralog-specific elements potentially driving their regulation.
Collapse
Affiliation(s)
- Taylor D. Real
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Prajna Hebbar
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70125, Italy
| | - Ivana Pačar
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Gregory J. Mikol
- College of Natural & Agricultural Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Oyeronke G. Popoola
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, NC 27514, USA
| | - Benjamin J. Mallory
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Mitchell R. Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Allison N. Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jane E. Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shane J. Neph
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Adriana E. Sedeño-Cortes
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Sofie R. Salama
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew B. Stergachis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Ma K, Yang X, Mao Y. Advancing evolutionary medicine with complete primate genomes and advanced biotechnologies. Trends Genet 2025; 41:201-217. [PMID: 39627062 DOI: 10.1016/j.tig.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary medicine, which integrates evolutionary biology and medicine, significantly enhances our understanding of human traits and disease susceptibility. However, previous studies in this field have often focused on single-nucleotide variants due to technological limitations in characterizing complex genomic regions, hindering the comprehensive analyses of their evolutionary origins and clinical significance. In this review, we summarize recent advancements in complete telomere-to-telomere (T2T), primate genomes and other primate resources, and illustrate how these resources facilitate the research of complex regions. We focus on several biomedically relevant regions to examine the relationship between primate genome evolution and human diseases. We also highlight the potentials of high-throughput functional genomic technologies for assessing candidate loci. Finally, we discuss future directions for primate research within the context of evolutionary medicine.
Collapse
Affiliation(s)
- Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
14
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Tu G, Jiang N, Chen W, Liu L, Hu M, Liao B. The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals. Rev Neurosci 2025; 36:27-51. [PMID: 39083671 DOI: 10.1515/revneuro-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Nan Jiang
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Weizhong Chen
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Lining Liu
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| |
Collapse
|
16
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. eLife 2025; 12:RP91422. [PMID: 39751380 PMCID: PMC11698495 DOI: 10.7554/elife.91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
Affiliation(s)
- Rachael Kuintzle
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
18
|
Mathov Y, Nissim-Rafinia M, Leibson C, Galun N, Marques-Bonet T, Kandel A, Liebergal M, Meshorer E, Carmel L. Inferring DNA methylation in non-skeletal tissues of ancient specimens. Nat Ecol Evol 2025; 9:153-165. [PMID: 39567757 PMCID: PMC11726462 DOI: 10.1038/s41559-024-02571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Genome-wide premortem DNA methylation patterns can be computationally reconstructed from high-coverage DNA sequences of ancient samples. Because DNA methylation is more conserved across species than across tissues, and ancient DNA is typically extracted from bones and teeth, previous works utilizing ancient DNA methylation maps focused on studying evolutionary changes in the skeletal system. Here we suggest that DNA methylation patterns in one tissue may, under certain conditions, be informative on DNA methylation patterns in other tissues of the same individual. Using the fact that tissue-specific DNA methylation builds up during embryonic development, we identified the conditions that allow for such cross-tissue inference and devised an algorithm that carries it out. We trained the algorithm on methylation data from extant species and reached high precisions of up to 0.92 for validation datasets. We then used the algorithm on archaic humans, and identified more than 1,850 positions for which we were able to observe differential DNA methylation in prefrontal cortex neurons. These positions are linked to hundreds of genes, many of which are involved in neural functions such as structural and developmental processes. Six positions are located in the neuroblastoma breaking point family (NBPF) gene family, which probably played a role in human brain evolution. The algorithm we present here allows for the examination of epigenetic changes in tissues and cell types that are absent from the palaeontological record, and therefore provides new ways to study the evolutionary impacts of epigenetic changes.
Collapse
Affiliation(s)
- Yoav Mathov
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Leibson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Galun
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arye Kandel
- Orthopedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Liebergal
- Orthopedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Li J, Zhang G, Zheng J, Hu J, Li Y. A case report of neuronal intranuclear inclusion disease and literature review. BMC Neurol 2024; 24:488. [PMID: 39707256 DOI: 10.1186/s12883-024-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease with a characteristic pathological feature of eosinophilic hyaluronan inclusions in the nervous system and internal organs. The identification of GGC-repeat expansions in the Notch 2 N-terminal like C (NOTCH2NLC) gene facilitates the accurate diagnosis of NIID. Due to its rareness and high clinical heterogeneity, the diagnosis of NIID is often delayed or missed. Here, we report a case of NIID mimicking autoimmune encephalitis. A 55-year-old Chinese man presented with fever, headache, recurrent seizures, and weakness in the upper and lower left limbs. Brain MRI revealed diffuse T2/ FLAIR-hyperintense lesions in the bilateral basal ganglia, corpus callosum, and periventricular white matter, with swelling of the right temporal, frontal, and parietal cortices accompanied by meningeal enhancement. Abnormally high signal lesions were observed in the corticomedullary junction in diffusion-weighted imaging (DWI). The infectious or autoimmune disease screening of central nervous system using CSF was normal. The test of GGC-repeat expansion in the NOTCH2NLC gene by capillary electrophoresis indicated GGC repeats (48 and 110 GGC repeats), which supported the diagnosis of NIID. After treatment with glucocorticoid, the clinical symptoms of this patient improved significantly. In the literature, 12 cases of NIID presenting with encephalitis-like attacks were identified, most of which were recurrent, accompanied by progressive symptoms such as dementia, Parkinsonism symptoms, migraine, or dysuria. In this case, there was a single encephalitis-like episode without other progressive symptoms. In patients with encephalitis-like symptoms, NIID should be considered, especially when no other evidence of infection is found, as demonstrated in this case. In addition, long-term monitoring of disease progression is also very important.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Guogao Zhang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jianrong Zheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| | - Yunong Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
20
|
Vasylieva V, Arefiev I, Bourassa F, Trifiro FA, Brunet MA. Proteomics Can Rise to the Challenge of Pseudogenes' Coding Nature. J Proteome Res 2024; 23:5233-5249. [PMID: 39486438 PMCID: PMC11629383 DOI: 10.1021/acs.jproteome.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Throughout the past decade, technological advances in genomics and transcriptomics have revealed pervasive translation throughout mammalian genomes. These putative proteins are usually excluded from proteomics analyses, as they are absent from common protein repositories. A sizable portion of these noncanonical proteins is translated from pseudogenes. Pseudogenes are commonly termed defective copies of coding genes unable to produce proteins. Here, we suggest that proteomics can help in their annotation. First, we define important terms and review specific examples underlining the caveats in pseudogene annotation and their coding potential. Then, we will discuss the challenges inherent to pseudogenes that have thus far rendered complex their confidence in omics data. Finally, we identify recent developments in experimental procedures, instrumentation, and computational methods in proteomics that put the field in a unique position to solve the pseudogene annotation conundrum.
Collapse
Affiliation(s)
- Valeriia Vasylieva
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Ihor Arefiev
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Francis Bourassa
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Félix-Antoine Trifiro
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Marie A. Brunet
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
21
|
Lu Y, Chen Y, Huang J, Jiang Z, Ge Y, Yao R, Zhang J, Geng S, Chen F, Jin Q, Chen G, Yang D. Advances of NOTCH2NLC Repeat Expansions and Associated Diseases: A Bibliometric and Meta-analysis. Mol Neurobiol 2024; 61:10227-10245. [PMID: 38709391 DOI: 10.1007/s12035-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The unclear pathogenic mechanisms of neurodegenerative disorders stemming from NOTCH2NLC GGC repeat expansions drive focused research. Thus, a bibliometric and meta-analysis was conducted to uncover research trends and positivity rates in NOTCH2NLC. We conducted systematic searches in the Web of Science, PubMed, Embase, and Scopus databases for studies related to NOTCH2NLC up until August 2, 2023. Information regarding countries, institutions, authors, journals, and keywords of studies included in the Web of Science was analyzed and visualized. The positivity rates of NOTCH2NLC GGC repeat expansions across all screened patients and patients' families were pooled under the random-effects model. Publication bias and its impact were examined using funnel plots, Egger's linear regression, and trim-and-fill method. The bibliometric analysis, revealing pronounced publication growth, comprised 119 studies, which came from China and Japan particularly. "Neuronal intranuclear inclusion disease" emerged as a frequently used keyword. The meta-analysis comprised 36 studies, indicating global positivity rates of 1.79% (95% CI, 0.75-3.17) for all patients and 2.00% (95% CI, 0.26-4.78) for patients' families. Subgroup analyses based on region and phenotype suggested the highest NOTCH2NLC positivity rates in Taiwan population (5.42%, 95% CI 0.08-16.89) and in leukoencephalopathy-dominant patients (8.25%, 95% CI, 3.01-15.60). Sensitivity analysis affirmed the robustness of results. In conclusion, NOTCH2NLC GGC repeat expansions exhibit rare globally, primarily in East Asia, and leukoencephalopathy-dominant patients, emphasizing regional and phenotypic distinctions. Emerging focal points in NOTCH2NLC researches underscore the need for collaborative exploration.
Collapse
Affiliation(s)
- Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yaoying Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinxiu Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shangze Geng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qiaoqiao Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
22
|
Moffat A, Schuurmans C. The Control of Cortical Folding: Multiple Mechanisms, Multiple Models. Neuroscientist 2024; 30:704-722. [PMID: 37621149 PMCID: PMC11558946 DOI: 10.1177/10738584231190839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.
Collapse
Affiliation(s)
- Alexandra Moffat
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Hubmann R, Hilgarth M, Löwenstern T, Lienhard A, Sima F, Reisinger M, Hobel-Kleisch C, Porpaczy E, Haferlach T, Hoermann G, Laccone F, Jungbauer C, Valent P, Staber PB, Shehata M, Jäger U. Somatic Recombination Between an Ancient and a Recent NOTCH2 Gene Variant Is Associated with the NOTCH2 Gain-of-Function Phenotype in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12581. [PMID: 39684291 DOI: 10.3390/ijms252312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells. The most common NOTCH2ΔNRR-DEL2 deletion is associated with two intronic single nucleotide variations (SNVs) which either create (CTTAT, G>A for rs2453058) or destroy (CTCGT, A>G for rs5025718) a putative splicing branch point sequence (BPS). Phylogenetic analysis demonstrates that rs2453058 is part of an ancient NOTCH2 gene variant (*1A01) which is associated with type 2 diabetes mellitus (T2DM) and is two times more frequent in Europeans than in East Asians, resembling the differences in CLL incidence. In contrast, rs5025718 belongs to a recent NOTCH2 variant (*1a4) that dominates the world outside Africa. Nanopore sequencing indicates that somatic reciprocal crossing over between rs2453058 (*1A01) and rs5025718 (*1a4) leads to recombined NOTCH2 alleles with altered BPS patterns in NOTCH2*1A01/*1a4 CLL cases. This would explain the loss of the NRR domain by aberrant pre-mRNA splicing and consequently the NOTCH2 gain-of-function phenotype. Together, our findings suggest that somatic recombination of inherited NOTCH2 variants might be relevant to CLL etiology and may at least partly explain its geographical clustering.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tamara Löwenstern
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Lienhard
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Filip Sima
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Manuel Reisinger
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Claudia Hobel-Kleisch
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
24
|
Wu M, Xu Y, Ji X, Zhou Y, Li Y, Feng B, Cheng Q, He H, Peng X, Zhou W, Chen Y, Xiong M. Transplanted deep-layer cortical neuroblasts integrate into host neural circuits and alleviate motor defects in hypoxic-ischemic encephalopathy injured mice. Stem Cell Res Ther 2024; 15:422. [PMID: 39533375 PMCID: PMC11558921 DOI: 10.1186/s13287-024-04049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although intensive studies and therapeutic approaches, there are limited restorative treatments till now. Human embryonic stem cell (hESCs)-derived cortical neural progenitors have shown great potentials in ischemic stroke in adult brain. However, it is unclear whether they are feasible for cortical reconstruction in immature brain with hypoxic-ischemic encephalopathy. METHODS By using embryonic body (EB) neural differentiation method combined with DAPT pre-treatment and quantitative cell transplantation, human cortical neuroblasts were obtained and transplanted into the cortex of hypoxic-ischemic injured brain with different dosages 2 weeks after surgery. Then, immunostaining, whole-cell patch clamp recordings and behavioral testing were applied to explore the graft survival and proliferation, fate commitment of cortical neuroblasts in vitro, neural circuit reconstruction and the therapeutic effects of cortical neuroblasts in HIE brain. RESULTS Transplantation of human cortical neural progenitor cells (hCNPs) in HIE-injured cortex exhibited long-term graft overgrowth. DAPT pre-treatment successfully synchronized hCNPs from different developmental stages (day 17, day 21, day 28) to deep layer cortical neuroblasts which survived well in HIE injured brain and greatly prevented graft overgrowth after transplantation. Importantly, the cortical neuroblasts primarily differentiated into deep-layer cortical neurons and extended long axons to their projection targets, such as the cortex, striatum, thalamus, and internal capsule in both ipsilateral and contralateral HIE-injured brain. The transplanted cortical neurons established synapses with host cortical neurons and exhibited spontaneous excitatory or inhibitory post-synaptic currents (sEPSCs or sIPSCs) five months post-transplantation. Rotarod and open field tests showed greatly improved animal behavior by intra-cortex transplantation of deep layer cortical neuroblasts in HIE injured brain. CONCLUSIONS Transplanted hESCs derived cortical neuroblasts survive, project to endogenous targets, and integrate into host cortical neural circuits to rescue animal behavior in the HIE-injured brain without graft overgrowth, providing a novel and safe cell replacement strategy for the future treatment of HIE.
Collapse
Affiliation(s)
- Mengnan Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuan Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoli Ji
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yingying Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ban Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hui He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingsheng Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenhao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuejun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Imamura M, Yoshino M, Kawasaki H. Investigation of the development and evolution of the mammalian cerebrum using gyrencephalic ferrets. Eur J Cell Biol 2024; 103:151466. [PMID: 39546916 DOI: 10.1016/j.ejcb.2024.151466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian brains have evolved a neocortex, which has diverged in size and morphology in different species over the course of evolution. In some mammals, a substantial increase in the number of neurons and glial cells resulted in the expansion and folding of the cerebrum, and it is believed that these evolutionary changes contributed to the acquisition of higher cognitive abilities in mammals. However, their underlying molecular and cellular mechanisms remain insufficiently elucidated. A major difficulty in addressing these mechanisms stemmed from the lack of appropriate animal models, as conventional experimental animals such as mice and rats have small brains without structurally obvious folds. Therefore, researchers including us have focused on using ferrets instead of mice and rats. Ferrets are domesticated carnivorous mammals with a gyrencephalic cerebrum, and, notably, they are amenable to genetic manipulations including in utero electroporation to knock out genes in the cerebrum. In this review, we highlight recent research into the mechanisms underlying the development and evolution of cortical folds using ferrets.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayuko Yoshino
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
26
|
Stein WD. An Orthologics Study of the Notch Signaling Pathway. Genes (Basel) 2024; 15:1452. [PMID: 39596652 PMCID: PMC11594159 DOI: 10.3390/genes15111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The Notch signaling pathway plays a major role in embryological development and in the ongoing life processes of many animals. Its role is to provide cell-to-cell communication in which a Sender cell, bearing membrane-embedded ligands, instructs a Receiver cell, bearing membrane-embedded receptors, to adopt one of two available fates. Elucidating the evolution of this pathway is the topic of this paper, which uses an orthologs approach, providing a comprehensive basis for the study. Using BLAST searches, orthologs were identified for all the 49 components of the Notch signaling pathway. The historical time course of integration of these proteins, as the animals evolved, was elucidated. Insofar as cell-to-cell communication is of relevance only in multicellular animals, it is not surprising that the Notch system became functional only with the evolutionary appearance of Metazoa, the first multicellular animals. Porifera contributed a quarter of the Notch pathway proteins, the Cnidaria brought the total to one-half, but the system reached completion only when humans appeared. A literature search elucidated the roles of the Notch system's components in modern descendants of the ortholog-contributing ancestors. A single protein, the protein tyrosine kinase (PTK) of the protozoan Ministeria vibrans, was identified as a possible pre-Metazoan ancestor of all three of the Notch pathway proteins, DLL, JAG, and NOTCH. A scenario for the evolution of the Notch signaling pathway is presented and described as the co-option of its components, clade by clade, in a repurposing of genes already present in ancestral unicellular organisms.
Collapse
Affiliation(s)
- Wilfred Donald Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
27
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 PMCID: PMC11551356 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
28
|
Sun M, Chang L, He L, Wang L, Jiang Z, Si Y, Yu J, Ma Y. Combining single-cell profiling and functional analysis explores the role of pseudogenes in human early embryonic development. J Genet Genomics 2024; 51:1173-1186. [PMID: 39032861 DOI: 10.1016/j.jgg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
More and more studies have demonstrated that pseudogenes possess coding ability, and the functions of their transcripts in the development of diseases have been partially revealed. However, the role of pseudogenes in maintenance of normal physiological states and life activities has long been neglected. Here, we identify pseudogenes that are dynamically expressed during human early embryogenesis, showing different expression patterns from that of adult tissues. We explore the expression correlation between pseudogenes and the parent genes, partly due to their shared gene regulatory elements or the potential regulation network between them. The essential role of three pseudogenes, PI4KAP1, TMED10P1, and FBXW4P1, in maintaining self-renewal of human embryonic stem cells is demonstrated. We further find that the three pseudogenes might perform their regulatory functions by binding to proteins or microRNAs. The pseudogene-related single-nucleotide polymorphisms are significantly associated with human congenital disease, further illustrating their importance during early embryonic development. Overall, this study is an excavation and exploration of functional pseudogenes during early human embryonic development, suggesting that pseudogenes are not only capable of being specifically activated in pathological states, but also play crucial roles in the maintenance of normal physiological states.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liu He
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- Department of Obstetrics, Haidian District Maternity and Child Health Hospital, Beijing 100080, China
| | - Zhengyang Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| |
Collapse
|
29
|
Ma J, Zhang H, Meng B, Qin J, Liu H, Pang X, Zhao R, Wang J, Chang X, Guo J, Zhang W. CGG Repeat Expansion in NOTCH2NLC Causing Overlapping Oculopharyngodistal Myopathy and Neuronal Intranuclear Inclusion Disease With Diffusion Weighted Imaging Abnormality in the Cerebellum. J Clin Neurol 2024; 20:580-590. [PMID: 39505310 PMCID: PMC11543384 DOI: 10.3988/jcn.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE CGG repeat expansion in the 5' untranslated region (5'UTR) of the Notch 2 N-terminal-like C gene (NOTCH2NLC) has been associated with neuronal intranuclear inclusion disease (NIID) and oculopharyngodistal myopathy type 3 (OPDM3). Few OPDM3 patients have been reported. This report describes two OPDM3 patients with novel imaging findings who presented the typical features of NIID, and reviews all OPDM3 cases available in the literature. METHODS The available clinical, imaging, and pathological information was reviewed and investigated. CGG repeat expansion in the 5'UTR of NOTCH2NLC was tested using the repeat-primed polymerase chain reaction (PCR), followed by the fluorescence amplicon-length PCR to determine the number of CGG repeats. RESULTS Our two OPDM3 patients and most patients reported in the literature developed the typical clinical characteristics of NIID, including leukoencephalopathy, peripheral neuropathy, cognitive deterioration, pigmentary retinopathy, ataxia, tremor, acute encephalitis-like episodes, pigmentary retinopathy, miosis, and sensorineural hearing loss. In addition to typical imaging findings of NIID, our two patients exhibited diffusion weighted imaging (DWI) hyperintensities in the middle cerebellar peduncles, which have not been described previously. Muscle biopsies revealed rimmed vacuoles and p62-positive intranuclear inclusions in the myofibers in both patients. The skin biopsy performed in one patient detected typical eosinophilic intranuclear inclusions. Genetic analysis identified CGG repeat expansion in NOTCH2NLC as the causative mutation in the two patients. CONCLUSIONS Our two patients with OPDM3 had clinical characteristics of NIID and exhibited DWI abnormality in the cerebellum. Our results indicate that OPDM3 is within the spectrum of NIID and that DWI hyperintensities in the cerebellum are helpful for diagnosing NIID or OPDM3.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huiqiu Zhang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Bing Meng
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiangbo Qin
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongye Liu
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Pang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Wang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Wei Zhang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
30
|
Keeney JG, Astling D, Andries V, Vandepoele K, Anderson N, Davis JM, Lopert P, Vandenbussche J, Gevaert K, Staes A, Paukovich N, Vögeli B, Jones KL, van Roy F, Patel M, Sikela JM. Olduvai domain expression downregulates mitochondrial pathways: implications for human brain evolution and neoteny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619278. [PMID: 39484454 PMCID: PMC11526873 DOI: 10.1101/2024.10.21.619278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Encoded by the NBPF gene family, Olduvai (formerly DUF1220) protein domains have undergone the largest human lineage-specific copy number expansion of any coding region in the genome. Olduvai copy number shows a linear relationship with several brain size-related measures and cortical neuron number among primates and with normal and disease-associated (micro- and macrocephaly) variation in brain size in human populations. While Olduvai domains have been shown to promote proliferation of neural stem cells, the mechanism underlying such effects has remained unclear. Here, we investigate the function of Olduvai by transcriptome and proteome analyses of cells overexpressing NBPF1, a gene encoding 7 Olduvai domains. Our results from both RNAseq and mass spectrometry approaches suggest a potential downregulation of mitochondria. In our proteomics study, a Gene Ontology (GO) enrichment analysis for the downregulated proteins revealed a striking overrepresentation of the biological process related to the mitochondrial electron transport chain (p value: 1.81e-11) and identified deregulation of the NADH dehydrogenase activity (p value: 2.43e-11) as the primary molecular function. We verify the reduction of apparent mitochondria via live-cell imaging experiments. Given these and previous Olduvai findings, we suggest that the Olduvai-mediated, dosage-dependent reduction in available energy via mitochondrial downregulation may have resulted in a developmental slowdown such that the neurogenic window among primates, and most extremely in humans, was expanded over a greater time interval, allowing for production of greater numbers of neurons and a larger brain. We further suggest that such a slowdown may extend to other developmental processes that also exhibit neotenic features.
Collapse
Affiliation(s)
- Jonathon G. Keeney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanessa Andries
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karl Vandepoele
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nathan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pamela Lopert
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Vandenbussche
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth l. Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Frans van Roy
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Neuroscience Programs, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Trinh J, Schaake S, Gabbert C, Lüth T, Cowley SA, Fienemann A, Ullrich KK, Klein C, Seibler P. Optical genome mapping of structural variants in Parkinson's disease-related induced pluripotent stem cells. BMC Genomics 2024; 25:980. [PMID: 39425080 PMCID: PMC11490025 DOI: 10.1186/s12864-024-10902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Certain structural variants (SVs) including large-scale genetic copy number variants, as well as copy number-neutral inversions and translocations may not all be resolved by chromosome karyotype studies. The identification of genetic risk factors for Parkinson's disease (PD) has been primarily focused on the gene-disruptive single nucleotide variants. In contrast, larger SVs, which may significantly influence human phenotypes, have been largely underexplored. Optical genomic mapping (OGM) represents a novel approach that offers greater sensitivity and resolution for detecting SVs. In this study, we used induced pluripotent stem cell (iPSC) lines of patients with PD-linked SNCA and PRKN variants as a proof of concept to (i) show the detection of pathogenic SVs in PD with OGM and (ii) provide a comprehensive screening of genetic abnormalities in iPSCs. RESULTS OGM detected SNCA gene triplication and duplication in patient-derived iPSC lines, which were not identified by long-read sequencing. Additionally, various exon deletions were confirmed by OGM in the PRKN gene of iPSCs, of which exon 3-5 and exon 2 deletions were unable to phase with conventional multiplex-ligation-dependent probe amplification. In terms of chromosomal abnormalities in iPSCs, no gene fusions, no aneuploidy but two balanced inter-chromosomal translocations were detected in one line that were absent in the parental fibroblasts and not identified by routine single nucleotide variant karyotyping. CONCLUSIONS In summary, OGM can detect pathogenic SVs in PD-linked genes as well as reveal genomic abnormalities for iPSCs that were not identified by other techniques, which is supportive for OGM's future use in gene discovery and iPSC line screening.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Fienemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kristian K Ullrich
- Division Scientific IT Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
32
|
Lancaster MA. Unraveling mechanisms of human brain evolution. Cell 2024; 187:5838-5857. [PMID: 39423803 PMCID: PMC7617105 DOI: 10.1016/j.cell.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart. Combined with in vitro models that allow access to developing brain tissue and the cells of our closest living relatives, the puzzle pieces are now coming together to yield a much more complete picture of what is actually unique about the human brain. The challenge now will be linking these observations and making the jump from correlation to causation. However, elegant genetic manipulations are now possible and, when combined with model systems such as organoids, will uncover a mechanistic understanding of how evolutionary changes at the genetic level have led to key differences in development and function that enable human cognition.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Jang S, Abarinov E, Dobkin J, Wichterle H. Independent control of neurogenesis and dorsoventral patterning by NKX2-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618113. [PMID: 39415990 PMCID: PMC11482905 DOI: 10.1101/2024.10.13.618113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Human neurogenesis is disproportionately protracted, lasting >10 times longer than in mouse, allowing neural progenitors to undergo more rounds of self-renewing cell divisions and generate larger neuronal populations. In the human spinal cord, expansion of the motor neuron lineage is achieved through a newly evolved progenitor domain called vpMN (ventral motor neuron progenitor) that uniquely extends and expands motor neurogenesis. This behavior of vpMNs is controlled by transcription factor NKX2-2, which in vpMNs is co-expressed with classical motor neuron progenitor (pMN) marker OLIG2. In this study, we sought to determine the molecular basis of NKX2-2-mediated extension and expansion of motor neurogenesis. We found that NKX2-2 represses proneural gene NEUROG2 by two distinct, Notch-independent mechanisms that are respectively apparent in rodent and human spinal progenitors: in rodents (and chick), NKX2-2 represses Olig2 and the motor neuron lineage through its tinman domain, leading to loss of Neurog2 expression. In human vpMNs, however, NKX2-2 represses NEUROG2 but not OLIG2, thereby allowing motor neurogenesis to proceed, albeit in a delayed and protracted manner. Interestingly, we found that ectopic expression of tinman-mutant Nkx2-2 in mouse pMNs phenocopies human vpMNs, repressing Neurog2 but not Olig2, and leading to delayed and protracted motor neurogenesis. Our studies identify a Notch- and tinman-independent mode of Nkx2-2-mediated Neurog2 repression that is observed in human spinal progenitors, but is normally masked in rodents and chicks due to Nkx2-2's tinman-dependent repression of Olig2.
Collapse
Affiliation(s)
- Sumin Jang
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elena Abarinov
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julie Dobkin
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
35
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals. Mol Biol Evol 2024; 41:msae199. [PMID: 39302728 PMCID: PMC11465374 DOI: 10.1093/molbev/msae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
Zhao HT, Schmidt ER. Human-specific genetic modifiers of cortical architecture and function. Curr Opin Genet Dev 2024; 88:102241. [PMID: 39111228 PMCID: PMC11547859 DOI: 10.1016/j.gde.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Evolution of the cerebral cortex is thought to have been critical for the emergence of our cognitive abilities. Major features of cortical evolution include increased neuron number and connectivity and altered morpho-electric properties of cortical neurons. Significant progress has been made in identifying human-specific genetic modifiers (HSGMs), some of which are involved in shaping these features of cortical architecture. But how did these evolutionary changes support the emergence of our cognitive abilities? Here, we highlight recent studies aimed at examining the impact of HSGMs on cortical circuit function and behavior. We also discuss the need for greater insight into the link between evolution of cortical architecture and the functional and computational properties of neuronal circuits, as we seek to provide a neurobiological foundation for human cognition.
Collapse
Affiliation(s)
- Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Ewoud Re Schmidt
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
37
|
Karageorgiou C, Gokcumen O, Dennis MY. Deciphering the role of structural variation in human evolution: a functional perspective. Curr Opin Genet Dev 2024; 88:102240. [PMID: 39121701 PMCID: PMC11485010 DOI: 10.1016/j.gde.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.5% of the genome is divergent in humans versus other great apes, impacting thousands of genes. Functional genomics and gene-editing tools in various model systems recently emerged as an exciting frontier - investigating the wide-ranging impacts of SVs on molecular, cellular, and systems-level phenotypes. This review examines existing research and identifies future directions to broaden our understanding of the functional roles of SVs on phenotypic innovations and diversity impacting uniquely human features, ranging from cognition to metabolic adaptations.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA. https://twitter.com/@evobioclio
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Jang S, Gumnit E, Wichterle H. A human-specific progenitor sub-domain extends neurogenesis and increases motor neuron production. Nat Neurosci 2024; 27:1945-1953. [PMID: 39210067 DOI: 10.1038/s41593-024-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Neurogenesis lasts ~10 times longer in developing humans compared to mice, resulting in a >1,000-fold increase in the number of neurons in the CNS. To identify molecular and cellular mechanisms contributing to this difference, we studied human and mouse motor neurogenesis using a stem cell differentiation system that recapitulates species-specific scales of development. Comparison of human and mouse single-cell gene expression data identified human-specific progenitors characterized by coexpression of NKX2-2 and OLIG2 that give rise to spinal motor neurons. Unlike classical OLIG2+ motor neuron progenitors that give rise to two motor neurons each, OLIG2+/NKX2-2+ ventral motor neuron progenitors remain cycling longer, yielding ~5 times more motor neurons that are biased toward later-born, FOXP1-expressing subtypes. Knockout of NKX2-2 converts ventral motor neuron progenitors into classical motor neuron progenitors. Such new progenitors may contribute to the increased production of human motor neurons required for the generation of larger, more complex nervous systems.
Collapse
Affiliation(s)
- Sumin Jang
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elias Gumnit
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Ishizawa K, Komori T, Homma T, Sone J, Nakata Y, Nakazato Y, Takahashi K, Yamamoto T, Sasaki A. The predominance of "astrocytic" intranuclear inclusions in neuronal intranuclear inclusion disease manifesting encephalopathy-like symptoms: A case series with brain biopsy. Neuropathology 2024; 44:351-365. [PMID: 38477063 DOI: 10.1111/neup.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder represented by eosinophilic intranuclear inclusions (EIIs) and GGC/CGG repeat expansion in the NOTCH2NLC gene. We report here two adult cases of NIID, genetically confirmed, with manifestation of encephalopathy-like symptoms and address the histopathologic findings obtained by brain biopsies, with a focus on "astrocytic" intranuclear inclusions (AIIs). Case 1 presented with paroxysmal restlessness, vertigo, or fever and was later involved in severe dementia and tetraparesis. Case 2 presented with forgetfulness and then with paroxysmal fever and headache. In both cases, delimited areas with gadolinium enhancement on magnetic resonance imaging and corresponding hyperperfusion were detected, leading to brain biopsies of the cortex. On histology, Case 1 showed an abnormal lamination, where the thickness of layers was different from usual. Both neurons and astrocytes showed some dysmorphologic features. Notably, astrocytes rather than neurons harbored EIIs. Case 2 showed a cortex, where neurons tended to be arrayed in a columnar fashion. Astrocytes showed some dysmorphologic features. Notably, much more astrocytes than neurons harbored EIIs. By a double-labeling immunofluorescence study for p62/NeuN and p62/glial fibrillary acidic protein, the predominance of AIIs was confirmed in both cases. Considering the physiological functions of astrocytes for the development and maintenance of the cortex, the encephalopathy-like symptoms, dynamic change of cerebral blood flow, and cortical dysmorphology can reasonably be explained by the dysfunction of EII-bearing astrocytes rather than EII-bearing neurons. This study suggests the presence of a subtype of NIID where AIIs rather than "neuronal" intranuclear inclusions are likely a key player in the pathogenesis of NIID, particularly in cases with encephalopathy-like symptoms. The importance of AIIs ("gliopathy") should be more appreciated in future studies of NIID.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Saitama, Japan
- Department of Neurology, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Taku Homma
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
40
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
41
|
Fitzgerald MQ, Chu T, Puppo F, Blanch R, Chillón M, Subramaniam S, Muotri AR. Generation of 'semi-guided' cortical organoids with complex neural oscillations. Nat Protoc 2024; 19:2712-2738. [PMID: 38702386 PMCID: PMC11380594 DOI: 10.1038/s41596-024-00994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/22/2024] [Indexed: 05/06/2024]
Abstract
Temporal development of neural electrophysiology follows genetic programming, similar to cellular maturation and organization during development. The emergent properties of this electrophysiological development, namely neural oscillations, can be used to characterize brain development. Recently, we utilized the innate programming encoded in the human genome to generate functionally mature cortical organoids. In brief, stem cells are suspended in culture via continuous shaking and naturally aggregate into embryoid bodies before being exposed to media formulations for neural induction, differentiation and maturation. The specific culture format, media composition and duration of exposure to these media distinguish organoid protocols and determine whether a protocol is guided or unguided toward specific neural fate. The 'semi-guided' protocol presented here has shorter induction and differentiation steps with less-specific patterning molecules than most guided protocols but maintains the use of neurotrophic factors such as brain-derived growth factor and neurotrophin-3, unlike unguided approaches. This approach yields the cell type diversity of unguided approaches while maintaining reproducibility for disease modeling. Importantly, we characterized the electrophysiology of these organoids and found that they recapitulate the maturation of neural oscillations observed in the developing human brain, a feature not shown with other approaches. This protocol represents the potential first steps toward bridging molecular and cellular biology to human cognition, and it has already been used to discover underlying features of human brain development, evolution and neurological conditions. Experienced cell culture technicians can expect the protocol to take 1 month, with extended maturation, electrophysiology recording, and adeno-associated virus transduction procedure options.
Collapse
Affiliation(s)
- Michael Q Fitzgerald
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Tiffany Chu
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Francesca Puppo
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Rebeca Blanch
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Institut de Recerca Vall d'Hebron and Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillón
- Institut de Recerca Vall d'Hebron and Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA.
- Center for Academic Research and Training in Anthropogeny and Archealization, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Education and Integrated Space Stem Cell Orbital Research Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Dong J, Zhu XN, Zeng PM, Cao DD, Yang Y, Hu J, Luo ZG. A hominoid-specific signaling axis regulating the tempo of synaptic maturation. Cell Rep 2024; 43:114548. [PMID: 39052482 DOI: 10.1016/j.celrep.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.
Collapse
Affiliation(s)
- Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Dong Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
44
|
Fagiani F, Pedrini E, Taverna S, Brambilla E, Murtaj V, Podini P, Ruffini F, Butti E, Braccia C, Andolfo A, Magliozzi R, Smirnova L, Kuhlmann T, Quattrini A, Calabresi PA, Reich DS, Martino G, Panina-Bordignon P, Absinta M. A glia-enriched stem cell 3D model of the human brain mimics the glial-immune neurodegenerative phenotypes of multiple sclerosis. Cell Rep Med 2024; 5:101680. [PMID: 39121861 PMCID: PMC11384947 DOI: 10.1016/j.xcrm.2024.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor (SOX10)-based protocol to accelerate oligodendrocyte differentiation from human induced pluripotent stem cell (hiPSC)-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from patients with MS, organoids properly mimic macroglia-microglia neurodegenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support the implementation of this organoid model for drug screening to halt inflammatory neurodegeneration.
Collapse
Affiliation(s)
- Francesca Fagiani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Pedrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Brambilla
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Murtaj
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Ruffini
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Erica Butti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clarissa Braccia
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital of Münster, 48149 Münster, Germany
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianvito Martino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Martina Absinta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Zhou B, Purmann C, Guo H, Shin G, Huang Y, Pattni R, Meng Q, Greer SU, Roychowdhury T, Wood RN, Ho M, zu Dohna H, Abyzov A, Hallmayer JF, Wong WH, Ji HP, Urban AE. Resolving the 22q11.2 deletion using CTLR-Seq reveals chromosomal rearrangement mechanisms and individual variance in breakpoints. Proc Natl Acad Sci U S A 2024; 121:e2322834121. [PMID: 39042694 PMCID: PMC11295037 DOI: 10.1073/pnas.2322834121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/15/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a generally applicable method, CRISPR/Cas9-targeted long-read sequencing (CTLR-Seq), to resolve, haplotype-specifically, the large and complex regions in the human genome that had been previously impenetrable to sequencing analysis, such as large segmental duplications (SegDups) and their associated genome rearrangements. CTLR-Seq combines in vitro Cas9-mediated cutting of the genome and pulse-field gel electrophoresis to isolate intact large (i.e., up to 2,000 kb) genomic regions that encompass previously unresolvable genomic sequences. These targets are then sequenced (amplification-free) at high on-target coverage using long-read sequencing, allowing for their complete sequence assembly. We applied CTLR-Seq to the SegDup-mediated rearrangements that constitute the boundaries of, and give rise to, the 22q11.2 Deletion Syndrome (22q11DS), the most common human microdeletion disorder. We then performed de novo assembly to resolve, at base-pair resolution, the full sequence rearrangements and exact chromosomal breakpoints of 22q11.2DS (including all common subtypes). Across multiple patients, we found a high degree of variability for both the rearranged SegDup sequences and the exact chromosomal breakpoint locations, which coincide with various transposons within the 22q11.2 SegDups, suggesting that 22q11DS can be driven by transposon-mediated genome recombination. Guided by CTLR-Seq results from two 22q11DS patients, we performed three-dimensional chromosomal folding analysis for the 22q11.2 SegDups from patient-derived neurons and astrocytes and found chromosome interactions anchored within the SegDups to be both cell type-specific and patient-specific. Lastly, we demonstrated that CTLR-Seq enables cell-type specific analysis of DNA methylation patterns within the deletion haplotype of 22q11DS.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Hanmin Guo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Qingxi Meng
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Stephanie U. Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Tanmoy Roychowdhury
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN55905
| | - Raegan N. Wood
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Heinrich zu Dohna
- Department of Biology, American University of Beirut, Beirut1107 2020, Lebanon
| | - Alexej Abyzov
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN55905
| | - Joachim F. Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Wing H. Wong
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Program on Genetics of Brain Function, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
46
|
Iwata R, Vanderhaeghen P. Metabolic mechanisms of species-specific developmental tempo. Dev Cell 2024; 59:1628-1639. [PMID: 38906137 PMCID: PMC11266843 DOI: 10.1016/j.devcel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Development consists of a highly ordered suite of steps and transitions, like choreography. Although these sequences are often evolutionarily conserved, they can display species variations in duration and speed, thereby modifying final organ size or function. Despite their evolutionary significance, the mechanisms underlying species-specific scaling of developmental tempo have remained unclear. Here, we will review recent findings that implicate global cellular mechanisms, particularly intermediary and protein metabolism, as species-specific modifiers of developmental tempo. In various systems, from somitic cell oscillations to neuronal development, metabolic pathways display species differences. These have been linked to mitochondrial metabolism, which can influence the species-specific speed of developmental transitions. Thus, intermediary metabolic pathways regulate developmental tempo together with other global processes, including proteostasis and chromatin remodeling. By linking metabolism and the evolution of developmental trajectories, these findings provide opportunities to decipher how species-specific cellular timing can influence organism fitness.
Collapse
Affiliation(s)
- Ryohei Iwata
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
47
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Manrique HM, Friston KJ, Walker MJ. 'Snakes and ladders' in paleoanthropology: From cognitive surprise to skillfulness a million years ago. Phys Life Rev 2024; 49:40-70. [PMID: 38513522 DOI: 10.1016/j.plrev.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
A paradigmatic account may suffice to explain behavioral evolution in early Homo. We propose a parsimonious account that (1) could explain a particular, frequently-encountered, archeological outcome of behavior in early Homo - namely, the fashioning of a Paleolithic stone 'handaxe' - from a biological theoretic perspective informed by the free energy principle (FEP); and that (2) regards instances of the outcome as postdictive or retrodictive, circumstantial corroboration. Our proposal considers humankind evolving as a self-organizing biological ecosystem at a geological time-scale. We offer a narrative treatment of this self-organization in terms of the FEP. Specifically, we indicate how 'cognitive surprises' could underwrite an evolving propensity in early Homo to express sporadic unorthodox or anomalous behavior. This co-evolutionary propensity has left us a legacy of Paleolithic artifacts that is reminiscent of a 'snakes and ladders' board game of appearances, disappearances, and reappearances of particular archeological traces of Paleolithic behavior. When detected in the Early and Middle Pleistocene record, anthropologists and archeologists often imagine evidence of unusual or novel behavior in terms of early humankind ascending the rungs of a figurative phylogenetic 'ladder' - as if these corresponded to progressive evolution of cognitive abilities that enabled incremental achievements of increasingly innovative technical prowess, culminating in the cognitive ascendancy of Homo sapiens. The conjecture overlooks a plausible likelihood that behavior by an individual who was atypical among her conspecifics could have been disregarded in a community of Hominina (for definition see Appendix 1) that failed to recognize, imagine, or articulate potential advantages of adopting hitherto unorthodox behavior. Such failure, as well as diverse fortuitous demographic accidents, would cause exceptional personal behavior to be ignored and hence unremembered. It could disappear by a pitfall, down a 'snake', as it were, in the figurative evolutionary board game; thereby causing a discontinuity in the evolution of human behavior that presents like an evolutionary puzzle. The puzzle discomforts some paleoanthropologists trained in the natural and life sciences. They often dismiss it, explaining it away with such self-justifying conjectures as that, maybe, separate paleospecies of Homo differentially possessed different cognitive abilities, which, supposedly, could account for the presence or absence in the Pleistocene archeological record of traces of this or that behavioral outcome or skill. We argue that an alternative perspective - that inherits from the FEP and an individual's 'active inference' about its surroundings and of its own responses - affords a prosaic, deflationary, and parsimonious way to account for appearances, disappearances, and reappearances of particular behavioral outcomes and skills of early humankind.
Collapse
Affiliation(s)
- Héctor Marín Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Ciudad Escolar, s/n, Teruel 44003, Spain
| | - Karl John Friston
- Imaging Neuroscience, Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Michael John Walker
- Physical Anthropology, Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, Murcia 30100, Spain.
| |
Collapse
|
49
|
Lodewijk GA, de Geus M, Guimarães RLFP, Jacobs FMJ. Emergence of the ZNF675 Gene During Primate Evolution-Influenced Human Neurodevelopment Through Changing HES1 Autoregulation. J Comp Neurol 2024; 532:e25648. [PMID: 38958676 DOI: 10.1002/cne.25648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions. About 170 primate-specific KZNFs are present in the human genome. Although KZNFs are primarily associated with repressing retrotransposon-derived DNA, evidence is emerging that they can be co-opted for other gene regulatory processes. We show that genetic deletion of ZNF675 causes developmental defects in cortical organoids, and our data suggest that part of the observed neurodevelopmental phenotype is mediated by a gene regulatory role of ZNF675 on the promoter of the neurodevelopmental gene Hes family BHLH transcription factor 1 (HES1). We also find evidence for the recently evolved regulation of genes involved in neurological disorders, microcephalin 1 and sestrin 3. We show that ZNF675 interferes with HES1 auto-inhibition, a process essential for the maintenance of neural progenitors. As a striking example of how some KZNFs have integrated into preexisting gene expression networks, these findings suggest the emergence of ZNF675 has caused a change in the balance of HES1 autoregulation. The association of ZNF675 CNV with human developmental disorders and ZNF675-mediated regulation of neurodevelopmental genes suggests that it evolved into an important factor for human brain development.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Swammerdam Institute for Life Sciences, Evolutionary Neurogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthijs de Geus
- Swammerdam Institute for Life Sciences, Evolutionary Neurogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Rita L F P Guimarães
- Swammerdam Institute for Life Sciences, Evolutionary Neurogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank M J Jacobs
- Swammerdam Institute for Life Sciences, Evolutionary Neurogenomics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 PMCID: PMC11956863 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|