1
|
Zhan T, Tian S, Chen S. Border-Associated Macrophages: From Embryogenesis to Immune Regulation. CNS Neurosci Ther 2024; 30:e70105. [PMID: 39496482 DOI: 10.1111/cns.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Border-associated macrophages (BAMs) play a pivotal role in maintaining brain homeostasis and responding to pathological conditions. Understanding their origins, characteristics, and roles in both healthy and diseased brains is crucial for advancing our knowledge of neuroinflammatory and neurodegenerative diseases. This review addresses the ontogeny, replenishment, microenvironmental regulation, and transcriptomic heterogeneity of BAMs, highlighting recent advancements in lineage tracing and fate-mapping studies. Furthermore, we examine the roles of BAMs in maintaining brain homeostasis, immune surveillance, and responses to injury and neurodegenerative diseases. Further research is crucial to clarify the dynamic interplay between BAMs and the brain's microenvironment in health and disease. This effort will not only resolve existing controversies but also reveal new therapeutic targets for neuroinflammatory and neurodegenerative disorders, pushing the boundaries of neuroscience.
Collapse
Affiliation(s)
- Tiantong Zhan
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Sixuan Tian
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Hoffmann A, Miron VE. CNS macrophage contributions to myelin health. Immunol Rev 2024. [PMID: 39484853 DOI: 10.1111/imr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Myelin is the membrane surrounding neuronal axons in the central nervous system (CNS), produced by oligodendrocytes to provide insulation for electrical impulse conduction and trophic/metabolic support. CNS dysfunction occurs following poor development of myelin in infancy, myelin damage in neurological diseases, and impaired regeneration of myelin with disease progression in aging. The lack of approved therapies aimed at supporting myelin health highlights the critical need to identify the cellular and molecular influences on oligodendrocytes. CNS macrophages have been shown to influence the development, maintenance, damage and regeneration of myelin, revealing critical interactions with oligodendrocyte lineage cells. CNS macrophages are comprised of distinct populations, including CNS-resident microglia and cells associated with CNS border regions (the meninges, vasculature, and choroid plexus), in addition to macrophages derived from monocytes infiltrating from the blood. Importantly, the distinct contribution of these macrophage populations to oligodendrocyte lineage responses and myelin health are only just beginning to be uncovered, with the advent of new tools to specifically identify, track, and target macrophage subsets. Here, we summarize the current state of knowledge on the roles of CNS macrophages in myelin health, and recent developments in distinguishing the roles of macrophage populations in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Alana Hoffmann
- BARLO Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Liu LL, Emir U, Gu H, Sang LT, Sawiak SJ, Cannon JR, Du Y, Zheng W. Demyelination and impaired oligodendrogenesis in the corpus callosum following lead exposure. Toxicol Sci 2024; 202:123-141. [PMID: 39150886 PMCID: PMC11514834 DOI: 10.1093/toxsci/kfae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
The corpus callosum is an oligodendrocyte-enriched brain region, replenished by newborn oligodendrocytes from oligodendrocyte progenitor cells (OPCs) in subventricular zone (SVZ). Lead (Pb) exposure has been associated with multiple sclerosis, a disease characterized by the loss of oligodendrocytes. This study aimed to investigate the effects of Pb exposure on oligodendrogenesis in SVZ and myelination in the corpus callosum. Adult female mice were used for a disproportionately higher prevalence of multiple sclerosis in females. Acute Pb exposure (one ip-injection of 27 mg Pb/kg as PbAc2 24 hr before sampling) caused mild Pb accumulation in the corpus callosum. Ex vivo assay using isolated SVZ tissues collected from acute Pb-exposed brains showed a diminished oligodendrogenesis in SVZ-derived neurospheres compared with controls. In vivo subchronic Pb exposure (13.5 mg Pb/kg by daily oral gavage 4 wk) revealed significantly decreased newborn BrdU+/MBP+ oligodendrocytes in the corpus callosum, suggesting demyelination. Mechanistic investigations indicated decreased Rictor in SVZ OPCs, defective self-defense pathways, and reactive gliosis in the corpus callosum. Given the interwined pathologies between multiple sclerosis and Alzheimer's disease, the effect of Pb on myelination was evaluated in AD-modeled APP/PS1 mice. Myelin MRI on mice following chronic exposure (1,000 ppm Pb in drinking water as PbAc2 for 20 wk) revealed a profound demyelination in the corpus callosum compared with controls. Immunostaining of the choroid plexus showed diminished signaling molecule (Klotho, OTX2) expressions in Pb-treated animals. These observations suggest that Pb caused demyelination in the corpus callosum, likely by disrupting oligodendrogenesis from SVZ OPCs. Pb-induced demyelination represents a crucial pathogenic pathway in Pb neurotoxicity, including multiple sclerosis.
Collapse
Affiliation(s)
- Luke L Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Uzay Emir
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Lara T Sang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
4
|
Hill AD, Okonechnikov K, Herr MK, Thomas C, Thongjuea S, Hasselblatt M, Patrizi A. Single-nucleus RNA-seq dissection of choroid plexus tumor cell heterogeneity. EMBO J 2024:10.1038/s44318-024-00283-2. [PMID: 39482394 DOI: 10.1038/s44318-024-00283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
The genomic, genetic and cellular events regulating the onset, growth and survival of rare, choroid plexus neoplasms remain poorly understood. Here, we examine the heterogeneity of human choroid plexus tumors by single-nucleus transcriptome analysis of 23,906 cells from four disease-free choroid plexus and eleven choroid plexus tumors. The resulting expression atlas profiles cellular and transcriptional diversity, copy number alterations, and cell-cell interaction networks in normal and cancerous choroid plexus. In choroid plexus tumor epithelial cells, we observe transcriptional changes that correlate with genome-wide methylation profiles. We further characterize tumor type-specific stromal microenvironments that include altered macrophage and mesenchymal cell states, as well as changes in extracellular matrix components. This first single-cell dataset resource from such scarce samples should be valuable for divising therapies against these little-studied neoplasms.
Collapse
Affiliation(s)
- Anthony D Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Konstantin Okonechnikov
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Marla K Herr
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Supat Thongjuea
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Lee DA, Lee HJ, Jo G, Park KM. Choroid plexus volumes in patients with transient global amnesia: A retrospective study. Medicine (Baltimore) 2024; 103:e40077. [PMID: 39465804 PMCID: PMC11479460 DOI: 10.1097/md.0000000000040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Increased choroid plexus (ChP) volume is well known to be associated with glymphatic system dysfunction. This study aimed to investigate glymphatic system function in patients with transient global amnesia (TGA) compared to healthy controls through ChP volumes measurements. We retrospectively enrolled patients with TGA from our hospital, as well as healthy controls. This was retrospectively observational study followed STROBE guideline. All participants underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We analyzed and compared ChP volumes between patients with TGA and healthy controls and investigated the relationship between ChP volumes and clinical characteristics in patients with TGA. We enrolled 44 patients with TGA and 47 healthy controls. Among the 44 patients with TGA, 38 experienced a single TGA event, while 6 had recurrent TGA events. ChP volumes did not significantly differ between patients with TGA and healthy controls (2.140% vs 2.089%, P = .568). However, ChP volumes were higher in patients with a single TGA event compared to those with recurrent events (2.204% vs 1.740%, P < .013). We observed a significant positive correlation between ChP volumes and age in patients with TGA (R = 0.282, P = .007). ChP volumes were not associated with the duration of amnesia in patients with TGA (R = 0.187, P = .274). We find no differences in the glymphatic system function, as demonstrated by ChP volume for the first time. This study also found a significant correlation between ChP volume and age in patients with TGA, indicating that aging influences glymphatic system function.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Geunyeol Jo
- Department of Rehabilitation Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
6
|
Pfau SJ, Langen UH, Fisher TM, Prakash I, Nagpurwala F, Lozoya RA, Lee WCA, Wu Z, Gu C. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat Neurosci 2024; 27:1892-1903. [PMID: 39210068 PMCID: PMC11452347 DOI: 10.1038/s41593-024-01743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The blood-brain barrier (BBB) protects the brain and maintains neuronal homeostasis. BBB properties can vary between brain regions to support regional functions, yet how BBB heterogeneity occurs is poorly understood. Here, we used single-cell and spatial transcriptomics to compare the mouse median eminence, one of the circumventricular organs that has naturally leaky blood vessels, with the cortex. We identified hundreds of molecular differences in endothelial cells (ECs) and perivascular cells, including astrocytes, pericytes and fibroblasts. Using electron microscopy and an aqueous-based tissue-clearing method, we revealed distinct anatomical specializations and interaction patterns of ECs and perivascular cells in these regions. Finally, we identified candidate regionally enriched EC-perivascular cell ligand-receptor pairs. Our results indicate that both molecular specializations in ECs and unique EC-perivascular cell interactions contribute to BBB functional heterogeneity. This platform can be used to investigate BBB heterogeneity in other regions and may facilitate the development of central nervous system region-specific therapeutics.
Collapse
Affiliation(s)
- Sarah J Pfau
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Urs H Langen
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Theodore M Fisher
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Indumathi Prakash
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Faheem Nagpurwala
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ricardo A Lozoya
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chenghua Gu
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Takei J, Maeda M, Fukasawa N, Kawashima M, Miyake M, Tomoto K, Nawate S, Teshigawara A, Suzuki T, Yamamoto Y, Nagashima H, Mori R, Fukushima R, Matsushima S, Kino H, Muroi A, Tsurubuchi T, Sakamoto N, Nishiwaki K, Yano S, Hasegawa Y, Murayama Y, Akasaki Y, Shimoda M, Ishikawa E, Tanaka T. Comparative analyses of immune cells and alpha-smooth muscle actin-positive cells under the immunological microenvironment between with and without dense fibrosis in primary central nervous system lymphoma. Brain Tumor Pathol 2024; 41:97-108. [PMID: 39186169 PMCID: PMC11499374 DOI: 10.1007/s10014-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Histopathologic examinations of primary central nervous system lymphoma (PCNSL) reveal concentric accumulation of lymphocytes in the perivascular area with fibrosis. However, the nature of this fibrosis in "stiff" PCNSL remains unclear. We have encountered some PCNSLs with hard masses as surgical findings. This study investigated the dense fibrous status and tumor microenvironment of PCNSLs with or without stiffness. We evaluated by silver-impregnation nine PCNSLs with stiffness and 26 PCNSLs without stiffness. Six of the nine stiff PCNSLs showed pathological features of prominent fibrosis characterized by aggregation of reticulin fibers, and collagen accumulations. Alpha-smooth muscle actin (αSMA)-positive spindle cells as a cancer-associated fibroblast, the populations of T lymphocytes, and macrophages were compared between fibrous and control PCNSLs. Fibrous PCNSLs included abundant αSMA-positive cells in both intra- and extra-tumor environments (5/6, 87% and 3/6, 50%, respectively). Conversely, only one out of the seven control PCNSL contained αSMA-positive cells in the intra-tumoral area. Furthermore, the presence of extra-tumoral αSMA-positive cells was associated with infiltration of T lymphocytes and macrophages. In conclusion, recognizing the presence of dense fibrosis in PCNSL can provide insights into the tumor microenvironment. These results may help stratify patients with PCNSL and improve immunotherapies for these patients.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, The Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Miku Maeda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Nei Fukasawa
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masaharu Kawashima
- Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Misayo Miyake
- Department of Pathology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Kyoichi Tomoto
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Shohei Nawate
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Tomoya Suzuki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University Daisan Hospital, 4-11-1 Izumi-honcho, Komae-shi, Tokyo, 201-8601, Japan
| | - Hiroyasu Nagashima
- Department of Neurosurgery, The Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan
| | - Ryosuke Mori
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Ryoko Fukushima
- Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Satoshi Matsushima
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroyoshi Kino
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ai Muroi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Clinical Pathology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan.
| |
Collapse
|
8
|
Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, Byer LIJ, Shipley FB, Zawadzki ME, Cui J, Deng L, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas-Montanes J, Lehtinen MK. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 2024; 187:4946-4963.e17. [PMID: 39089253 PMCID: PMC11458255 DOI: 10.1016/j.cell.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Lotfy
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sivan Gelb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lillian I J Byer
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Mya Webb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark L Andermann
- Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Ho KH, Trapp M, Guida C, Ivanova EL, De Jaime-Soguero A, Jabali A, Thomas C, Salasova A, Bernatík O, Salio C, Horschitz S, Hasselblatt M, Sassoe-Pognetto M, Čajánek L, Ishikawa H, Schroten H, Schwerk C, Acebrón SP, Angel P, Koch P, Patrizi A. Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus. Neuro Oncol 2024:noae176. [PMID: 39215664 DOI: 10.1093/neuonc/noae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) is the secretory epithelial structure located in brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of the tumor pathology and limited availability of valid models. METHODS Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and over-expression of Wnt/β-catenin pathway genes. 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knock-out of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelia cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catello Guida
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Ekaterina L Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | | | - Ammar Jabali
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE, and Center of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ondřej Bernatík
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Chiara Salio
- Department of Veterinary Sciences, Turin University, Grugliasco, Italy
| | - Sandra Horschitz
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
10
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Xue X, Wu X, Fan Y, Han S, Zhang H, Sun Y, Yin Y, Yin M, Chen B, Sun Z, Zhao S, Zhang Q, Liu W, Zhang J, Li J, Shi Y, Xiao Z, Dai J, Zhao Y. Heterogeneous fibroblasts contribute to fibrotic scar formation after spinal cord injury in mice and monkeys. Nat Commun 2024; 15:6321. [PMID: 39060269 PMCID: PMC11282111 DOI: 10.1038/s41467-024-50564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI. Crabp2 + /Emb+ fibroblasts (CE-F) derived from meninges primarily localize in the central region of fibrotic scars, demonstrating enhanced cholesterol synthesis and secretion of type I collagen and fibronectin. In contrast, perivascular/pial Lama1 + /Lama2+ fibroblasts (LA-F) are predominantly found at the periphery of the lesion, expressing laminin and type IV collagen and functionally involved in angiogenesis and lipid transport. These findings may provide a comprehensive understanding for remodeling heterogeneous fibrotic scars after SCI.
Collapse
Affiliation(s)
- Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaijing Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Moore E, Bharrhan S, Rao DA, Macian F, Putterman C. Characterisation of choroid plexus-infiltrating T cells reveals novel therapeutic targets in murine neuropsychiatric lupus. Ann Rheum Dis 2024; 83:1006-1017. [PMID: 38531610 DOI: 10.1136/ard-2023-224689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Diffuse central nervous system manifestations, referred to as neuropsychiatric lupus (NPSLE), are observed in 20-40% of lupus patients and involve complex mechanisms that have not yet been adequately elucidated. In murine NPSLE models, choroid plexus (ChP)-infiltrating T cells have not been fully evaluated as drivers of neuropsychiatric disease. METHOD Droplet-based single-cell transcriptomic analysis (single-cell RNA sequencing) and immune T-cell receptor profiling were performed on ChP tissue from MRL/lpr mice, an NPSLE mouse model, at an 'early' and 'late' disease state, to investigate the infiltrating immune cells that accumulate with NPSLE disease progression. RESULTS We found 19 unique clusters of stromal and infiltrating cells present in the ChP of NPSLE mice. Higher resolution of the T-cell clusters uncovered multiple T-cell subsets, with increased exhaustion and hypoxia expression profiles. Clonal analysis revealed that the clonal CD8+T cell CDR3 sequence, ASGDALGGYEQY, matched that of a published T-cell receptor sequence with specificity for myelin basic protein. Stromal fibroblasts are likely drivers of T-cell recruitment by upregulating the VCAM signalling pathway. Systemic blockade of VLA-4, the cognate ligand of VCAM, resulted in significant resolution of the ChP immune cell infiltration and attenuation of the depressive phenotype. CONCLUSION Our analysis details the dynamic transcriptomic changes associated with murine NPSLE disease progression, and highlights its potential use in identifying prospective lupus brain therapeutic targets.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Deepak A Rao
- Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Azrieli Faculty of Medicine of Bar-Ilan University, Safed, Israel
| |
Collapse
|
13
|
Shen Y, Li C, Zhang X, Wang Y, Zhang H, Yu Z, Gui B, Hu R, Li Q, Gao A, Liang H. Gut microbiota linked to hydrocephalus through inflammatory factors: a Mendelian randomization study. Front Immunol 2024; 15:1372051. [PMID: 39076985 PMCID: PMC11284128 DOI: 10.3389/fimmu.2024.1372051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus. Methods After removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results. Results After correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17-0.69; P = 2.71E-03, P FDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%). Conclusion We reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Xi Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaolou Wang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haopeng Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhao Yu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Binbin Gui
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Renjie Hu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Li
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Jakimovski D, Zivadinov R, Qureshi F, Ramanathan M, Weinstock-Guttman B, Tavazzi E, Dwyer MG, Bergsland N. Serum Biomarker Signatures of Choroid Plexus Volume Changes in Multiple Sclerosis. Biomolecules 2024; 14:824. [PMID: 39062538 PMCID: PMC11275042 DOI: 10.3390/biom14070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Increased choroid plexus (CP) volume has been recently implicated as a potential predictor of worse multiple sclerosis (MS) outcomes. The biomarker signature of CP changes in MS are currently unknown. To determine the blood-based biomarker characteristics of the cross-sectional and longitudinal MRI-based CP changes in a heterogeneous group of people with MS (pwMS), a total of 202 pwMS (148 pwRRMS and 54 pwPMS) underwent MRI examination at baseline and at a 5-year follow-up. The CP was automatically segmented and subsequently refined manually in order to obtain a normalized CP volume. Serum samples were collected at both timepoints, and the concentration of 21 protein measures relevant to MS pathophysiology were determined using the Olink™ platform. Age-, sex-, and BMI-adjusted linear regression models explored the cross-sectional and longitudinal relationships between MRI CP outcomes and blood-based biomarkers. At baseline, there were no significant proteomic predictors of CP volume, while at follow-up, greater CP volume was significantly associated with higher neurofilament light chain levels, NfL (standardized β = 0.373, p = 0.001), and lower osteopontin levels (standardized β = -0.23, p = 0.02). Higher baseline GFAP and lower FLRT2 levels were associated with future 5-year CP % volume expansion (standardized β = 0.277, p = 0.004 and standardized β = -0.226, p = 0.014, respectively). The CP volume in pwMS is associated with inflammatory blood-based biomarkers of neuronal injury (neurofilament light chain; NfL) and glial activation such as GFAP, osteopontin, and FLRT2. The expansion of the CP may play a central role in chronic and compartmentalized inflammation and may be driven by glial changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Wynn Hospital, Mohawk Valley Health System (MVHS), Utica, NY 13502, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Eleonora Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Taranov A, Bedolla A, Iwasawa E, Brown FN, Baumgartner S, Fugate EM, Levoy J, Crone SA, Goto J, Luo Y. The choroid plexus maintains adult brain ventricles and subventricular zone neuroblast pool, which facilitates poststroke neurogenesis. Proc Natl Acad Sci U S A 2024; 121:e2400213121. [PMID: 38954546 PMCID: PMC11252789 DOI: 10.1073/pnas.2400213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.
Collapse
Affiliation(s)
- Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Alicia Bedolla
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Farrah N. Brown
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Sarah Baumgartner
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Joel Levoy
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| |
Collapse
|
16
|
Mack AF, Bihlmaier R, Deffner F. Shifting from ependyma to choroid plexus epithelium and the changing expressions of aquaporin-1 and aquaporin-4. J Physiol 2024; 602:3097-3110. [PMID: 37975746 DOI: 10.1113/jp284196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
The cells of the choroid plexus (CP) epithelium are specialized ependymal cells (ECs) but have distinct properties. The CP cells and ECs form single-cell sheets contiguous to each other at a transitional zone. The CP is underlined by a basal lamina and has barrier properties, whereas the ECs do not. The basal lamina of the CP is continuous with the glia limitans superficialis and, consequently, the CP stroma is continuous with the meninges along entering blood vessels. The CP has previously been reported to express aquaporin-1 (AQP1) mostly apically, and ECs show mostly basolateral aquaporin-4 (AQP4) expression. Recent evidence in various systems has shown that in changing conditions the expression and distribution of AQP4 can be modified, involving phosphorylation and calmodulin-triggered translocation. Studies on the human CP revealed that AQP4 is also expressed in some CP cells, which is likely to be increased during ageing based on mouse data. Moreover, subependymal astrocytic processes in the ependyma-CP transition, forming a glial plate around blood vessels and facing the CP stroma, were strongly positive for AQP4. We propose that the increased AQP4 expression might be a compensatory mechanism for the observed reduction in CSF production in the ageing human brain. The high AQP4 density in the transition zone might facilitate the transport of water into and out of the CP stroma and serve as a drainage and clearing pathway for metabolites in the CNS.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Ronja Bihlmaier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Felix Deffner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
18
|
Remsik J, Boire A. The path to leptomeningeal metastasis. Nat Rev Cancer 2024; 24:448-460. [PMID: 38871881 PMCID: PMC11404355 DOI: 10.1038/s41568-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumour Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Du Y, Li C, Zhao W, Li J, Zhao L, Guo H, Jiang Y, Liu WV, Zeng S, Zhang H, Guo H, Ouyang X, Liu J. Multimodal neuroimaging exploration of the mechanisms of sleep quality deterioration after SARS-CoV-2 Omicron infection. BMC Med 2024; 22:271. [PMID: 38926881 PMCID: PMC11210028 DOI: 10.1186/s12916-024-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To evaluate the neurological alterations induced by Omicron infection, to compare brain changes in chronic insomnia with those in exacerbated chronic insomnia in Omicron patients, and to examine individuals without insomnia alongside those with new-onset insomnia. METHODS In this study, a total of 135 participants were recruited between January 11 and May 4, 2023, including 26 patients with chronic insomnia without exacerbation, 24 patients with chronic insomnia with exacerbation, 40 patients with no sleep disorder, and 30 patients with new-onset insomnia after infection with Omicron (a total of 120 participants with different sleep statuses after infection), as well as 15 healthy controls who were never infected with Omicron. Neuropsychiatric data, clinical symptoms, and multimodal magnetic resonance imaging data were collected. The gray matter thickness and T1, T2, proton density, and perivascular space values were analyzed. Associations between changes in multimodal magnetic resonance imaging findings and neuropsychiatric data were evaluated with correlation analyses. RESULTS Compared with healthy controls, gray matter thickness changes were similar in the patients who have and do not have a history of chronic insomnia groups after infection, including an increase in cortical thickness near the parietal lobe and a reduction in cortical thickness in the frontal, occipital, and medial brain regions. Analyses showed a reduced gray matter thickness in patients with chronic insomnia compared with those with an aggravation of chronic insomnia post-Omicron infection, and a reduction was found in the right medial orbitofrontal region (mean [SD], 2.38 [0.17] vs. 2.67 [0.29] mm; P < 0.001). In the subgroups of Omicron patients experiencing sleep deterioration, patients with a history of chronic insomnia whose insomnia symptoms worsened after infection displayed heightened medial orbitofrontal cortical thickness and increased proton density values in various brain regions. Conversely, patients with good sleep quality who experienced a new onset of insomnia after infection exhibited reduced cortical thickness in pericalcarine regions and decreased proton density values. In new-onset insomnia patients post-Omicron infection, the thickness in the right pericalcarine was negatively correlated with the Self-rating Anxiety Scale (r = - 0.538, P = 0.002, PFDR = 0.004) and Self-rating Depression Scale (r = - 0.406, P = 0.026, PFDR = 0.026) scores. CONCLUSIONS These findings help us understand the pathophysiological mechanisms involved when Omicron invades the nervous system and induces various forms of insomnia after infection. In the future, we will continue to pay attention to the dynamic changes in the brain related to insomnia caused by Omicron infection.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Cong Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Huili Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Yingjia Jiang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | | | - Song Zeng
- MR Product, GE Healthcare, Guangzhou, 510000, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 430000, China
| | - Hu Guo
- MR Application, Siemens Healthineers, Guangzhou, 510000, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China.
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China.
| |
Collapse
|
20
|
Jeong I, Andreassen SN, Hoang L, Poulain M, Seo Y, Park HC, Fürthauer M, MacAulay N, Jurisch-Yaksi N. The evolutionarily conserved choroid plexus contributes to the homeostasis of brain ventricles in zebrafish. Cell Rep 2024; 43:114331. [PMID: 38843394 DOI: 10.1016/j.celrep.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Søren N Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Morgane Poulain
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| |
Collapse
|
21
|
Xu H, Zhao X, Luo J. Combination of tumor antigen drainage and immune activation to promote a cancer-immunity cycle against glioblastoma. Cell Mol Life Sci 2024; 81:275. [PMID: 38907858 PMCID: PMC11335198 DOI: 10.1007/s00018-024-05300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
While conventional cancer modalities, such as chemotherapy and radiotherapy, act through direct killing of tumor cells, cancer immunotherapy elicits potent anti-tumor immune responses thereby eliminating tumors. Nevertheless, promising outcomes have not been reported in patients with glioblastoma (GBM) likely due to the immune privileged status of the central nervous system and immunosuppressive micro-environment within GBM. In the past years, several exciting findings, such as the re-discovery of meningeal lymphatic vessels (MLVs), three-dimensional anatomical reconstruction of MLV networks, and the demonstration of the promotion of GBM immunosurveillance by lymphatic drainage enhancement, have revealed an intricate communication between the nervous and immune systems, and brought hope for the development of new GBM treatment. Based on conceptual framework of the updated cancer-immunity (CI) cycle, here we focus on GBM antigen drainage and immune activation, the early events in driving the CI cycle. We also discuss the implications of these findings for developing new therapeutic approaches in tackling fatal GBM in the future.
Collapse
Affiliation(s)
- Han Xu
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiaomei Zhao
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
23
|
Zhang W, Sun HS, Wang X, Dumont AS, Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci 2024; 47:461-474. [PMID: 38729785 DOI: 10.1016/j.tins.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Wang
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
24
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
25
|
Sládek M, Houdek P, Myung J, Semenovykh K, Dočkal T, Sumová A. The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus. Fluids Barriers CNS 2024; 21:46. [PMID: 38802875 PMCID: PMC11131265 DOI: 10.1186/s12987-024-00547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
Collapse
Affiliation(s)
- Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Tereza Dočkal
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic.
| |
Collapse
|
26
|
Lee EJ, Suh M, Choi H, Choi Y, Hwang DW, Bae S, Lee DS. Spatial transcriptomic brain imaging reveals the effects of immunomodulation therapy on specific regional brain cells in a mouse dementia model. BMC Genomics 2024; 25:516. [PMID: 38796425 PMCID: PMC11128132 DOI: 10.1186/s12864-024-10434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies in Alzheimer's disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, and designated brain cells and regions showing probable associations with behavior changes. We provided the customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all transcripts for the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cliniclal Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Inc., Seocho-daero 40-gil, Seoul, 06657, Republic of Korea
| | - Sungwoo Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
27
|
Xie Y, Zhu H, Yao Y, Liu C, Wu S, Zhang Y, Zhu W. Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment. Mult Scler Relat Disord 2024; 85:105550. [PMID: 38493535 DOI: 10.1016/j.msard.2024.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To investigate the potential link among choroid plexus (CP) volume, glymphatic clearance and brain structural change in relapsing-remitting multiple sclerosis (RRMS) patients. MATERIALS AND METHODS Sixty-five RRMS patients and 48 healthy controls (HC) underwent MRI examination. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) was calculated to reflect glymphatic system function. The brain structure volume and DTI-ALPS index were compared between RRMS and HC. The mediating effect of the DTI-ALPS index between CP volume and brain structural changes was further investigated. The longitudinal changes of brain structure and DTI-ALPS index were compared in 20 RRMS patients. RESULTS Compared to HC, CP volume in RRMS was significantly increased (P < 0.001), and DTI-ALPS index was significantly decreased (P = 0.001). The volumes of white matter, thalamus, putamen and pallidum were significantly decreased in RRMS, and the volumes of lateral ventricle and third ventricle were increased. Mediation analysis showed DTI-ALPS index partially mediated the association between CP enlargement and deep gray matter (DGM) atrophy in RRMS, and between CP enlargement and ventricle enlargement. CP volume and DTI-ALPS index were also significantly correlated with Expanded Disability Status Scale (EDSS) (P = 0.006, P = 0.043). Notably, the variation of DTI_ALPS index during the follow-up period were significantly and negatively correlated with the variation of EDSS (P = 0.045). CONCLUSION Enlarged CP volume and decreased DTI_ALPS index may be closely related to DGM atrophy and ventricular enlargement in RRMS, and may be potential imaging markers of clinical disability.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chengxia Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shaolong Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
28
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
29
|
Dodd DO, Mechaussier S, Yeyati PL, McPhie F, Anderson JR, Khoo CJ, Shoemark A, Gupta DK, Attard T, Zariwala MA, Legendre M, Bracht D, Wallmeier J, Gui M, Fassad MR, Parry DA, Tennant PA, Meynert A, Wheway G, Fares-Taie L, Black HA, Mitri-Frangieh R, Faucon C, Kaplan J, Patel M, McKie L, Megaw R, Gatsogiannis C, Mohamed MA, Aitken S, Gautier P, Reinholt FR, Hirst RA, O’Callaghan C, Heimdal K, Bottier M, Escudier E, Crowley S, Descartes M, Jabs EW, Kenia P, Amiel J, Bacci GM, Calogero C, Palazzo V, Tiberi L, Blümlein U, Rogers A, Wambach JA, Wegner DJ, Fulton AB, Kenna M, Rosenfeld M, Holm IA, Quigley A, Hall EA, Murphy LC, Cassidy DM, von Kriegsheim A, Papon JF, Pasquier L, Murris MS, Chalmers JD, Hogg C, Macleod KA, Urquhart DS, Unger S, Aitman TJ, Amselem S, Leigh MW, Knowles MR, Omran H, Mitchison HM, Brown A, Marsh JA, Welburn JPI, Ti SC, Horani A, Rozet JM, Perrault I, Mill P. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024; 384:eadf5489. [PMID: 38662826 PMCID: PMC7616230 DOI: 10.1126/science.adf5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.
Collapse
Affiliation(s)
- Daniel O Dodd
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Fraser McPhie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
- Royal Brompton Hospital, LondonSW3 6NP, UK
| | - Deepesh K Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Thomas Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Marie Legendre
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Diana Bracht
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria21561, Egypt
| | - David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Peter A Tennant
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Holly A Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- South East of Scotland Genetics Service, Western General Hospital, EdinburghEH4 2XU, UK
| | - Rana Mitri-Frangieh
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
- Biomechanics and Respiratory Apparatus, IMRB, U955 INSERM – Université Paris Est Créteil, CNRS ERL 7000, Créteil 94000, France
| | - Catherine Faucon
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Mitali Patel
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, LondonW1W 7FF, UK
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Roly Megaw
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- Princess Alexandra Eye Pavilion, EdinburghEH3 9HA, UK
| | - Christos Gatsogiannis
- Center for Soft Nanoscience and Institute of Medical Physics and Biophysics, Münster 48149, Germany
| | - Mai A Mohamed
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Ash Sharqiyah44519, Egypt
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Finn R Reinholt
- Core Facility for Electron Microscopy, Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo0372, Norway
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, LeicesterLE1 9HN, UK
| | - Chris O’Callaghan
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Mathieu Bottier
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Estelle Escudier
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo0407, Norway
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, 35294-0024, USA
| | - Ethylin W Jabs
- Icahn School of Medicine at Mount Sinai, New York10029-6504, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester55905, USA
| | - Priti Kenia
- Department of Paediatric Respiratory Medicine, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, BirminghamB15 2TG, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris75015, France
- Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris75015, France
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Claudia Calogero
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Viviana Palazzo
- Pediatric Pulmonary Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | | | | | - Jennifer A Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Kenna
- Department of Otolaryngology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle 98015, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children’s Hospital, Boston02115, USA
- Department of Pediatrics, Harvard Medical School, Boston 02115, USA
| | - Alan Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Diane M Cassidy
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Scottish Genomes Partnership
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | | | | | - Jean-François Papon
- ENT Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Le Kremlin-Bicêtre94270, France
| | - Laurent Pasquier
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
| | - Marlène S Murris
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | | | | | - Don S Urquhart
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
- Department of Child Life and Health, University of Edinburgh, EdinburghEH16 4TJ, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Serge Amselem
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis 63110, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| |
Collapse
|
30
|
Walsh RM, Luongo R, Giacomelli E, Ciceri G, Rittenhouse C, Verrillo A, Galimberti M, Bocchi VD, Wu Y, Xu N, Mosole S, Muller J, Vezzoli E, Jungverdorben J, Zhou T, Barker RA, Cattaneo E, Studer L, Baggiolini A. Generation of human cerebral organoids with a structured outer subventricular zone. Cell Rep 2024; 43:114031. [PMID: 38583153 PMCID: PMC11322983 DOI: 10.1016/j.celrep.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.
Collapse
Affiliation(s)
- Ryan M Walsh
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raffaele Luongo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Elisa Giacomelli
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriele Ciceri
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA
| | - Antonietta Verrillo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Vittoria Dickinson Bocchi
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nan Xu
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - James Muller
- Developmental Biology and Immunology Programs, Sloan Kettering Institute, New York, NY 10065, USA
| | - Elena Vezzoli
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Johannes Jungverdorben
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Roger A Barker
- Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Forvie Site, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Lorenz Studer
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA.
| | - Arianna Baggiolini
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland.
| |
Collapse
|
31
|
Bastedo WE, Scott RW, Arostegui M, Underhill TM. Single-cell analysis of mesenchymal cells in permeable neural vasculature reveals novel diverse subpopulations of fibroblasts. Fluids Barriers CNS 2024; 21:31. [PMID: 38575991 PMCID: PMC10996213 DOI: 10.1186/s12987-024-00535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.
Collapse
Affiliation(s)
- William E Bastedo
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Martin Arostegui
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
32
|
Alqedari H, Altabtbaei K, Espinoza JL, Bin-Hasan S, Alghounaim M, Alawady A, Altabtabae A, AlJamaan S, Devarajan S, AlShammari T, Ben Eid M, Matsuoka M, Jang H, Dupont CL, Freire M. Host-microbiome associations in saliva predict COVID-19 severity. PNAS NEXUS 2024; 3:pgae126. [PMID: 38617584 PMCID: PMC11010653 DOI: 10.1093/pnasnexus/pgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following severe acute respiratory syndrome coronavirus 2, there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles the oral microbiota and inflammatory cytokines play in the pathogenesis of coronavirus disease 2019 (COVID-19) are yet to be explored. Here, we evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from noninfected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines and chemokines using multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity, while diversity increased with health. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e. microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e. multimodal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multimodal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically compromised populations.
Collapse
Affiliation(s)
- Hend Alqedari
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, 1 Kneeland Street, Boston, MA 02111, USA
- Dasman Diabetes Institute, 1180 Dasman, 9XQV+V9 Kuwait City, Kuwait
| | - Khaled Altabtbaei
- Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB T6G 2L7, Canada
| | - Josh L Espinoza
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Mohammad Alghounaim
- Department of Pediatrics, Amiri Hospital, Ministry of Health, 9XQQ+42 Kuwait City, Kuwait
| | - Abdullah Alawady
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Abdullah Altabtabae
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Sarah AlJamaan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | | | | | - Mohammed Ben Eid
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Hyesun Jang
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christopher L Dupont
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Kallal N, Hugues S, Garnier L. Regulation of autoimmune-mediated neuroinflammation by endothelial cells. Eur J Immunol 2024; 54:e2350482. [PMID: 38335316 DOI: 10.1002/eji.202350482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.
Collapse
Affiliation(s)
- Neil Kallal
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
34
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Vázquez-Liébanas E, Mocci G, Li W, Laviña B, Reddy A, O'Connor C, Hudson N, Elbeck Z, Nikoloudis I, Gaengel K, Vanlandewijck M, Campbell M, Betsholtz C, Mäe MA. Mosaic deletion of claudin-5 reveals rapid non-cell-autonomous consequences of blood-brain barrier leakage. Cell Rep 2024; 43:113911. [PMID: 38446668 DOI: 10.1016/j.celrep.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.
Collapse
Affiliation(s)
- Elisa Vázquez-Liébanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Giuseppe Mocci
- Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden
| | - Weihan Li
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Avril Reddy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Claire O'Connor
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Zaher Elbeck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Ioannis Nikoloudis
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
36
|
Koller BH, Nguyen M, Snouwaert JN, Gabel CA, Ting JPY. Species-specific NLRP3 regulation and its role in CNS autoinflammatory diseases. Cell Rep 2024; 43:113852. [PMID: 38427558 DOI: 10.1016/j.celrep.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
The NLRP3 inflammasome is essential for caspase-1 activation and the release of interleukin (IL)-1β, IL-18, and gasdermin-D in myeloid cells. However, research on species-specific NLRP3's physiological impact is limited. We engineer mice with the human NLRP3 gene, driven by either the human or mouse promoter, via syntenic replacement at the mouse Nlrp3 locus. Both promoters facilitate hNLRP3 expression in myeloid cells, but the mouse promoter responds more robustly to LPS. Investigating the disease impact of differential NLRP3 regulation, we introduce the D305N gain-of-function mutation into both humanized lines. Chronic inflammation is evident with both promoters; however, CNS outcomes vary significantly. Despite poor response to LPS, the human promoter results in D305N-associated aseptic meningitis, mirroring human pathology. The mouse promoter, although leading to increased CNS expression post-LPS, does not induce meningitis in D305N mutants. Therefore, human-like NLRP3 expression may be crucial for accurate modeling of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
38
|
Duan L, Yu X. Fibroblasts: New players in the central nervous system? FUNDAMENTAL RESEARCH 2024; 4:262-266. [PMID: 38933505 PMCID: PMC11197739 DOI: 10.1016/j.fmre.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblasts are typically described as cells that produce extracellular matrix, contribute to the formation of connective tissue, and maintain the structural framework of tissues. Fibroblasts are the first cell type to be transdifferentiated into inducible pluripotent stem cells (iPSCs), demonstrating their versatility and reprogrammability. Currently, there is relatively extensive characterization of the anatomical, molecular, and functional diversity of fibroblasts in different peripheral organs and tissues. With recent advances in single cell RNA sequencing, heterogeneity and diversity of fibroblasts in the central nervous system (CNS) have also begun to emerge. Based on their distinct anatomical locations in the meninges, perivascular space, and choroid plexus, as well as their molecular diversity, important roles for fibroblasts in the CNS have been proposed. Here, we draw inspirations from what is known about fibroblasts in peripheral tissues, in combination with their currently identified CNS locations and molecular characterizations, to propose potential functions of CNS fibroblasts in health and disease. Future studies, using a combination of technologies, will be needed to determine the bona fide in vivo functions of fibroblasts in the CNS.
Collapse
Affiliation(s)
- Lihui Duan
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences and Peking University McGovern Institute, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
39
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
40
|
Guo J, Yang T, Zhang W, Yu K, Xu X, Li W, Song L, Gu X, Cao R, Cui S. Inhibition of CD44 suppresses the formation of fibrotic scar after spinal cord injury via the JAK2/STAT3 signaling pathway. iScience 2024; 27:108935. [PMID: 38323002 PMCID: PMC10846335 DOI: 10.1016/j.isci.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Fibrotic scar is one of the main impediments to axon regeneration following spinal cord injury (SCI). In this study, we found that CD44 was upregulated during the formation of fibrotic scar, and blocking CD44 by IM7 caused downregulation of fibrosis-related extracellular matrix proteins at both 2 and 12 weeks post-spinal cord injury. More Biotinylated dextran amine (BDA)-traced corticospinal tract axons crossed the scar area and extended into the distal region after IM7 administration. A recovery of motor and sensory function was observed based on Basso Mouse Scale (BMS) scores and tail-flick test. In vitro experiments revealed that inhibiting CD44 and JAK2/STAT3 signaling pathway decreased the proliferation, differentiation, and migration of fibroblasts induced by the inflammatory supernatant. Collectively, these findings highlight the critical role of CD44 and its downstream JAK2/STAT3 signaling pathway in fibrotic scar formation, suggesting a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhong Zhang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| |
Collapse
|
41
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Garcia-Bonilla L, Shahanoor Z, Sciortino R, Nazarzoda O, Racchumi G, Iadecola C, Anrather J. Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat Immunol 2024; 25:357-370. [PMID: 38177281 DOI: 10.1038/s41590-023-01711-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cerebral ischemia triggers a powerful inflammatory reaction involving peripheral leukocytes and brain resident cells that contribute to both tissue injury and repair. However, their dynamics and diversity remain poorly understood. To address these limitations, we performed a single-cell transcriptomic study of brain and blood cells 2 or 14 days after ischemic stroke in mice. We observed a strong divergence of post-ischemic microglia, monocyte-derived macrophages and neutrophils over time, while endothelial cells and brain-associated macrophages showed altered transcriptomic signatures at 2 days poststroke. Trajectory inference predicted the in situ trans-differentiation of macrophages from blood monocytes into day 2 and day 14 phenotypes, while neutrophils were projected to be continuously de novo recruited from the blood. Brain single-cell transcriptomes from both female and male aged mice were similar to that of young male mice, but aged and young brains differed in their immune cell composition. Although blood leukocyte analysis also revealed altered transcriptomes after stroke, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification occurs within the brain in the early and recovery phases of ischemic stroke. A portal ( https://anratherlab.shinyapps.io/strokevis/ ) is provided to allow user-friendly access to our data.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Ziasmin Shahanoor
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rose Sciortino
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Omina Nazarzoda
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, Servidio L, Agnoletto E, Poletti S, Lorenzi C, Colombo C, Benedetti F. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav Immun 2024; 116:52-61. [PMID: 38030049 DOI: 10.1016/j.bbi.2023.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Depressed patients exhibit altered levels of immune-inflammatory markers both in the peripheral blood and in the cerebrospinal fluid (CSF) and inflammatory processes have been widely implicated in the pathophysiology of mood disorders. The Choroid Plexus (ChP), located at the base of each of the four brain ventricles, regulates the exchange of substances between the blood and CSF and several evidence supported a key role for ChP as a neuro-immunological interface between the brain and circulating immune cells. Given the role of ChP as a regulatory gate between periphery, CSF spaces and the brain, we compared ChP volumes in patients with bipolar disorder (BP) or major depressive disorder (MDD) and healthy controls, exploring their association with history of illness and levels of circulating cytokines. Plasma levels of inflammatory markers and MRI scans were acquired for 73 MDD, 79 BD and 72 age- and sex-matched healthy controls (HC). Patients with either BD or MDD had higher ChP volumes than HC. With increasing age, the bilateral ChP volume was larger in patients, an effect driven by the duration of illness; while only minor effects were observed in HC. Right ChP volumes were proportional to higher levels of circulating cytokines in the clinical groups, including IFN-γ, IL-13 and IL-17. Specific effects in the two diagnostic groups were observed when considering the left ChP, with positive association with IL-1ra, IL-13, IL-17, and CCL3 in BD, and negative associations with IL-2, IL-4, IL-1ra, and IFN-γ in MDD. These results suggest that ChP could represent a reliable and easy-to-assess biomarker to evaluate the brain effects of inflammatory status in mood disorders, contributing to personalized diagnosis and tailored treatment strategies.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Servidio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Elena Agnoletto
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
44
|
Chew LH, Mercier E, Rogalski JC, Pippard S, Knock E. Methods to extract and analyze fluid from human pluripotent stem cell-derived choroid plexus organoids. Front Mol Neurosci 2024; 16:1243499. [PMID: 38348236 PMCID: PMC10859488 DOI: 10.3389/fnmol.2023.1243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
The choroid plexus (ChP) is a highly vascularized tissue lining the ventricular space of the brain. The ChP generates cerebrospinal fluid (CSF) and forms a protective barrier in the central nervous system (CNS). Recently, a three-dimensional human pluripotent stem cell (hPSC)-derived ChP organoid model has been developed. This model generates cystic structures that are filled with a fluid resembling CSF and are surrounded by an epithelial layer expressing ependymal choroid plexus-specific markers. Here we describe a method to generate these choroid plexus organoids using a commercial kit and methods to extract the CSF-like fluid for use in downstream analysis.
Collapse
Affiliation(s)
| | | | - Jason C. Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Erin Knock
- STEMCELL Technologies, Vancouver, BC, Canada
| |
Collapse
|
45
|
Parobková V, Kompaníková P, Lázňovský J, Kavková M, Hampl M, Buchtová M, Zikmund T, Kaiser J, Bryja V. Ch OP-CT: quantitative morphometrical analysis of the Hindbrain Choroid Plexus by X-ray micro-computed tomography. Fluids Barriers CNS 2024; 21:9. [PMID: 38268040 PMCID: PMC11406807 DOI: 10.1186/s12987-023-00502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.
Collapse
Affiliation(s)
- Viktória Parobková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Jakub Lázňovský
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marek Hampl
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
46
|
Rodriguez LA, Tran MN, Garcia-Flores R, Oh S, Phillips RA, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. Transl Psychiatry 2024; 14:52. [PMID: 38263132 PMCID: PMC10805920 DOI: 10.1038/s41398-024-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Robert A Phillips
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
47
|
Taranov A, Bedolla A, Iwasawa E, Brown FN, Baumgartner S, Fugate EM, Levoy J, Crone SA, Goto J, Luo Y. The choroid plexus maintains ventricle volume and adult subventricular zone neuroblast pool, which facilitates post-stroke neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.575277. [PMID: 38328050 PMCID: PMC10849542 DOI: 10.1101/2024.01.22.575277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The brain's neuroreparative capacity after injuries such as ischemic stroke is contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here we report a mouse genetic tool (the ROSA26iDTR mouse line) for non-invasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at one-month post-ablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the MCAo model of ischemic stroke, neuroblast migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important and novel role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.
Collapse
Affiliation(s)
- Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Alicia Bedolla
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Farrah N. Brown
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sarah Baumgartner
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Joel Levoy
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Steven A. Crone
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
48
|
Courtney Y, Head JP, Yimer ED, Dani N, Shipley FB, Libermann TA, Lehtinen MK. A choroid plexus apocrine secretion mechanism shapes CSF proteome and embryonic brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574486. [PMID: 38260341 PMCID: PMC10802501 DOI: 10.1101/2024.01.08.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We discovered that apocrine secretion by embryonic choroid plexus (ChP) epithelial cells contributes to the cerebrospinal fluid (CSF) proteome and influences brain development in mice. The apocrine response relies on sustained intracellular calcium signaling and calpain-mediated cytoskeletal remodeling. It rapidly alters the embryonic CSF proteome, activating neural progenitors lining the brain's ventricles. Supraphysiological apocrine secretion induced during mouse development by maternal administration of a serotonergic 5HT2C receptor agonist dysregulates offspring cerebral cortical development, alters the fate of CSF-contacting neural progenitors, and ultimately changes adult social behaviors. Critically, exposure to maternal illness or to the psychedelic drug LSD during pregnancy also overactivates the ChP, inducing excessive secretion. Collectively, our findings demonstrate a new mechanism by which maternal exposure to diverse stressors disrupts in utero brain development.
Collapse
|
49
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Ye Y, Gao M, Shi W, Gao Y, Li Y, Yang W, Zheng X, Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer's disease. Front Immunol 2024; 14:1325530. [PMID: 38259476 PMCID: PMC10800421 DOI: 10.3389/fimmu.2023.1325530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation has been identified as another significant pathogenic factor in Alzheimer's disease following Aβ amyloid deposition and tau protein hyperphosphorylation, activated in the central nervous system by glial cells in response to injury-related and pathogen-related molecular patterns. Moderate glial cell activity can be neuroprotective; however, excessive glial cell activation advances the pathology of Alzheimer's disease and is accompanied by structural changes in the brain interface, with peripheral immune cells entering the brain through the blood-brain barrier, creating a vicious circle. The immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic inflammatory and immune processes by transferring nucleic acids, proteins and lipids from the parent cell to the recipient cell, thus MSC-EVs retain their immunomodulatory capacity while avoiding the safety issues associated with living cell therapy, making them a promising focus for immunomodulatory therapy. In this review, we discuss the modulatory effects of MSC-EVs on Alzheimer's disease-associated immune cells and the mechanisms involved in their treatment of the condition. We have found a clinical trial of MSC-EVs in Alzheimer's disease treatment and outlined the challenges of this approach. Overall, MSC-EVs have the potential to provide a safe and effective treatment option for Alzheimer's disease by targeting neuroinflammation.
Collapse
Affiliation(s)
- Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingzhu Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Wentao Shi
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaomin Zheng
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|