1
|
Watkins L, Li M, Wu B. Translation elongation: measurements and applications. RNA Biol 2025; 22:1-10. [PMID: 40377059 PMCID: PMC12087489 DOI: 10.1080/15476286.2025.2504727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Translation converts genetic information in mRNAs into functional proteins. This process occurs in four major steps: initiation, elongation, termination and ribosome recycling; each of which profoundly impacts mRNA stability and protein yield. Over recent decades, regulatory mechanisms governing these aspects of translation have been identified. In this review, we focus on the elongation phase, reviewing the experimental methods used to measure elongation rates and discussing how the measurements shed light on the factors that regulate elongation and ultimately gene expression.
Collapse
Affiliation(s)
- Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mulin Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Aguilera LU, Weber LM, Ron E, King CR, Öcal K, Popinga A, Cook J, May MP, Raymond WS, Fox ZR, Forero-Quintero LS, Forman JR, David A, Munsky B. Methods in quantitative biology-from analysis of single-cell microscopy images to inference of predictive models for stochastic gene expression. Phys Biol 2025; 22:042001. [PMID: 40388970 DOI: 10.1088/1478-3975/adda85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/19/2025] [Indexed: 05/21/2025]
Abstract
The field of quantitative biology (q-bio) seeks to provide precise and testable explanations for observed biological phenomena by applying mathematical and computational methods. The central goals of q-bio are to (1) systematically propose quantitative hypotheses in the form of mathematical models, (2) demonstrate that these models faithfully capture a specific essence of a biological process, and (3) correctly forecast the dynamics of the process in new, and previously untested circumstances. Achieving these goals depends on accurate analysis and incorporating informative experimental data to constrain the set of potential mathematical representations. In this introductory tutorial, we provide an overview of the state of the field and introduce some of the computational methods most commonly used in q-bio. In particular, we examine experimental techniques in single-cell imaging, computational tools to process images and extract quantitative data, various mechanistic modeling approaches used to reproduce these quantitative data, and techniques for data-driven model inference and model-driven experiment design. All topics are presented in the context of additional online resources, including open-source Python notebooks and open-ended practice problems that comprise the technical content of the annual Undergraduate Quantitative Biology Summer School (UQ-Bio).
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Lisa M Weber
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- School of Mathematics and Engineering, Front Range Community College, Fort Collins, CO 80526, United States of America
| | - Eric Ron
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Connor R King
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kaan Öcal
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alex Popinga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- School of Biological Sciences, University of Auckland, Auckland CBD, Auckland 1010, New Zealand
| | - Joshua Cook
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Michael P May
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - William S Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Zachary R Fox
- Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States of America
| | - Linda S Forero-Quintero
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Jack R Forman
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Alexandre David
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States of America
| |
Collapse
|
3
|
Galindo G, Fixen GM, Heredia A, Morisaki T, Stasevich TJ. All Probes Plasmids (APPs) for multicolor and long-term tracking of single-mRNA translation dynamics. Mol Biol Cell 2025; 36:mr6. [PMID: 40366872 DOI: 10.1091/mbc.e25-02-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Live-cell single-mRNA imaging of translation is inherently challenging, demanding precise optimization of multiple imaging components. To simplify these experiments, we developed All Probes Plasmids (APPs)-a panel of plasmids encoding all the necessary probes for imaging at optimized relative expression levels. APPs incorporate widely used translation tags, fluorescent proteins, and mRNA labeling systems, streamlining both multiplexed imaging and reporter immobilization. By cotransfecting just two plasmids-a reporter and an APP-individual translation sites can be visualized in living cells with high signal-to-noise. We demonstrate how APPs facilitate high-fidelity multicolor translation imaging, long-term single-mRNA tracking, and fluorescence correlation spectroscopy to quantify ribosome kinetics. By lowering technical barriers and enhancing experimental flexibility, APPs provide a versatile platform for advancing single-mRNA translation research in living cells.
Collapse
Affiliation(s)
- Gabriel Galindo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gretchen M Fixen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amelia Heredia
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Sachdev S, Roy S, Saha SJ, Zhao G, Kumariya R, Creemer BA, Yin R, Pierce BG, Bewley CA, Cheloha RW. Evaluation of Alphafold modeling for elucidation of nanobody-peptide epitope interactions. J Biol Chem 2025:110268. [PMID: 40409557 DOI: 10.1016/j.jbc.2025.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
Models of Ab-antigen complexes can be used to understand interaction mechanisms and for improving affinity. This study evaluates the use of the protein structure prediction algorithm AlphaFold (AF) for exploration of interactions between peptide epitope tags and the smallest functional antibody fragments, nanobodies (Nbs). Although past studies of AF for modeling antibody-target (antigen) interactions suggested modest algorithm performance, those were primarily focused on Ab-protein interactions, while the performance and utility of AF for Nb-peptide interactions, which are generally less complex due to smaller antigens, smaller binding domains, and fewer chains, is less clear. In this study we evaluated the performance of AF for predicting the structures of Nbs bound to experimentally validated, linear, short peptide epitopes (Nb-tag pairs). We expanded the pool of experimental data available for comparison through crystallization and structural determination of a previously reported Nb-tag complex (Nb127). Models of Nb-tag pair structures generated from AF were variable with respect to consistency with experimental data, with good performance in just over half (4 out of 6) of cases. Even among Nb-tag pairs successfully modeled in isolation, efforts to translate modeling to more complex contexts failed, suggesting an underappreciated role of the size and complexity of inputs in AF modeling success. Finally, the model of a Nb-tag pair with minimal previous characterization was used to guide the design of a peptide-electrophile conjugate that undergoes covalent crosslinking with Nb upon binding. These findings highlight the utility of minimized antibody and antigen structures to maximize insights from AF modeling.
Collapse
Affiliation(s)
- Shivani Sachdev
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Swarnali Roy
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Shubhra J Saha
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Rashmi Kumariya
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Brendan A Creemer
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, USA.
| |
Collapse
|
5
|
de Luis M, Xu S, Zinn K. Fluorescent labeling of proteins in vitro and in vivo using encoded peptide tags. J Biol Chem 2025:110229. [PMID: 40378958 DOI: 10.1016/j.jbc.2025.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Epitope tags are a simple and versatile way to label proteins as their sequences can easily be inserted into protein coding sequences, so that the expressed proteins will bear the tag(s). These tags can be used to identify and purify proteins in vitro using Western blots, flow cytometry, affinity chromatography, and other techniques. When labeled with a fluorescent probe, tagged proteins can be visualized in live or fixed cells or tissues using fluorescence microscopy, allowing for the study of protein dynamics. The most widely used epitope tags are those that have affinity to an antibody, which can be used in fixed-sample immunohistochemistry studies. While this will allow insight into a protein's localization, it will not provide any information on its dynamics. Other tags were developed with the intended use in live imaging. In this mini review, we discuss epitope tags that have affinity to antibodies, nanobodies, and small molecules and their use in fluorescence microscopy for fixed and live imaging.
Collapse
Affiliation(s)
- Maya de Luis
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Shuwa Xu
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology
| |
Collapse
|
6
|
Verhagen PGA, Hansen MMK. Exploring the central dogma through the lens of gene expression noise. J Mol Biol 2025:169202. [PMID: 40354878 DOI: 10.1016/j.jmb.2025.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Over the past two decades, cell-to-cell heterogeneity has garnered increasing attention due to its critical role in both developmental and pathological processes. This growing interest has been driven, in part, by the advancements in live-cell and single-molecule imaging techniques. These techniques have provided mechanistic insights into how processes, transcription in particular, contribute to gene expression noise and, ultimately, cell-to-cell heterogeneity. More recently, however, research has expanded to explore how downstream steps in the central dogma influence gene expression noise. In this review, we mostly examine the impact of transcriptional processes on the generation of gene expression noise but also discuss how post-transcriptional mechanisms modulate noise and its propagation to the protein level. This evaluation emphasizes the need for further investigation into how processes beyond transcription shape gene expression noise, highlighting unanswered questions that remain in the field.
Collapse
Affiliation(s)
- Pieter G A Verhagen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Ghosh S, Birke R, Natarajan A, Broichhagen J. Penta-ALFA-Tagged Substrates for Self-Labelling Tags Allow Signal Enhancement in Microscopy. J Pept Sci 2025; 31:e70015. [PMID: 40222732 PMCID: PMC11994250 DOI: 10.1002/psc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Self-labelling proteins like SNAP- and HaloTag have advanced imaging in life sciences by enabling live-cell labeling with fluorophore-conjugated substrates. However, the typical one-fluorophore-per-protein system limits signal intensity. To address this, we developed a strategy using the ALFA-tag system, a 13-amino acid peptide recognized by a bio-orthogonal and fluorescently labelled nanobody, for signal amplification. We synthesized a pentavalent ALFA5 peptide and used an azidolysine for conjugation with a Cy5-modified SNAP- or HaloTag ligand through strain-promoted click chemistry. In vitro measurements on SDS-PAGE showed labelling, and the peptides covalently reacted with their respective tag. HEK293 cells expressing SNAP- and HaloTag-mGluR2 fusion proteins were labeled with ALFA5-Cy5 substrates, and confocal microscopy revealed a significant enhancement in the far-red signal intensity upon nanobody addition, as quantified by integrated signal density ratios. Comparisons between SNAP- and HaloTag substrates showed superior performance for the latter, achieving better signal-to-noise and signal-to-background ratios, as well as overall signal intensity in plasma membrane-localized regions. Our results demonstrate the potential of ALFA-tag-based systems to amplify SLP fluorescent signals. This strategy combines the photostability of synthetic fluorophores with multivalent labeling, providing a powerful tool for advanced imaging applications including super-resolution in cells. Its versatility is expandable across diverse protein systems and colors.
Collapse
Affiliation(s)
- Souvik Ghosh
- Leibniz‐Forschungsinstitut Für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Ramona Birke
- Leibniz‐Forschungsinstitut Für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | | |
Collapse
|
8
|
Madern MF, Yang S, Witteveen O, Segeren HA, Bauer M, Tanenbaum ME. Long-term imaging of individual ribosomes reveals ribosome cooperativity in mRNA translation. Cell 2025; 188:1896-1911.e24. [PMID: 39892379 DOI: 10.1016/j.cell.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The genetic information stored in mRNAs is decoded by ribosomes during mRNA translation. mRNAs are typically translated by multiple ribosomes simultaneously, but it is unclear whether and how the activity of different ribosomes on an mRNA is coordinated. Here, we develop an imaging approach based on stopless-ORF circular RNAs (socRNAs) to monitor translation of individual ribosomes in either monosomes or polysomes with very high resolution. Using experiments and simulations, we find that translating ribosomes frequently undergo transient collisions. However, unlike persistent collisions, such transient collisions escape detection by cellular quality control pathways. Rather, transient ribosome collisions promote productive translation by reducing ribosome pausing on problematic sequences, a process we term ribosome cooperativity. Ribosome cooperativity also reduces recycling of ribosomes by quality control pathways, thus enhancing processive translation. Together, our single-ribosome imaging approach reveals that ribosomes cooperate during translation to ensure fast and efficient translation.
Collapse
Affiliation(s)
- Maximilian F Madern
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sora Yang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Olivier Witteveen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrika A Segeren
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
9
|
Sears RM, Nowling NL, Yarbro J, Zhao N. Expanding the tagging toolbox for visualizing translation live. Biochem J 2025; 482:BCJ20240183. [PMID: 39889305 DOI: 10.1042/bcj20240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/02/2025]
Abstract
Translation is a highly regulated process that includes three steps: initiation, elongation, and termination. Tremendous efforts have been spent to study the regulation of each translation step. In the last two decades, researchers have begun to investigate translation by tracking it in its native and live intracellular environment with high spatiotemporal resolution. To achieve this goal, a handful of tagging tools have been developed that can distinguish nascent chains from previously synthesized mature proteins. In this review, we will focus on these tagging tools and describe their development, working mechanisms, and advantages and drawbacks in tracking translation in live mammalian cells and organisms. In the second part of the review, we will summarize novel discoveries in translation by a recently developed nascent polypeptide tracking technology using tandem epitope tag array tagging tools. The superior spatiotemporal resolution of this technology enables us to directly and continuously track nascent chains live and thus reveal preferred translation location and timing, as well as the kinetics of canonical and noncanonical translation, translation bursts, ribosome quality control, and nonsense-mediated mRNA decay. In the future, we expect more tagging tools to be developed that allow us to track other regulation processes of a protein, such as folding, modifications, and degradation. With the expanding tagging toolbox, there is potential that we can track a protein from translation to degradation to fully understand its regulation in a native live cell environment.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Nathan L Nowling
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Jake Yarbro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| |
Collapse
|
10
|
Lyon KR, Morisaki T, Stasevich TJ. Imaging and Quantifying Ribosomal Frameshifting Dynamics with Single-RNA Precision in Live Cells. Methods Mol Biol 2025; 2875:99-110. [PMID: 39535643 PMCID: PMC11633442 DOI: 10.1007/978-1-0716-4248-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.
Collapse
Affiliation(s)
- Kenneth R Lyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Geisterfer ZM, Jalihal AP, Cole SJ, Gladfelter AS. Condensates act as translation hubs to coordinate multinucleate cell growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628219. [PMID: 39763723 PMCID: PMC11702524 DOI: 10.1101/2024.12.12.628219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Coordination between growth and division is a fundamental feature of cells. In many syncytia, cell growth must couple with multiple nuclear divisions in one cytoplasm. In the fungus, Ashbya gossypii, cell-cycle progression and hyphal elongation require condensates formed by the protein Whi3 in complex with distinct mRNA species. We hypothesized the condensates may act through local translation regulation and find that Whi3 target mRNAs show distinct spatial biases in translation in vivo. Whi3-RNA condensates can both promote and repress RNA translation in an RNA- and condensate size-dependent manner in vitro. Interestingly, we observe a sub-condensate enrichment of translation that is tunable by RNA valency and protein phospho-state. Together, these data suggest that Whi3 condensates generate a continuum of translation states, resulting in asynchronous nuclear divisions coordinated with growth. This local regulation requires a minimal complement of molecular components at the nano scale to support global coordination at the cell scale.
Collapse
Affiliation(s)
| | | | - Sierra J. Cole
- Department of Cell Biology, Duke University, Durham, NC 27710
- Department of Biochemistry and Biophysics, UNC Chapel Hill, NC 27517
| | | |
Collapse
|
12
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
13
|
Liu T, Shen X, Ren Y, Lu H, Liu Y, Chen C, Yu L, Xue Z. Genome-wide mapping of native co-localized G4s and R-loops in living cells. eLife 2024; 13:RP99026. [PMID: 39392462 PMCID: PMC11469684 DOI: 10.7554/elife.99026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The interplay between G4s and R-loops are emerging in regulating DNA repair, replication, and transcription. A comprehensive picture of native co-localized G4s and R-loops in living cells is currently lacking. Here, we describe the development of HepG4-seq and an optimized HBD-seq methods, which robustly capture native G4s and R-loops, respectively, in living cells. We successfully employed these methods to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). We discovered that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes. We further demonstrated the helicase Dhx9 as a direct and major regulator that modulates the formation and resolution of co-localized G4s and R-loops. Depletion of Dhx9 impaired the self-renewal and differentiation capacities of mESCs by altering the transcription of co-localized G4s and R-loops -associated genes. Taken together, our work established that the endogenous co-localized G4s and R-loops are prevalently persisted in the regulatory regions of active genes and are involved in the transcriptional regulation of their linked genes, opening the door for exploring broader roles of co-localized G4s and R-loops in development and disease.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Xing Shen
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Yijia Ren
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Hongyu Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Chong Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Lin Yu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Zhihong Xue
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan ProvinceChengduChina
| |
Collapse
|
14
|
Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, Jiménez-Jiménez C, Guerrero I, Affolter M. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. Dev Cell 2024; 59:2672-2686.e5. [PMID: 38971155 DOI: 10.1016/j.devcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Sophie T Schnider
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lukas Brügger
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
15
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
16
|
Aguilar G, Bauer M, Vigano MA, Guerrero I, Affolter M. Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology. STAR Protoc 2024; 5:102932. [PMID: 38996063 PMCID: PMC11296251 DOI: 10.1016/j.xpro.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 07/14/2024] Open
Abstract
The generation of knockins is fundamental to dissect biological systems. SEED/Harvest, a technology based on CRISPR-Cas9, offers a powerful approach for seamless genome editing in Drosophila. Here, we present a protocol to tag any gene in the Drosophila genome using SEED/Harvest technology. We describe knockin design, plasmid preparation, injection, and insertion screening. We then detail procedures for germline harvesting. The technique combines straightforward cloning and robust screening of insertions, while still resulting in scarless gene editing. For complete details on the use and execution of this protocol, please refer to Aguilar et al.1.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, CBMSO (CSIC-UAM), Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
17
|
Bellec M, Chen R, Dhayni J, Trullo A, Avinens D, Karaki H, Mazzarda F, Lenden-Hasse H, Favard C, Lehmann R, Bertrand E, Lagha M, Dufourt J. Boosting the toolbox for live imaging of translation. RNA (NEW YORK, N.Y.) 2024; 30:1374-1394. [PMID: 39060168 PMCID: PMC11404453 DOI: 10.1261/rna.080140.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ruoyu Chen
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York 10016, USA
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jana Dhayni
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Antonello Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Damien Avinens
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Hussein Karaki
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Flavia Mazzarda
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Helene Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| |
Collapse
|
18
|
Dufourt J, Bellec M. Shedding light on the unseen: how live imaging of translation could unlock new insights in developmental biology. C R Biol 2024; 347:87-93. [PMID: 39258401 DOI: 10.5802/crbiol.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Recent advances in live imaging technologies have refined our understanding of protein synthesis in living cells. Among the various approaches to live imaging of translation, this perspective highlights the use of antibody-based nascent peptide detection, a method that enables visualization of single-molecule translation in vivo. We examine how these advances improve our understanding of biological processes, particularly in developing organisms. In addition, we discuss technological advances in this field and suggest further improvements. Finally, we review some examples of how this method could lead to future scientific breakthroughs in the study of translation and its regulation in whole organisms.
Collapse
|
19
|
Yao Y, Lou X, Jin L, Sun W, Liu J, Chen Y, Cheng S, Zhao T, Ke S, Zhang L, Xu Y, He L, Li H. Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403026. [PMID: 39073033 PMCID: PMC11422808 DOI: 10.1002/advs.202403026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Indexed: 07/30/2024]
Abstract
High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
Collapse
Affiliation(s)
- Yuanfa Yao
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Xiayan Lou
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Luhong Jin
- School of Information Science and TechnologyHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Weiyun Sun
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Jingfang Liu
- Department of Biomedical EngineeringKey Laboratory of Biomedical Engineering of Ministry of EducationState Key Laboratory of Extreme Photonics and InstrumentationZhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang UniversityHangzhou310027China
| | - Yunyue Chen
- Department of Biomedical EngineeringKey Laboratory of Biomedical Engineering of Ministry of EducationState Key Laboratory of Extreme Photonics and InstrumentationZhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang UniversityHangzhou310027China
| | - Sunying Cheng
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Tengjiao Zhao
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Shuwei Ke
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| | - Luhao Zhang
- School of Information Science and TechnologyHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Yingke Xu
- Department of Biomedical EngineeringKey Laboratory of Biomedical Engineering of Ministry of EducationState Key Laboratory of Extreme Photonics and InstrumentationZhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang UniversityHangzhou310027China
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineNational Clinical Research Center for Children's HealthHangzhouZhejiang310051China
| | - Lian He
- Department of PharmacologyJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Hanbing Li
- Institute of PharmacologyCollege of Pharmaceutical ScienceZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
20
|
Horvath A, Janapala Y, Woodward K, Mahmud S, Cleynen A, Gardiner E, Hannan R, Eyras E, Preiss T, Shirokikh N. Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress. Nucleic Acids Res 2024; 52:7925-7946. [PMID: 38721779 PMCID: PMC11260467 DOI: 10.1093/nar/gkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Collapse
Affiliation(s)
- Attila Horvath
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Yoshika Janapala
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Alice Cleynen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral Centre, The Australian National University, Canberra, ACT 2601, Australia
| | - Ross D Hannan
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia
| | - Eduardo Eyras
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical Sciences, The Australian National University, Canberra, ACT 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Munshi R. How Transcription Factor Clusters Shape the Transcriptional Landscape. Biomolecules 2024; 14:875. [PMID: 39062589 PMCID: PMC11274464 DOI: 10.3390/biom14070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In eukaryotic cells, gene transcription typically occurs in discrete periods of promoter activity, interspersed with intervals of inactivity. This pattern deviates from simple stochastic events and warrants a closer examination of the molecular interactions that activate the promoter. Recent studies have identified transcription factor (TF) clusters as key precursors to transcriptional bursting. Often, these TF clusters form at chromatin segments that are physically distant from the promoter, making changes in chromatin conformation crucial for promoter-TF cluster interactions. In this review, I explore the formation and constituents of TF clusters, examining how the dynamic interplay between chromatin architecture and TF clustering influences transcriptional bursting. Additionally, I discuss techniques for visualizing TF clusters and provide an outlook on understanding the remaining gaps in this field.
Collapse
Affiliation(s)
- Rahul Munshi
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, Ding Y, Li C, Wang M, Zhou Y, Zhang Q, Guo L, Wu Y, Wang Q, Liu N, Kang H, Wu Y, Yao D, Li Y, Ruan Z, Wang H, Bao F, Liu G, Wang J, Wang Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab 2024; 36:1586-1597.e7. [PMID: 38703762 DOI: 10.1016/j.cmet.2024.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
Collapse
Affiliation(s)
- Zhijuan Hu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maolei Zhang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Yujie Su
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Chong Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengfei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Liman Guo
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Wu
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Haoran Kang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Deyang Yao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yukun Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Ruan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guopan Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Junwei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
24
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
25
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Zhang R, Zhang W, Wang C, Wen CK. Arabidopsis Fhit-like tumor suppressor resumes early terminated constitutive triple response1-10 mRNA translation. PLANT PHYSIOLOGY 2024; 195:2073-2093. [PMID: 38563472 DOI: 10.1093/plphys/kiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.
Collapse
Affiliation(s)
- Ranran Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenrunshu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Pham TG, Wu J. Recent advances in methods for live-cell RNA imaging. NANOSCALE 2024; 16:5537-5545. [PMID: 38414383 DOI: 10.1039/d4nr00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.
Collapse
Affiliation(s)
- Tien G Pham
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
28
|
Liu R, Yao J, Zhou S, Yang J, Zhang Y, Yang X, Li L, Zhang Y, Zhuang Y, Yang Y, Chen X. Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 2024; 19:374-405. [PMID: 38036926 DOI: 10.1038/s41596-023-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/19/2023] [Indexed: 12/02/2023]
Abstract
RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyan Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Leshi Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
29
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
31
|
Gao G, Walter NG. Critical Assessment of Condensate Boundaries in Dual-Color Single Particle Tracking. J Phys Chem B 2023; 127:7694-7707. [PMID: 37669232 DOI: 10.1021/acs.jpcb.3c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Biomolecular condensates are membraneless cellular compartments generated by phase separation that regulate a broad variety of cellular functions by enriching some biomolecules while excluding others. Live-cell single particle tracking of individual fluorophore-labeled condensate components has provided insights into a condensate's mesoscopic organization and biological functions, such as revealing the recruitment, translation, and decay of RNAs within ribonucleoprotein (RNP) granules. Specifically, during dual-color tracking, one imaging channel provides a time series of individual biomolecule locations, while the other channel monitors the location of the condensate relative to these molecules. Therefore, an accurate assessment of a condensate's boundary is critical for combined live-cell single particle-condensate tracking. Despite its importance, a quantitative benchmarking and objective comparison of the various available boundary detection methods is missing due to the lack of an absolute ground truth for condensate images. Here, we use synthetic data of defined ground truth to generate noise-overlaid images of condensates with realistic phase separation parameters to benchmark the most commonly used methods for condensate boundary detection, including an emerging machine-learning method. We find that it is critical to carefully choose an optimal boundary detection method for a given dataset to obtain accurate measurements of single particle-condensate interactions. The criteria proposed in this study to guide the selection of an optimal boundary detection method can be broadly applied to imaging-based studies of condensates.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G Walter
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Zeghal M, Matte K, Venes A, Patel S, Laroche G, Sarvan S, Joshi M, Rain JC, Couture JF, Giguère PM. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J Biol Chem 2023; 299:105107. [PMID: 37517699 PMCID: PMC10470007 DOI: 10.1016/j.jbc.2023.105107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shivani Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monika Joshi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
34
|
Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, Nelson B, Wolfe C, Ha T, Green R, Liu J, Wu B. Bursting translation on single mRNAs in live cells. Mol Cell 2023; 83:2276-2289.e11. [PMID: 37329884 PMCID: PMC10330622 DOI: 10.1016/j.molcel.2023.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/14/2023] [Indexed: 06/19/2023]
Abstract
Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.
Collapse
Affiliation(s)
- Nathan M Livingston
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiwoong Kwon
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oliver Valera
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranav Reddy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clara Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Zeng H, Huang J, Ren J, Wang CK, Tang Z, Zhou H, Zhou Y, Shi H, Aditham A, Sui X, Chen H, Lo JA, Wang X. Spatially resolved single-cell translatomics at molecular resolution. Science 2023; 380:eadd3067. [PMID: 37384709 PMCID: PMC11146668 DOI: 10.1126/science.add3067] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023]
Abstract
The precise control of messenger RNA (mRNA) translation is a crucial step in posttranscriptional gene regulation of cellular physiology. However, it remains a challenge to systematically study mRNA translation at the transcriptomic scale with spatial and single-cell resolution. Here, we report the development of ribosome-bound mRNA mapping (RIBOmap), a highly multiplexed three-dimensional in situ profiling method to detect cellular translatome. RIBOmap profiling of 981 genes in HeLa cells revealed cell cycle-dependent translational control and colocalized translation of functional gene modules. We mapped 5413 genes in mouse brain tissues, yielding spatially resolved single-cell translatomic profiles for 119,173 cells and revealing cell type-specific and brain region-specific translational regulation, including translation remodeling during oligodendrocyte maturation. Our method detected widespread patterns of localized translation in neuronal and glial cells in intact brain tissue networks.
Collapse
Affiliation(s)
- Hu Zeng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiahao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Zefang Tang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Haowen Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yiming Zhou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hailing Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abhishek Aditham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hongyu Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A. Lo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
36
|
Zhang YP, Wang ZG, Tian YF, Jiang LH, Zhao L, Kong DM, Li X, Pang DW, Liu SL. In Situ Self-Assembly of Fluorogenic RNA Nanozipper Enables Real-Time Imaging of Single Viral mRNA Translation. Angew Chem Int Ed Engl 2023; 62:e202217230. [PMID: 37082873 DOI: 10.1002/anie.202217230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lin-Han Jiang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xing Li
- Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
37
|
Ma S, Liao K, Li M, Wang X, Lv J, Zhang X, Huang H, Li L, Huang T, Guo X, Lin Y, Rong Z. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res 2023; 51:5271-5284. [PMID: 37094074 PMCID: PMC10250237 DOI: 10.1093/nar/gkad301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) plays a critical role in regulating gene transcription via the formation of transcriptional condensates. However, LLPS has not been reported to be engineered as a tool to activate endogenous gene expression in mammalian cells or in vivo. Here, we developed a droplet-forming CRISPR (clustered regularly interspaced short palindromic repeats) gene activation system (DropCRISPRa) to activate transcription with high efficiency via combining the CRISPR-SunTag system with FETIDR-AD fusion proteins, which contain an N-terminal intrinsically disordered region (IDR) of a FET protein (FUS or TAF15) and a transcription activation domain (AD, VP64/P65/VPR). In this system, the FETIDR-AD fusion protein formed phase separation condensates at the target sites, which could recruit endogenous BRD4 and RNA polymerase II with an S2 phosphorylated C-terminal domain (CTD) to enhance transcription elongation. IDR-FUS9Y>S and IDR-FUSG156E, two mutants with deficient and aberrant phase separation respectively, confirmed that appropriate phase separation was required for efficient gene activation. Further, the DropCRISPRa system was compatible with a broad set of CRISPR-associated (Cas) proteins and ADs, including dLbCas12a, dAsCas12a, dSpCas9 and the miniature dUnCas12f1, and VP64, P65 and VPR. Finally, the DropCRISPRa system could activate target genes in mice. Therefore, this study provides a robust tool to activate gene expression for foundational research and potential therapeutics.
Collapse
Affiliation(s)
- Shufeng Ma
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People's Hospital), Dongguan 523058, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaohua Guo
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
38
|
Raymond WS, Ghaffari S, Aguilera LU, Ron E, Morisaki T, Fox ZR, May MP, Stasevich TJ, Munsky B. Using mechanistic models and machine learning to design single-color multiplexed nascent chain tracking experiments. Front Cell Dev Biol 2023; 11:1151318. [PMID: 37325568 PMCID: PMC10267835 DOI: 10.3389/fcell.2023.1151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Our simulation results show that with careful application this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. We conclude that the proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell Signaling applications requiring simultaneous study of multiple mRNAs.
Collapse
Affiliation(s)
- William S Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Sadaf Ghaffari
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| | - Luis U Aguilera
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Eric Ron
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Zachary R Fox
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Michael P May
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- World Research Hub Initiative and Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Jiang L, Cai H, Zhou W, Li Z, Zhang L, Bi H. RNA-Targeting Carbon Dots for Live-Cell Imaging of Granule Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210776. [PMID: 36645339 DOI: 10.1002/adma.202210776] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 05/26/2023]
Abstract
It is significant to monitor the different RNA granules dynamics and phase separation process inside cells under various stresses, for example, oxidative stress. The current small-molecule RNA probes work well only in fixed cells and usually encounter problems such as insufficient stability and biocompatibility, and thus a specific RNA-targeting fluorescent nanoprobe that can be used in the living cells is urgently desired. Here, the de novo design and microwave-assisted synthesis of a novel RNA-targeting, red-emissive carbon dots (named as M-CDs) are reported by choosing neutral red and levofloxacin as precursors. The as-synthesized M-CDs is water-soluble with a high fluorescence quantum yield of 22.83% and can selectively bind to RNA resulting in an enhanced red fluorescence. More interestingly, such an RNA-targeting, red-emissive M-CDs can be fast internalized into cells within 5 s and thus used for real-time imaging the dynamic process of intracellular stress granules under oxidative stress, revealing some characteristics of granules that have not been identified by previously reported RNA and protein biomarkers. This research paves a new pathway for visualizing bulk RNA dynamics and studying phase-separation behaviors in living cells by rational design of the fluorescent carbon dots in terms of structure and functionality.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, P. R. China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Wanwan Zhou
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Liang Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| |
Collapse
|
40
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
41
|
Lu Y, Huang X, Wang S, Li B, Liu B. Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules. ACS NANO 2023; 17:3809-3817. [PMID: 36800173 DOI: 10.1021/acsnano.2c11934] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)32+-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)32+ molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)32+ and co-reactant radicals to realize efficient in situ ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.
Collapse
Affiliation(s)
- Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
42
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
43
|
Casas-Mollano JA, Zinselmeier M, Sychla A, Smanski MJ. Efficient gene activation in plants by the MoonTag programmable transcriptional activator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528671. [PMID: 36824723 PMCID: PMC9948947 DOI: 10.1101/2023.02.15.528671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR-Cas based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that worked on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.
Collapse
Affiliation(s)
- J Armando Casas-Mollano
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Matthew Zinselmeier
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
- Department of Genetics, Cellular, and Developmental Biology, University of Minnesota, Saint Paul, MN 55108
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
44
|
Raymond WS, Ghaffari S, Aguilera LU, Ron E, Morisaki T, Fox ZR, May MP, Stasevich TJ, Munsky B. Using Mechanistic Models and Machine Learning to Design Single-Color Multiplexed Nascent Chain Tracking Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525583. [PMID: 36747627 PMCID: PMC9900927 DOI: 10.1101/2023.01.25.525583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Through simulation, we show that with careful application, this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. The proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell signalling applications requiring simultaneous study of multiple mRNAs.
Collapse
Affiliation(s)
- William S. Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Sadaf Ghaffari
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
| | - Luis U. Aguilera
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Eric Ron
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zachary R. Fox
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA,Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Michael P. May
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA,Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA,Corresponding Author: Brian Munsky -
| |
Collapse
|
45
|
Tsirkas I, Zur T, Dovrat D, Cohen A, Ravkaie L, Aharoni A. Protein fluorescent labeling in live yeast cells using scFv-based probes. CELL REPORTS METHODS 2022; 2:100357. [PMID: 36590693 PMCID: PMC9795370 DOI: 10.1016/j.crmeth.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The fusion of fluorescent proteins (FPs) to endogenous proteins is a widespread approach for microscopic examination of protein function, expression, and localization in the cell. However, proteins that are sensitive to FP fusion or expressed at low levels are difficult to monitor using this approach. Here, we develop a single-chain fragment variable (scFv)-FP approach to efficiently label Saccharomyces cerevisiae proteins that are tagged with repeats of hemagglutinin (HA)-tag sequences. We demonstrate the successful labeling of DNA-binding proteins and proteins localized to different cellular organelles including the nuclear membrane, peroxisome, Golgi apparatus, and mitochondria. This approach can lead to a significant increase in fluorescence intensity of the labeled protein, allows C'-terminal labeling of difficult-to-tag proteins and increased detection sensitivity of DNA-damage foci. Overall, the development of a scFv-FP labeling approach in yeast provides a general and simple tool for the function and localization analysis of the yeast proteome.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Tomer Zur
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amit Cohen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Lior Ravkaie
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
46
|
Viushkov VS, Lomov NA, Rubtsov MA, Vassetzky YS. Visualizing the Genome: Experimental Approaches for Live-Cell Chromatin Imaging. Cells 2022; 11:cells11244086. [PMID: 36552850 PMCID: PMC9776900 DOI: 10.3390/cells11244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.
Collapse
Affiliation(s)
- Vladimir S. Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolai A. Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Yegor S. Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence:
| |
Collapse
|
47
|
Liu Y, Li B, Liu B, Zhang K. Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. BIOSENSORS 2022; 12:1105. [PMID: 36551072 PMCID: PMC9775667 DOI: 10.3390/bios12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial-temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
48
|
Kim AR, Xu J, Cheloha R, Mohr SE, Zirin J, Ploegh HL, Perrimon N. NanoTag Nanobody Tools for Drosophila In Vitro and In Vivo Studies. Curr Protoc 2022; 2:e628. [PMID: 36571722 PMCID: PMC9811555 DOI: 10.1002/cpz1.628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanobodies have emerged as powerful protein-binding tools to uncover protein functions. Using functionalized protein binders, proteins of interest can be visualized, degraded, delocalized, or post-translationally modified in vivo. We recently reported the use of two short peptide tags, 10-aa 127D01 and 14-aa VHH05, and their corresponding nanobodies, Nb127D01 and NbVHH05, for both in vitro and in vivo studies in Drosophila. Here, we provide detailed protocols for nanobody production and for visualization of proteins of interest in either fixed or live samples. In addition, we include protocols for endogenous protein tagging using CRISPR-mediated genome engineering. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Nanobody production in S2 cells Basic Protocol 2: Nanobody expression and purification in bacterial cells Basic Protocol 3: Immunostaining with nanobodies Basic Protocol 4: Immunoblotting with nanobodies Basic Protocol 5: Immunoprecipitation with nanobodies prepared from S2 cells Basic Protocol 6: Immunoprecipitation with nanobodies prepared from bacteria Basic Protocol 7: NbVHH05 and Nb127D01 used as chromobodies Basic Protocol 8: NanoTag trap as a method to alter protein localization Support Protocol: CRISPR-mediated tagging of endogenous genes with NanoTags.
Collapse
Affiliation(s)
- Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Ross Cheloha
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Hidde L Ploegh
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Maddi AMA, Kavousi K, Arabfard M, Ohadi H, Ohadi M. Tandem repeats ubiquitously flank and contribute to translation initiation sites. BMC Genom Data 2022; 23:59. [PMID: 35896982 PMCID: PMC9331589 DOI: 10.1186/s12863-022-01075-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 12/31/2022] Open
Abstract
Background While the evolutionary divergence of cis-regulatory sequences impacts translation initiation sites (TISs), the implication of tandem repeats (TRs) in TIS selection remains largely elusive. Here, we employed the TIS homology concept to study a possible link between TRs of all core lengths and repeats with TISs. Methods Human, as reference sequence, and 83 other species were selected, and data was extracted on the entire protein-coding genes (n = 1,611,368) and transcripts (n = 2,730,515) annotated for those species from Ensembl 102. Following TIS identification, two different weighing vectors were employed to assign TIS homology, and the co-occurrence pattern of TISs with the upstream flanking TRs was studied in the selected species. The results were assessed in 10-fold cross-validation. Results On average, every TIS was flanked by 1.19 TRs of various categories within its 120 bp upstream sequence, per species. We detected statistically significant enrichment of non-homologous human TISs co-occurring with human-specific TRs. On the contrary, homologous human TISs co-occurred significantly with non-human-specific TRs. 2991 human genes had at least one transcript, TIS of which was flanked by a human-specific TR. Text mining of a number of the identified genes, such as CACNA1A, EIF5AL1, FOXK1, GABRB2, MYH2, SLC6A8, and TTN, yielded predominant expression and functions in the human brain and/or skeletal muscle. Conclusion We conclude that TRs ubiquitously flank and contribute to TIS selection at the trans-species level. Future functional analyses, such as a combination of genome editing strategies and in vitro protein synthesis may be employed to further investigate the impact of TRs on TIS selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01075-5.
Collapse
|
50
|
Wang Y, Chen P, Zhao M, Cao H, Zhao Y, Ji M, Hou P, Chen M. EGFL7 drives the evolution of resistance to EGFR inhibitors in lung cancer by activating NOTCH signaling. Cell Death Dis 2022; 13:910. [PMID: 36309484 PMCID: PMC9617940 DOI: 10.1038/s41419-022-05354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Accumulating evidence supports evolutionary trait of drug resistance. Like resilience in other systems, most tumor cells experience drug-tolerant state before full resistance acquired. However, the underlying mechanism is still poorly understood. Here, we identify that EGF like domain multiple 7 (EGFL7) is a responsive gene to epidermal growth factor receptor (EGFR) kinase inhibition during a period when tumors are decimated. Moreover, our data reveal that the adaptive increase of EGFL7 during this process is controlled by the depression of nonsense-mediated mRNA decay (NMD) pathway. Upregulation of EGFL7 activates NOTCH signaling in lung cancer cells, which slows down the decrease of c-Myc caused by EGFR inhibition, thereby helping the survival of cancer cells. Our data, taken together, demonstrate that EGFL7 is a driver gene for resistance to EGFR kinase inhibition, and suggest that targeting EGFL7/NOTCH signaling may improve the clinical benefits of EGFR inhibitors in patients with EGFR mutant tumors.
Collapse
Affiliation(s)
- Yubo Wang
- grid.452438.c0000 0004 1760 8119Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China
| | - Pu Chen
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Man Zhao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Hongxin Cao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Yuelei Zhao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Meiju Ji
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Mingwei Chen
- grid.452438.c0000 0004 1760 8119Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| |
Collapse
|