1
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Sommer V, Seiler J, Sturm A, Köhnen S, Wagner A, Blut C, Rössler W, Goodwin SF, Grünewald B, Beye M. Dedicated developmental programing for group-supporting behaviors in eusocial honeybees. SCIENCE ADVANCES 2024; 10:eadp3953. [PMID: 39485851 PMCID: PMC11529710 DOI: 10.1126/sciadv.adp3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The evolutionary changes from solitary to eusocial living in vertebrates and invertebrates are associated with the diversification of social interactions and the development of queen and worker castes. Despite strong innate patterns, our understanding of the mechanisms manifesting these sophisticated behaviors is still rudimentary. Here, we show that doublesex (dsx) manifests group-supporting behaviors in the honeybee (Apis mellifera) worker caste. Computer-based individual behavioral tracking of worker bees with biallelic stop mutations in colonies revealed that the dsx gene is required for the rate and duration of group-supporting behavior that scales the relationship between bees and their work. General sensorimotor functions remained unaffected. Unexpectedly, unlike in other insects, the dsx gene is required for the neuronal wiring of the mushroom body in which the gene is spatially restricted expressed. Together, our study establishes dedicated programming for group-supporting behaviors and provides insight into the connection between development in the neuronal circuitry and behaviors regulating the formation of a eusocial society.
Collapse
Affiliation(s)
- Vivien Sommer
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Alina Sturm
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Sven Köhnen
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Anna Wagner
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Christina Blut
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Stephen F. Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Bernd Grünewald
- Honeybee Research Center Oberursel, Polytechnische Gesellschaft, Goethe-University Frankfurt am Main, Karl-von-Frisch-Weg 2, D-61440 Oberursel, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
3
|
Gao B, Ji Y, Zhao D, Yan Y, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. Juvenile hormone inhibits lipogenesis of Spodoptera exigua to response to Bacillus thuringiensis GS57 infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106110. [PMID: 39477628 DOI: 10.1016/j.pestbp.2024.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024]
Abstract
The application of Bacillus thuringiensis (Bt) has brought environmental benefits and delayed resistance development of pests. Most studies focus on the Bt insecticidal activity against pests, however, the molecular mechanism of Bt on impairing the growth and development of Spodoptera exigua remains unknown. Here, we show that juvenile hormone (JH) inhibits the lipogenesis mediated by fatty acid synthases (Fas) of S. exigua in response to Bt infection. The weight and lipid accumulation of S. exigua larvae post Bt infection were less than those of larvae without Bt infection. We further demonstrated that Bt infection causes the JH titer with a significant increase, which downregulates the expression of lipogenesis-related genes, SeFas3, SeFas4, and SeFas5, resulting in the delayed development of S. exigua larvae. In addition, the expression levels of SeFas genes were regulated by SeACC, indicating that SeFas genes were modulated by multiple pathways. Our findings reveal that novel insights into the molecular mechanisms underlying the impaired development caused by Bt infection which can inform the development of strategies for the sustainable pest control in the future.
Collapse
Affiliation(s)
- Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yitong Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Wei C, Zhang S. Transcription Factor CcFoxO Mediated the Transition from Summer Form to Winter Form in Cacopsylla chinensis. Int J Mol Sci 2024; 25:8545. [PMID: 39126113 PMCID: PMC11313232 DOI: 10.3390/ijms25158545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Amid global climate change featuring erratic temperature fluctuations, insects adapt via seasonal polyphenism, essential for population sustainability and reproductive success. Cacopsylla chinensis, influenced by environment variations, displays a distinct summer form and winter form distinguished by significant morphological variations. Previous studies have highlighted the role of temperature receptor CcTPRM in orchestrating the transition in response to 10 °C temperature. Nevertheless, the contribution of the transcription factor FoxO in this process has remained ambiguous. Here, we aimed to explore the correlation between C. chinensis FoxO (CcFoxO) and cold stress responses, while identifying potential energetic substances for monitoring physiological shifts during this transition from summer to winter form under cold stress by using RNAi. Initially, CcFoxO emerges as responsive to low temperatures (10 °C) and is regulated by CcTRPM. Subsequent investigations reveal that CcFoxO facilitates the accumulation of triglycerides and glycogen, thereby influencing the transition from summer form to winter form by affecting cuticle pigment content, cuticle chitin levels, and cuticle thickness. Thus, the knockdown of CcFoxO led to high mortality and failed transition. Overall, our findings demonstrate that CcFoxO governs seasonal polyphenism by regulating energy storage. These insights not only enhance our comprehension of FoxO functionality but also offer avenues for environmentally friendly management strategies for C. chinensis.
Collapse
Affiliation(s)
- Chuchu Wei
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Songdou Zhang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
5
|
Frank DD, Kronauer DJC. The Budding Neuroscience of Ant Social Behavior. Annu Rev Neurosci 2024; 47:167-185. [PMID: 38603564 DOI: 10.1146/annurev-neuro-083023-102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Collapse
Affiliation(s)
- Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| | - Daniel J C Kronauer
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
6
|
Zhang X, Xie N, Ding G, Ning D, Dai W, Xiong Z, Zhong W, Zuo D, Zhao J, Zhang P, Liu C, Li Q, Ran H, Liu W, Zhang G. An evolutionarily conserved pathway mediated by neuroparsin-A regulates reproductive plasticity in ants. PLoS Biol 2024; 22:e3002763. [PMID: 39133741 PMCID: PMC11398701 DOI: 10.1371/journal.pbio.3002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Phenotypic plasticity displayed by an animal in response to different environmental conditions is supposedly crucial for its survival and reproduction. The female adults of some ant lineages display phenotypic plasticity related to reproductive role. In pharaoh ant queens, insemination induces substantial physiological/behavioral changes and implicates remarkable gene regulatory network (GRN) shift in the brain. Here, we report a neuropeptide neuroparsin A (NPA) showing a conserved expression pattern associated with reproductive activity across ant species. Knock-down of NPA in unmated queen enhances ovary activity, whereas injection of NPA peptide in fertilized queen suppresses ovary activity. We found that NPA mainly affected the downstream gene JHBP in the ovary, which is positively regulated by NPA and suppression of which induces elevated ovary activity, and shadow which is negatively regulated by NPA. Furthermore, we show that NPA was also employed into the brain-ovary axis in regulating the worker reproductive changes in other distantly related species, such as Harpegnathos venator ants.
Collapse
Affiliation(s)
- Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Nianxia Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Wuhan, China
| | - Guo Ding
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Ning
- College of Agriculture and Biotechnology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | - Wenjiang Zhong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dashuang Zuo
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pei Zhang
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chengyuan Liu
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Qiye Li
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hao Ran
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
7
|
Chen S, Xing L, Xie Z, Zhao M, Yu H, Gan J, Zhao H, Ma Z, Li H. Single-cell transcriptomic reveals a cell atlas and diversity of chicken amygdala responded to social hierarchy. iScience 2024; 27:109880. [PMID: 38952686 PMCID: PMC11215297 DOI: 10.1016/j.isci.2024.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 07/03/2024] Open
Abstract
Amygdala serves as a highly cellular, heterogeneous brain region containing excitatory and inhibitory neurons and is involved in the dopamine and serotoninergic neuron systems. An increasing number of studies have revealed the underpinned mechanism mediating social hierarchy in mammal and vertebrate, however, there are rare studies conducted on how amygdala on social hierarchy in poultry. In this study, we conducted food competition tests and determined the social hierarchy of the rooster. We performed cross-species analysis with mammalian amygdala, and found that cell types of human and rhesus monkeys were more closely related and that of chickens were more distant. We identified 26 clusters and divided them into 10 main clusters, of which GABAergic and glutamatergic neurons were associated with social behaviors. In conclusion, our results provide to serve the developmental studies of the amygdala neuron system and new insights into the underpinned mechanism of social hierarchy in roosters.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Jiankang Gan
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| |
Collapse
|
8
|
Brülhart J, Süß A, Oettler J, Heinze J, Schultner E. Sex- and caste-specific developmental responses to juvenile hormone in an ant with maternal caste determination. J Exp Biol 2024; 227:jeb247396. [PMID: 38779857 PMCID: PMC11418025 DOI: 10.1242/jeb.247396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Juvenile hormone is considered to be a master regulator of polyphenism in social insects. In the ant Cardiocondyla obscurior, whether a female egg develops into a queen or a worker is determined maternally and caste-specific differentiation occurs in embryos, so that queens and workers can be distinguished in a non-invasive manner from late embryogenesis onwards. This ant also exhibits two male morphs - winged and wingless males. Here, we used topical treatment with juvenile hormone III and its synthetic analogue methoprene, a method that influences caste determination and differentiation in some ant species, to investigate whether hormone manipulation affects the development and growth of male, queen- and worker-destined embryos and larvae. We found no effect of hormone treatment on female caste ratios or body sizes in any of the treated stages, even though individuals reacted to heightened hormone availability with increased expression of krüppel-homolog 1, a conserved JH first-response gene. In contrast, hormone treatment resulted in the emergence of significantly larger males, although male morph fate was not affected. These results show that in C. obscurior, maternal caste determination leads to irreversible and highly canalized caste-specific development and growth.
Collapse
Affiliation(s)
- Jeanne Brülhart
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Anja Süß
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Eva Schultner
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Peng T, Kennedy A, Wu Y, Foitzik S, Grüter C. Early life exposure to queen mandibular pheromone mediates persistent transcriptional changes in the brain of honey bee foragers. J Exp Biol 2024; 227:jeb247516. [PMID: 38725404 DOI: 10.1242/jeb.247516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/28/2024] [Indexed: 06/25/2024]
Abstract
Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.
Collapse
Affiliation(s)
- Tianfei Peng
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Anissa Kennedy
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Yongqiang Wu
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Christoph Grüter
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
10
|
Carmona-Aldana F, Yong LW, Reinberg D, Desplan C. Phenomenon of reproductive plasticity in ants. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101197. [PMID: 38583769 PMCID: PMC11139587 DOI: 10.1016/j.cois.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Ant colonies are organized in castes with distinct behaviors that together allow the colony to strive. Reproduction relies on one or a few queens that stay in the nest producing eggs, while females of the worker caste do not reproduce and instead engage in colony maintenance and brood caretaking. Yet, in spite of this clear separation of functions, workers can become reproductive under defined circumstances. Here, we review the context in which workers become reproductive, exhibiting asexual or sexual reproduction depending on the species. Remarkably, the activation of reproduction in these workers can be quite stable, with changes that include behavior and a dramatic extension of lifespan. We compare these changes between species that do or do not have a queen caste. We discuss how the mechanisms underlying reproductive plasticity include changes in hormonal functions and in epigenetic configurations. Further studies are warranted to elucidate not only how reproductive functions have been gradually restricted to the queen caste during evolution but also how reproductive plasticity remains possible in workers of some species.
Collapse
Affiliation(s)
| | - Luok Wen Yong
- Department of Biology, New York University, NY 10003, USA
| | - Danny Reinberg
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Coral Gables, FL 33124, USA.
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA; Center for Genomics and Systems Biology, New York University, Abu Dhabi 51133, United Arab Emirates.
| |
Collapse
|
11
|
Liu W, Li Q. Single-cell transcriptomics dissecting the development and evolution of nervous system in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101201. [PMID: 38608931 DOI: 10.1016/j.cois.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Insects can display a vast repertoire of complex and adaptive behaviors crucial for survival and reproduction. Yet, how the neural circuits underlying insect behaviors are assembled throughout development and remodeled during evolution remains largely obscure. The advent of single-cell transcriptomics has opened new paths to illuminate these historically intractable questions. Insect behavior is governed by its brain, whose functional complexity is realized through operations across multiple levels, from the molecular and cellular to the circuit and organ. Single-cell transcriptomics enables dissecting brain functions across all these levels and allows tracking regulatory dynamics throughout development and under perturbation. In this review, we mainly focus on the achievements of single-cell transcriptomics in dissecting the molecular and cellular architectures of nervous systems in representative insects, then discuss its applications in tracking the developmental trajectory and functional evolution of insect brains.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| | - Qiye Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Bai B, Zhang SP, Li YT, Gao P, Yang XQ. Quercetin stimulates an accelerated burst of oviposition-based reproductive strategy in codling moth controlled by juvenile hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169643. [PMID: 38159769 DOI: 10.1016/j.scitotenv.2023.169643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The advantageous characteristics of invasive pests, particularly their ability to reproduce and adapt to the environment, have been observed. However, it remains unclear what specific inherent superiority enables fruit pests to successfully invade and dominate in interactions with other species. In this study, we report that Cydia pomonella (Linnaeus), a notorious invasive pest of pome fruits and walnuts globally, employs unique reproductive strategies in response to quercetin, a plant compound in host fruits. By monitoring adult dynamics and fruit infestation rates, we observed a competitive relationship between C. pomonella and the native species Grapholita molesta (Busck). C. pomonella was able to occupy vacant niches to ensure its population growth. We also found that quercetin had different effects on the reproductive capacity and population growth of C. pomonella and G. molesta. While quercetin stimulated the fecundity and population growth of G. molesta, it inhibited C. pomonella. However, C. pomonella was able to rapidly increase its population after exposure to quercetin by adopting an 'accelerated burst' of oviposition strategy, with each individual making a greater reproductive contribution compared to the control. We further demonstrated that the effect of quercetin on oviposition is regulated by the juvenile hormone (JH) signaling pathway in C. pomonella, allowing it to prioritize survival. The enhanced reproductive fitness of G. molesta in response to quercetin is attributed to the regulation of JH titers and key genes such as Met and Kr-h1, which in turn up-regulate reproduction-related genes Vg and VgR. In contrast, C. pomonella is inhibited. These findings shed light on the mechanisms interspecific competition and help to improve our understanding of the global spread of C. pomonella, which can be attributed to its inherent superiority in terms of reproductive strategy.
Collapse
Affiliation(s)
- Bing Bai
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Shi-Pan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China.
| |
Collapse
|
17
|
Masroni MSB, Lee KW, Lee VKM, Ng SB, Law CT, Poon KS, Lee BTK, Liu Z, Tan YP, Chng WL, Tucker S, Ngo LSM, Yip GWC, Nga ME, Hue SSS, Putti TC, Bay BH, Lin Q, Zhou L, Hartman M, Loh TP, Lakshmanan M, Lee SY, Tergaonkar V, Chua H, Lee AVH, Yeo EYM, Li MH, Chang CF, Kee Z, Tan KML, Tan SY, Koay ESC, Archetti M, Leong SM. Dynamic altruistic cooperation within breast tumors. Mol Cancer 2023; 22:206. [PMID: 38093346 PMCID: PMC10720132 DOI: 10.1186/s12943-023-01896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Social behaviors such as altruism, where one self-sacrifices for collective benefits, critically influence an organism's survival and responses to the environment. Such behaviors are widely exemplified in nature but have been underexplored in cancer cells which are conventionally seen as selfish competitive players. This multidisciplinary study explores altruism and its mechanism in breast cancer cells and its contribution to chemoresistance. METHODS MicroRNA profiling was performed on circulating tumor cells collected from the blood of treated breast cancer patients. Cancer cell lines ectopically expressing candidate miRNA were used in co-culture experiments and treated with docetaxel. Ecological parameters like relative survival and relative fitness were assessed using flow cytometry. Functional studies and characterization performed in vitro and in vivo include proliferation, iTRAQ-mass spectrometry, RNA sequencing, inhibition by small molecules and antibodies, siRNA knockdown, CRISPR/dCas9 inhibition and fluorescence imaging of promoter reporter-expressing cells. Mathematical modeling based on evolutionary game theory was performed to simulate spatial organization of cancer cells. RESULTS Opposing cancer processes underlie altruism: an oncogenic process involving secretion of IGFBP2 and CCL28 by the altruists to induce survival benefits in neighboring cells under taxane exposure, and a self-sacrificial tumor suppressive process impeding proliferation of altruists via cell cycle arrest. Both processes are regulated concurrently in the altruists by miR-125b, via differential NF-κB signaling specifically through IKKβ. Altruistic cells persist in the tumor despite their self-sacrifice, as they can regenerate epigenetically from non-altruists via a KLF2/PCAF-mediated mechanism. The altruists maintain a sparse spatial organization by inhibiting surrounding cells from adopting the altruistic fate via a lateral inhibition mechanism involving a GAB1-PI3K-AKT-miR-125b signaling circuit. CONCLUSIONS Our data reveal molecular mechanisms underlying manifestation, persistence and spatial spread of cancer cell altruism. A minor population behave altruistically at a cost to itself producing a collective benefit for the tumor, suggesting tumors to be dynamic social systems governed by the same rules of cooperation in social organisms. Understanding cancer cell altruism may lead to more holistic models of tumor evolution and drug response, as well as therapeutic paradigms that account for social interactions. Cancer cells constitute tractable experimental models for fields beyond oncology, like evolutionary ecology and game theory.
Collapse
Affiliation(s)
- Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Kee Wah Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - Victor Kwan Min Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Siok Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chao Teng Law
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Kok Siong Poon
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Bernett Teck-Kwong Lee
- Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, NTU Main Campus, 59 Nanyang Drive, Level 4, Singapore, 636921, Singapore
| | - Zhehao Liu
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - Yuen Peng Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Wee Ling Chng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Steven Tucker
- Tucker Medical Pte Ltd, Novena Specialist Centre, 8 Sinaran Drive #04-03, Singapore, 307470, Singapore
| | - Lynette Su-Mien Ngo
- Raffles Cancer Centre, Raffles Hospital, 585 North Bridge Road, Singapore, 188770, Singapore
- Current address: Curie Oncology Pte Ltd, Mount Elizabeth Novena Specialist Centre, 38 Irrawaddy Road, Level 8, #08-29/30, Singapore, 329563, Singapore
| | - George Wai Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Min En Nga
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Susan Swee Shan Hue
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Lihan Zhou
- MiRXES Pte Ltd, JTC MedTech Hub, 2 Tukang Innovation Grove #08-01, Singapore, 618305, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore, 119228, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sook Yee Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Huiwen Chua
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Adeline Voon Hui Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Eric Yew Meng Yeo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Mo-Huang Li
- CellSievo Pte Ltd, Block 289A, Bukit Batok Street 25, #15-218, Singapore, 650289, Singapore
| | - Chan Fong Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117594, Singapore
| | - Zizheng Kee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Karen Mei-Ling Tan
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
- Singapore Institute For Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| | - Marco Archetti
- Department of Biology, Pennsylvania State University, W210 Millennium Science Complex, University Park, PA, 16802, USA.
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
- NUS Centre for Cancer Research (N2CR), MD6, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
| |
Collapse
|
18
|
Chen J, Ma Y, Guan Z, Liu Q, Shi Q, Qi G, Chen T, Lyu L. Labor division of worker ants can be controlled by insulin synthesis targeted through miR-279c-5p in Solenopsis invicta (Hymenoptera: Formicidae). PEST MANAGEMENT SCIENCE 2023; 79:5029-5043. [PMID: 37552557 DOI: 10.1002/ps.7704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND In social insects, the labor division of workers is ubiquitous and controlled by genetic and environmental factors. However, how they modulate this coordinately remains poorly understood. RESULTS We report miR-279c-5p participation in insulin synthesis and behavioral transition by negatively regulating Rab8A in Solenopsis invicta. Eusocial specific miR-279c-5p is age-associated and highly expressed in nurse workers, and localized in the cytoplasm of neurons, where it is partly co-localized with its target, Rab8A. We determined that miR-279c-5p agomir suppressed Rab8A expression in forager workers, consequently decreasing insulin content, resulting in the behavioral shift to 'nurse-like' behaviors, while the decrease in miR-279c-5p increased Rab8A expression and increased insulin content in nurse workers, leading to the behavioral shift to 'foraging-like' behaviors. Moreover, insulin could rescue the 'foraging behavior' induced by feeding miR-279c-5p to nurse workers. The overexpression and suppression of miR-279c-5p in vivo caused an obvious behavioral transition between foragers and nurses, and insulin synthesis was affected by miR-279c-5p by regulating the direct target Rab8A. CONCLUSION We first report that miR-279c-5p is a novel regulator that promotes labor division by negatively regulating the target gene Rab8A by controlling insulin production in ants. This miRNA-mediated mechanism is significant for understanding the behavioral plasticity of social insects between complex factors and potentially provides new targets for controlling red imported fire ants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yunjie Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Qin Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
19
|
Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. Commun Biol 2023; 6:1004. [PMID: 37783732 PMCID: PMC10545721 DOI: 10.1038/s42003-023-05273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Division of labor (DOL) is a characteristic trait of insect societies, where tasks are generally performed by specialized individuals. Inside workers focus on brood or nest care, while others take risks by foraging outside. Theory proposes that workers have different thresholds to perform certain tasks when confronted with task-related stimuli, leading to specialization and consequently DOL. Workers are presumed to vary in their response to task-related cues rather than in how they perceive such information. Here, we test the hypothesis that DOL instead stems from workers varying in their efficiency to detect stimuli of specific tasks. We use transcriptomics to measure mRNA expression levels in the antennae and brain of nurses and foragers of the ant Temnothorax longispinosus. We find seven times as many genes to be differentially expressed between behavioral phenotypes in the antennae compared to the brain. Moreover, half of all odorant receptors are differentially expressed, with an overrepresentation of the 9-exon gene family upregulated in the antennae of nurses. Nurses and foragers thus apparently differ in the perception of their olfactory environment and task-related signals. Our study supports the hypothesis that antennal sensory filters predispose workers to specialize in specific tasks.
Collapse
Affiliation(s)
- Marcel A Caminer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David V Ho
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Baumann
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Jernigan CM, Uy FM. Impact of the social environment in insect sensory systems. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101083. [PMID: 37423425 DOI: 10.1016/j.cois.2023.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The social environment has a direct impact on sensory systems and unquestionable consequences on allocation of neural tissue. Although neuroplasticity is adaptive, responses to different social contexts may be mediated by energetic constraints and/or trade-offs between sensory modalities. However, general patterns of sensory plasticity remain elusive due to variability in experimental approaches. Here, we highlight recent studies in social Hymenoptera showing effects of the social environment on sensory systems. Further, we propose to identify a core set of socially mediated mechanisms that drive sensory plasticity. We hope this approach is widely adopted in different insect clades under a phylogenetic framework, which will allow for a more direct integration of the how and why questions exploring sensory plasticity evolution.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, NY, USA.
| | - Floria Mk Uy
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
21
|
Abstract
Eusocial insects exemplify a remarkable system of division of labor within the same colony. This behavioral range, which is sometimes accompanied by morphological or physiological differences, provides an opportunity to study the relationship between complex behaviors and their underlying molecular mechanisms. This is especially true in ants because certain genera have an elaborate caste system and can dramatically change their stereotypical behavior over their lifetime. Recent studies experimentally alter ant behavior over short times, thus opening the study of underlying plasticity pathways. The molecular underpinnings of these behaviors are neuromodulators as well as the regulation of chromatin. Here, we concisely review the current understanding of the relationship between neuromodulators, epigenetics, and social behavior in ants. We discuss future directions in light of experimental limitations of the ant system.
Collapse
Affiliation(s)
- Matan Sorek
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley L. Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Opachaloemphan C, Carmona-Aldana F, Yan H. Caste Transition and Reversion in Harpegnathos saltator Ant Colonies. Bio Protoc 2023; 13:e4770. [PMID: 37638295 PMCID: PMC10450750 DOI: 10.21769/bioprotoc.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms possess the ability to respond to environmental cues and adapt their behaviors and physiologies for survival. Eusocial insects, such as ants, bees, wasps, and termites, have evolved advanced sociality: living together in colonies where individuals innately develop into reproductive and non-reproductive castes. These castes exhibit remarkably distinct behaviors and physiologies that support their specialized roles in the colony. Among ant species, Harpegnathos saltator females stand out with their highly plastic caste phenotypes that can be easily manipulated in a laboratory environment. In this protocol, we provide detailed instructions on how to generate H. saltator ant colonies, define castes based on behavioral and physiological phenotypes, and experimentally induce caste switches, including the transition from a non-reproductive worker to a reproductive gamergate and vice versa (known as reversion). The unusual features of H. saltator make it a valuable tool to investigate cellular and molecular mechanisms underlying phenotypic plasticity in eusocial organisms. Key features H. saltator is one of few ant species showing remarkable caste plasticity with striking phenotypic changes, being a useful subject for studying behavioral plasticity. Caste switches in H. saltator can be easily manipulated in a controlled laboratory environment by controlling the presence of reproductive females in a colony. The relatively large size of H. saltator females allows researchers to dissect various tissues of interest and conduct detailed phenotypic analyses.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY, USA
| | - Francisco Carmona-Aldana
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Lacy KD, Kronauer DJC. Evolution: How sweat bees gained and lost eusociality. Curr Biol 2023; 33:R770-R773. [PMID: 37490864 DOI: 10.1016/j.cub.2023.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Eusocial insects divide labor between reproductive and non-reproductive individuals. The molecular mechanisms underlying the evolution of these castes have remained mysterious. A comparative genomic study of sweat bees points to a familiar factor as a regulator of behavioral specialization: juvenile hormone.
Collapse
Affiliation(s)
- Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
25
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Glastad KM, Roessler J, Gospocic J, Bonasio R, Berger SL. Long ant life span is maintained by a unique heat shock factor. Genes Dev 2023; 37:398-417. [PMID: 37257919 PMCID: PMC10270196 DOI: 10.1101/gad.350250.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Eusocial insect reproductive females show strikingly longer life spans than nonreproductive female workers despite high genetic similarity. In the ant Harpegnathos saltator (Hsal), workers can transition to reproductive "gamergates," acquiring a fivefold prolonged life span by mechanisms that are poorly understood. We found that gamergates have elevated expression of heat shock response (HSR) genes in the absence of heat stress and enhanced survival with heat stress. This HSR gene elevation is driven in part by gamergate-specific up-regulation of the gene encoding a truncated form of a heat shock factor most similar to mammalian HSF2 (hsalHSF2). In workers, hsalHSF2 was bound to DNA only upon heat stress. In gamergates, hsalHSF2 bound to DNA even in the absence of heat stress and was localized to gamergate-biased HSR genes. Expression of hsalHSF2 in Drosophila melanogaster led to enhanced heat shock survival and extended life span in the absence of heat stress. Molecular characterization illuminated multiple parallels between long-lived flies and gamergates, underscoring the centrality of hsalHSF2 to extended ant life span. Hence, ant caste-specific heat stress resilience and extended longevity can be transferred to flies via hsalHSF2. These findings reinforce the critical role of proteostasis in health and aging and reveal novel mechanisms underlying facultative life span extension in ants.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian Roessler
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Janko Gospocic
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Orr SE, Goodisman MA. Social insect transcriptomics and the molecular basis of caste diversity. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101040. [PMID: 37105497 DOI: 10.1016/j.cois.2023.101040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Studies of gene expression provide fundamentally important information on the molecular mechanisms underlying variation in phenotype. Recent technological advances have allowed for the robust study of gene expression through analysis of whole transcriptomes. Here, we review current advances in social insect transcriptomics and discuss their implications in understanding phenotypic diversity. Recent transcriptomic studies provide detailed inventories of the genes involved in producing distinct phenotypes in social species. These investigations have identified key genes and networks involved in producing distinct social insect castes. Nevertheless, questions concerning the evolution of gene expression patterns remain. We suggest a path forward for studying gene expression in future studies of biological systems.
Collapse
Affiliation(s)
- Sarah E Orr
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Michael Ad Goodisman
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
28
|
Venkataraman K, Shai N, Lakhiani P, Zylka S, Zhao J, Herre M, Zeng J, Neal LA, Molina H, Zhao L, Vosshall LB. Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought. eLife 2023; 12:e80489. [PMID: 36744865 PMCID: PMC10076016 DOI: 10.7554/elife.80489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
Collapse
Affiliation(s)
- Krithika Venkataraman
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Sarah Zylka
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Jieqing Zhao
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Joshua Zeng
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller UniversityNew YorkUnited States
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
29
|
Lowe R, Wojciechowski M, Ellis N, Hurd PJ. Chromatin accessibility-based characterisation of brain gene regulatory networks in three distinct honey bee polyphenisms. Nucleic Acids Res 2022; 50:11550-11562. [PMID: 36330958 PMCID: PMC9723623 DOI: 10.1093/nar/gkac992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism -specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation with gene expression. Using ATAC-seq footprinting we determine queen, worker and drone -specific transcription factor occupancy and uncover novel phenotype-specific regulatory networks identifying two key nuclear receptors that have previously been implicated in caste-determination and adult behavioural maturation in honey bees; ecdysone receptor and ultraspiracle. Collectively, this study provides novel insights into key gene regulatory networks that are associated with these distinct polyphenisms in the honey bee.
Collapse
Affiliation(s)
- Robert Lowe
- RER Consultants, 28 Worbeck Road, London SE20 7SW, UK
| | - Marek Wojciechowski
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Nancy Ellis
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
30
|
Social Hierarchy Dictates Intestinal Radiation Injury in a Gut Microbiota-Dependent Manner. Int J Mol Sci 2022; 23:ijms232113189. [PMID: 36361976 PMCID: PMC9659279 DOI: 10.3390/ijms232113189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Social hierarchy governs the physiological and biochemical behaviors of animals. Intestinal radiation injuries are common complications connected with radiotherapy. However, it remains unclear whether social hierarchy impacts the development of radiation-induced intestinal toxicity. Dominant mice exhibited more serious intestinal toxicity following total abdominal irradiation compared with their subordinate counterparts, as judged by higher inflammatory status and lower epithelial integrity. Radiation-elicited changes in gut microbiota varied between dominant and subordinate mice, being more overt in mice of higher status. Deletion of gut microbes by using an antibiotic cocktail or restructuring of the gut microecology of dominant mice by using fecal microbiome from their subordinate companions erased the difference in radiogenic intestinal injuries. Lactobacillus murinus and Akkermansia muciniphila were both found to be potential probiotics for use against radiation toxicity in mouse models without social hierarchy. However, only Akkermansia muciniphila showed stable colonization in the digestive tracts of dominant mice, and significantly mitigated their intestinal radiation injuries. Our findings demonstrate that social hierarchy impacts the development of radiation-induced intestinal injuries, in a manner dependent on gut microbiota. The results also suggest that the gut microhabitats of hosts determine the colonization and efficacy of foreign probiotics. Thus, screening suitable microbial preparations based on the gut microecology of patients might be necessary in clinical application.
Collapse
|
31
|
Traniello JF, Linksvayer TA, Coto ZN. Social complexity and brain evolution: insights from ant neuroarchitecture and genomics. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100962. [PMID: 36028191 DOI: 10.1016/j.cois.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Brain evolution is hypothesized to be driven by requirements to adaptively respond to environmental cues and social signals. Diverse models describe how sociality may have influenced eusocial insect-brain evolution, but specific impacts of social organization and other selective forces on brain architecture have been difficult to distinguish. Here, we evaluate predictions derived from and/or inferences made by models of social organization concerning the effects of individual and collective behavior on brain size, structure, and function using results of neuroanatomical and genomic studies. In contrast to the predictions of some models, we find that worker brains in socially complex species have great behavioral and cognitive capacity. We also find that colony size, the evolution of worker physical castes, and task specialization affect brain size and mosaicism, supporting the idea that sensory, processing and motor requirements for behavioral performance select for adaptive allometries of functionally specialized brain centers. We review available transcriptomic and comparative genomic studies seeking to elucidate the molecular pathways functionally associated with social life and the genetic changes that occurred during the evolution of social complexity. We discuss ways forward, using comparative neuroanatomy, transcriptomics, and comparative genomics, to distinguish among multiple alternative explanations for the relationship between the evolution of neural systems and social complexity.
Collapse
Affiliation(s)
- James Fa Traniello
- Department of Biology, Boston University, Boston, MA, USA; Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| | | | - Zachary N Coto
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
32
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
33
|
Identity switch. Nat Rev Neurosci 2021; 23:3. [PMID: 34857919 DOI: 10.1038/s41583-021-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Worker ants vault to queenly rank after just one gene turns on. Nature 2021. [PMID: 34741146 DOI: 10.1038/d41586-021-03024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|