1
|
Liu X, Krezel M, Wang W. Mechanism of human α3β GlyR regulation by intracellular M3/M4 loop phosphorylation and 2,6-di-tert-butylphenol interaction. Nat Commun 2025; 16:5242. [PMID: 40473619 PMCID: PMC12141631 DOI: 10.1038/s41467-025-60516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/24/2025] [Indexed: 06/11/2025] Open
Abstract
α3β glycine receptor (GlyR) is a subtype of GlyRs that belongs to the Cys-loop receptor superfamily. It is highly expressed in the spinal dorsal horn where sensory information is integrated. Under inflammatory conditions, the large unstructured intracellular M3/M4 loops of the α3 subunit are phosphorylated through the prostaglandin E2 (PGE2) pathway, inhibiting ion conduction, and resulting in elevated pain sensation. A small molecule analgesic analog, 2,6-di-tert-butylphenol (2,6-DTBP) potentiates phosphorylated α3β GlyR through unclear mechanisms and relieves pain. Combining cryo-Electron Microscopy (cryo-EM) structures and single molecule Förster resonance energy transfer (smFRET) experiments, we show compaction of M3/M4 loop towards the ion conduction pore upon phosphorylation and further by 2,6-DTBP binding, which in turn modulates function through changing pore conformations and local electrostatics. We show that simultaneous interactions with the M3/M4 loop and the transmembrane domain (TM) is necessary for the potentiation of heteromeric α3β GlyR by 2,6-DTBP, while TM interaction alone is sufficient to potentiate homomeric α3 GlyR, explaining the mystery of why 2,6-DTBP potentiates only phosphorylated α3β GlyR. These findings show how post-translational modification of the unstructured intracellular M3/M4 loop may regulate Cys-loop receptor function, providing new perspectives in pain control and other pharmaceutical development targeting GlyRs and other Cys-loop receptors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Malgorzata Krezel
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Xia J, Bajpai AK, Liu Y, Yu L, Dong Y, Li F, Chen F, Lu L, Feng S. Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders. Genes (Basel) 2025; 16:605. [PMID: 40428426 PMCID: PMC12111057 DOI: 10.3390/genes16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex interactions between genetic and environmental factors. Recent studies suggest that dysregulation of β-arrestin2 (Arrb2) in the central nervous system is linked to ASD. However, its specific mechanisms remain unknown. METHODS This study employs a systems genetics approach to comprehensively investigate Arrb2 in multiple brain tissues, including the amygdala, cerebellum, hippocampus, and prefrontal cortex, using BXD recombinant inbred (RI) strains. In addition, genetic variance analysis, correlation analysis, expression quantitative trait loci (eQTL) mapping, and functional annotation were used to identify the key downstream targets of Arrb2, validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). RESULTS Arrb2 exhibited expression variations across the four brain regions in BXD mice. eQTL mapping revealed that Arrb2 is cis-regulated, and increased Arrb2 expression levels were significantly correlated with ASD-like symptoms, such as impaired social interactions and abnormal learning and memory. Furthermore, protein-protein interaction (PPI) network analysis, tissue correlation, functional relevance to autism, and differential expression identified eight downstream candidate genes regulated by Arrb2. The experimental results demonstrated that deletion of Arrb2 led to the downregulation of Myh9, Dnmt1, and Brd4 expression, along with protein kinase A (PKA)-induced hyperactivation of Synapsin I. These findings suggest that Arrb2 may contribute to the pathogenesis of autism by modulating the expression of these genes. CONCLUSIONS This study highlights the role of Arrb2 in ASD pathogenesis and identifies Myh9, Dnmt1, and Brd4 as key downstream regulators. These findings provide new insights into the molecular mechanisms of ASD and pave the way for novel therapeutic targets.
Collapse
Affiliation(s)
- Junyu Xia
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lele Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yating Dong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
4
|
Li Y, Kawamura G, Dong Q, Li Q, Ozawa T. Near-Infrared Bioluminescence Assays for Protein-Protein Interactions and Cellular Membrane Fusion in Deep Tissues Using Split Akaluc Reconstitution. Anal Chem 2025; 97:6182-6191. [PMID: 40062634 DOI: 10.1021/acs.analchem.4c06986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bioluminescence analysis using luciferase is an essential tool for studying biological processes in different cells. Split luciferase reconstitution is a technique that enables the analysis of biological events through the monitoring of protein-protein interactions. However, effective detection of cellular events in vivo remains challenging due to the limitation of light penetration into deep tissues and optical sensitivity. To address this, we developed a novel split luciferase reconstitution method using a near-infrared-emitting luciferase, Akaluc, and applied it to monitor two important biological events: G protein-coupled receptor (GPCR)/β-arrestin interactions and myogenic cell fusion in vivo. The developed split Akaluc reconstitution system demonstrated high sensitivity in detecting GPCR/β-arrestin interactions as well as myogenic cell fusion in vitro, enabling real-time insights into their temporal dynamics. Moreover, in vivo bioluminescence imaging successfully monitored GPCR/β-arrestin interactions in the mouse lung and the progression of myogenesis during mouse leg muscle regeneration. The split Akaluc reconstitution method will be a versatile tool for both in vitro and in vivo analyses of protein-protein interactions and cell fusion events. This system holds significant potential for advancing drug development, especially in the screening of GPCR-targeted therapeutic and myogenesis-promoting compounds in animal models.
Collapse
Affiliation(s)
- Yiling Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qi Dong
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qiaojing Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Zhang M, Wang Y, Babu MM. Personalized medicine for cancer cachexia via the ghrelin receptor. Nat Struct Mol Biol 2025; 32:408-410. [PMID: 39953209 DOI: 10.1038/s41594-025-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Affiliation(s)
- Meng Zhang
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Yaxu Wang
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Marx DC, Gonzalez-Hernandez AJ, Huynh K, Strauss A, Rico C, Siepe D, Gallo P, Lee J, Sharghi S, Arefin A, Broichhagen J, Eliezer D, Kalocsay M, Khelashvili G, Levitz J. Structural Diversity of Metabotropic Glutamate Receptor/Beta-Arrestin Coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636340. [PMID: 39975168 PMCID: PMC11838584 DOI: 10.1101/2025.02.03.636340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite the widespread physiological roles of beta-arrestin (β-arr) coupling in G protein-coupled receptor (GPCR) regulation, the molecular basis of GPCR/β-arr interaction has been studied primarily in monomeric family A GPCRs. Here we take an integrative biophysical and structural approach to uncover extreme molecular diversity in β-arr coupling to the neuromodulatory metabotropic glutamate receptors (mGluRs), prototypical, dimeric family C GPCRs. Using a new single molecule pulldown assay, we find that mGluRs couple to β-arrs with a 2:1 or 2:2 stoichiometry via a combination of "tail" and "core" interactions. Single molecule FRET and electron microscopy show that β-arr1 stabilizes active conformations of mGluR8 and a combination of cryo-EM structures and molecular dynamics simulations define the positioning of mGluR8-bound β-arr1, together suggesting a steric mechanism of mGluR desensitization involving interactions with both subunits and the lipid bilayer. Finally, combinatorial mutagenesis enables the identification of a landscape of homo- and hetero-dimeric mGluR/β-arr complexes, including mGluR/β-arr1/β-arr2 megacomplexes, providing a framework for family C GPCR/β-arr coupling and expanding the known range of GPCR/transducer coupling modes.
Collapse
|
7
|
Petrovic I, Grzesiek S, Isaikina P. Advances in the molecular understanding of GPCR-arrestin complexes. Biochem Soc Trans 2024; 52:2333-2342. [PMID: 39508463 DOI: 10.1042/bst20240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.
Collapse
Affiliation(s)
- Ivana Petrovic
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Polina Isaikina
- Center for Life Sciences, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
8
|
Kurt H, Akyol A, Son CD, Zheng C, Gado I, Meli M, Ferrandi EE, Bassanini I, Vasile F, Gurevich VV, Nebol A, Cagavi E, Morra G, Sensoy O. A small molecule enhances arrestin-3 binding to the β 2-adrenergic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628161. [PMID: 39713392 PMCID: PMC11661165 DOI: 10.1101/2024.12.12.628161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders. We performed virtual screening on druggable pockets identified on pre-activated conformations in Molecular Dynamics trajectories of arrestin-3, and found a compound targeting an activation switch, the back loop at the inter-domain interface. According to our model, consistent with available biochemical and structural data, the compound destabilized the ionic lock between the finger and the back loop, and enabled transition of the `gate loop` towards the pre-activated state, which stabilizes pre-activated inter-domain rotation. The predicted binding pocket is consistent with saturation-transfer difference NMR data indicating close contact between the piperazine moiety of the compound and C/finger loops. The compound increases in-cell arrestin-3 binding to phosphorylation-deficient and wild-type β2-adrenergic receptor, but not to muscarinic M2 receptor, as verified by FRET and NanoBiT. This study demonstrates that the back loop can be targeted to modulate interaction of arrestin with phosphorylation-deficient GPCRs in a receptor-specific manner.
Collapse
Affiliation(s)
- Han Kurt
- Istanbul Medipol University, Graduate School of Engineering and Natural Sciences, 34810, Istanbul, Turkey
- present address: University of Cagliari, Department of Physics, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Ali Akyol
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Cagdas Devrim Son
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Chen Zheng
- Vanderbilt University, Department of Pharmacology, 37232, Nashville, TN, USA
| | - Irene Gado
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | - Massimiliano Meli
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Erica Elisa Ferrandi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ivan Bassanini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Francesca Vasile
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | | | - Aylin Nebol
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Esra Cagavi
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Giulia Morra
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ozge Sensoy
- Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
| |
Collapse
|
9
|
Felline A, Bellucci L, Vezzi V, Ambrosio C, Cotecchia S, Fanelli F. Structural plasticity of arrestin-G protein coupled receptor complexes as a molecular determinant of signaling. Int J Biol Macromol 2024; 283:137217. [PMID: 39515728 DOI: 10.1016/j.ijbiomac.2024.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
G protein coupled receptors (GPCRs) are critically regulated by arrestins. In this study, high-resolution data was combined with molecular dynamics simulations to infer the determinants of β-arrestin 1 (βarr1)-GPCR coupling, using the V2 vasopressin receptor (V2R) as a model system. The study highlighted the extremely high plasticity of βarr1-GPCR complexes, dependent on receptor type, state, and membrane environment. The multiple functions of receptor-bound βarr1 are likely determined by the interplay of intrinsic flexibility and collective motions both as a bi-domain protein and as a whole. The two major collective motions of the whole βarr1, consisting in rotation parallel to the membrane plane and inclination with respect to the receptor main axis, are distinctly linked to the two intermolecular interfaces involved in tail and core interactions. The intermolecular dynamic coupling between βarr1 and V2R depends on the allosteric effect of the agonist arginine-vasopressin (AVP). In the absence of AVP the dynamic coupling concerns only tail interactions, while in the presence of AVP it involves both tail and core interactions. This suggests that constitutive and agonist-induced arrestin-receptor dynamic coupling is linked to distinct arrestin functions.
Collapse
Affiliation(s)
- Angelo Felline
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Vanessa Vezzi
- Istituto Superiore di Sanità, V.le Regina Elena, 299 00161 Roma, Italy
| | - Caterina Ambrosio
- Istituto Superiore di Sanità, V.le Regina Elena, 299 00161 Roma, Italy
| | - Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari, via Orabona 4, 70125 Bari, Italy
| | - Francesca Fanelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
10
|
Gao PP, Li L, Chen TT, Li N, Li MQ, Zhang HJ, Chen YN, Zhang SH, Wei W, Sun WY. β-arrestin2: an emerging player and potential therapeutic target in inflammatory immune diseases. Acta Pharmacol Sin 2024:10.1038/s41401-024-01390-w. [PMID: 39349766 DOI: 10.1038/s41401-024-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 03/17/2025]
Abstract
β-arrestin2, a pivotal protein within the arrestin family, is localized in the cytoplasm, plasma membrane and nucleus, and regulates G protein-coupled receptors (GPCRs) signaling. Recent evidence shows that β-arrestin2 plays a dual role in regulating GPCRs by mediating desensitization and internalization, and by acting as a scaffold for the internalization, kinase activation, and the modulation of various signaling pathways, including NF-κB, MAPK, and TGF-β pathways of non-GPCRs. Earlier studies have identified that β-arrestin2 is essential in regulating immune cell infiltration, inflammatory factor release, and inflammatory cell proliferation. Evidently, β-arrestin2 is integral to the pathological mechanisms of inflammatory immune diseases, such as inflammatory bowel disease, sepsis, asthma, rheumatoid arthritis, organ fibrosis, and tumors. Research on the modulation of β-arrestin2 offers a promising strategy for the development of pharmaceuticals targeting inflammatory immune diseases. This review meticulously describes the roles of β-arrestin2 in cells associated with inflammatory immune responses and explores its pathological relevance in various inflammatory immune diseases.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
11
|
Nepal B, Barnett J, Bearoff F, Kortagere S. Biased Signaling Agonists Promote Distinct Phosphorylation and Conformational States of the Dopamine D3 Receptor. Int J Mol Sci 2024; 25:10470. [PMID: 39408798 PMCID: PMC11476979 DOI: 10.3390/ijms251910470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Biased agonists of G-protein-coupled receptors (GPCRs) have emerged as promising selective modulators of signaling pathways by offering therapeutic advantages over unbiased agonists to minimize side effects. The dopamine D3 receptor (D3R), a pivotal GPCR in the central nervous system, has gained significant attention as a therapeutic target for neurological diseases, including Parkinson's disease (PD), addiction, psychosis, depression, and anxiety. We have recently designed and tested SK609, a G-protein biased D3R selective agonist, and demonstrated its efficacy in reducing motor impairment and improving cognitive effects in a rodent model of PD. The molecular mechanism by which SK609 recruits G-protein but not β-arrestin pathways is poorly understood. Utilizing all-atom molecular dynamics simulations, we investigated the distinct conformational dynamics imparted by SK609 and the reference unbiased agonist Pramipexole (PRX). Results from these studies show that the flexibility of transmembrane 3 is key to unbiased signaling, with a ~30° and ~17° shift in tilt angle in the D3R-Gi and D3R-βarrestin2 complexes, respectively. Additionally, untargeted phosphoproteomics analysis reveals unique phosphorylation sites by SK609 and PRX in D3R. These results suggest that SK609 induces conformational changes and unique phosphorylation patterns that promote interactions with G-proteins and are not conducive for β-arrestin2 recruitment and signaling.
Collapse
Affiliation(s)
| | | | | | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (B.N.); (J.B.); (F.B.)
| |
Collapse
|
12
|
Kim K, Ashim J, Ham D, Yu W, Chung KY. Roles of the gate loop in β-arrestin-1 conformational dynamics and phosphorylated receptor interaction. Structure 2024; 32:1358-1366.e3. [PMID: 38889722 DOI: 10.1016/j.str.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Arrestins interact with phosphorylated G protein-coupled receptors (GPCRs) and regulate the homologous desensitization and internalization of GPCRs. The gate loop in arrestins is a critical region for both stabilization of the basal state and interaction with phosphorylated receptors. We investigated the roles of specific residues in the gate loop (K292, K294, and H295) using β-arrestin-1 and phosphorylated C-tail peptide of vasopressin receptor type 2 (V2Rpp) as a model system. We measured the binding affinity of V2Rpp and analyzed conformational dynamics of β-arrestin-1. Our results suggest that K294 plays a critical role in the interaction with V2Rpp without influencing the overall conformation of the V2Rpp-bound state. The residues K292 and H295 contribute to the stability of the polar core in the basal state and form a specific conformation of the finger loop in the V2Rpp-bound state.
Collapse
Affiliation(s)
- Kiae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Janbolat Ashim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Donghee Ham
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wookyung Yu
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Gareri C, Pfeiffer CT, Jiang X, Paulo JA, Gygi SP, Pham U, Chundi A, Wingler LM, Staus DP, Stepniewski TM, Selent J, Lucero EY, Grogan A, Rajagopal S, Rockman HA. Phosphorylation patterns in the AT1R C-terminal tail specify distinct downstream signaling pathways. Sci Signal 2024; 17:eadk5736. [PMID: 39137246 PMCID: PMC11443182 DOI: 10.1126/scisignal.adk5736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or β-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and β-arrestin recruitment, and for a synthetic biased agonist that only stimulates β-arrestin recruitment. The endogenous and β-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full β-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on β-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable β-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.
Collapse
Affiliation(s)
- Clarice Gareri
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad T. Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xue Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Laura M. Wingler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P. Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Emilio Y. Lucero
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alyssa Grogan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Wang W, Liu X. Mechanism of human α3β GlyR modulation in inflammatory pain and 2, 6-DTBP interaction. RESEARCH SQUARE 2024:rs.3.rs-4402878. [PMID: 39149480 PMCID: PMC11326354 DOI: 10.21203/rs.3.rs-4402878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
α3β glycine receptor (GlyR) is a subtype of the GlyRs that belongs to the Cys-loop receptor superfamily. It is a target for non-psychoactive pain control drug development due to its high expression in the spinal dorsal horn and indispensable roles in pain sensation. α3β GlyR activity is inhibited by a phosphorylation in the large internal M3/M4 loop of α3 through the prostaglandin E2 (PGE2) pathway, which can be reverted by a small molecule analgesic, 2, 6-DTBP. However, the mechanism of regulation by phosphorylation or 2, 6-DTBP is unknown. Here we show M3/M4 loop compaction through phosphorylation and 2, 6-DTBP binding, which in turn changes the local environment and rearranges ion conduction pore conformation to modulate α3β GlyR activity. We resolved glycine-bound structures of α3β GlyR with and without phosphorylation, as well as in the presence of 2, 6-DTBP and found no change in functional states upon phosphorylation, but transition to an asymmetric super open pore by 2, 6-DTBP binding. Single-molecule Forster resonance energy transfer (smFRET) experiment shows compaction of M3/M4 loop towards the pore upon phosphorylation, and further compaction by 2, 6-DTBP. Our results reveal a localized interaction model where M3/M4 loop modulate GlyR function through physical proximation. This regulation mechanism should inform on pain medication development targeting GlyRs. Our strategy allowed investigation of how post-translational modification of an unstructured loop modulate channel conduction, which we anticipate will be applicable to intrinsically disordered loops ubiquitously found in ion channels.
Collapse
Affiliation(s)
- Weiwei Wang
- University of Texas Southwestern Medical Center
| | - Xiaofen Liu
- University of Texas Southwestern Medical Center
| |
Collapse
|
15
|
Underwood O, Fritzwanker S, Glenn J, Blum NK, Batista-Gondin A, Drube J, Hoffmann C, Briddon SJ, Schulz S, Canals M. Key phosphorylation sites for robust β-arrestin2 binding at the MOR revisited. Commun Biol 2024; 7:933. [PMID: 39095612 PMCID: PMC11297201 DOI: 10.1038/s42003-024-06571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Desensitisation of the mu-opioid receptor (MOR) is proposed to underlie the initiation of opioid analgesic tolerance and previous work has shown that agonist-induced phosphorylation of the MOR C-tail contributes to this desensitisation. Moreover, phosphorylation is important for β-arrestin recruitment to the receptor, and ligands of different efficacies induce distinct phosphorylation barcodes. The C-tail 370TREHPSTANT379 motif harbours Ser/Thr residues important for these regulatory functions. 375Ser is the primary phosphorylation site of a ligand-dependent, hierarchical, and sequential process, whereby flanking 370Thr, 376Thr and 379Thr get subsequently and rapidly phosphorylated. Here we used GRK KO cells, phosphosite specific antibodies and site-directed mutagenesis to evaluate the contribution of the different GRK subfamilies to ligand-induced phosphorylation barcodes and β-arrestin2 recruitment. We show that both GRK2/3 and GRK5/6 subfamilies promote phosphorylation of 370Thr and 375Ser. Importantly, only GRK2/3 induce phosphorylation of 376Thr and 379Thr, and we identify these residues as key sites to promote robust β-arrestin recruitment to the MOR. These data provide insight into the mechanisms of MOR regulation and suggest that the cellular complement of GRK subfamilies plays an important role in determining the tissue responses of opioid agonists.
Collapse
Affiliation(s)
- Owen Underwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Sebastian Fritzwanker
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jaqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Nina Kathleen Blum
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Arisbel Batista-Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Julia Drube
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Carsten Hoffmann
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Stefan Schulz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- 7TM Antibodies GmbH, Hans-Knöll-Straße 6, D-07745, Jena, Germany
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK.
| |
Collapse
|
16
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
17
|
Mancinelli CD, Marx DC, Gonzalez-Hernandez AJ, Huynh K, Mancinelli L, Arefin A, Khelashvilli G, Levitz J, Eliezer D. Control of G protein-coupled receptor function via membrane-interacting intrinsically disordered C-terminal domains. Proc Natl Acad Sci U S A 2024; 121:e2407744121. [PMID: 38985766 PMCID: PMC11260148 DOI: 10.1073/pnas.2407744121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here, we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals an additional mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.
Collapse
Affiliation(s)
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | | | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - Lucia Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - George Khelashvilli
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Department of Psychiatry, Weill Cornell Medicine, New York, NY10065
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
18
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Saito A, Kise R, Inoue A. Generation of Comprehensive GPCR-Transducer-Deficient Cell Lines to Dissect the Complexity of GPCR Signaling. Pharmacol Rev 2024; 76:599-619. [PMID: 38719480 DOI: 10.1124/pharmrev.124.001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and β-arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches. The complexity of GPCR signaling arises from the aspects of G-protein-coupling selectivity, biased signaling, interpathway crosstalk, and variable molecular modifications generating these diverse signaling patterns. Numerous questions relative to these aspects of signaling remained unanswered until the recent development of CRISPR genome-editing technology. Such genome editing technology presents opportunities to chronically eliminate the expression of G-protein subunits, β-arrestins, G-protein-coupled receptor kinases (GRKs), and many other signaling nodes in the GPCR pathways at one's convenience. Here, we review the practicality of using CRISPR-derived knockout (KO) cells in the experimental contexts of unraveling the molecular details of GPCR signaling mechanisms. To mention a few, KO cells have revealed the contribution of β-arrestins in ERK activation, Gα protein selectivity, GRK-based regulation of GPCRs, and many more, hence validating its broad applicability in GPCR studies. SIGNIFICANCE STATEMENT: This review emphasizes the practical application of G-protein-coupled receptor (GPCR) transducer knockout (KO) cells in dissecting the intricate regulatory mechanisms of the GPCR signaling network. Currently available cell lines, along with accumulating KO cell lines in diverse cell types, offer valuable resources for systematically elucidating GPCR signaling regulation. Given the association of GPCR signaling with numerous diseases, uncovering the system-based signaling map is crucial for advancing the development of novel drugs targeting specific diseases.
Collapse
Affiliation(s)
- Ayaki Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Li J, Jo MH, Yan J, Hall T, Lee J, López-Sánchez U, Yan S, Ha T, Springer TA. Ligand binding initiates single-molecule integrin conformational activation. Cell 2024; 187:2990-3005.e17. [PMID: 38772370 PMCID: PMC11162317 DOI: 10.1016/j.cell.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin β-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Myung Hyun Jo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor Hall
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Uriel López-Sánchez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Newton South High School, Newton, MA 02459, USA
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
22
|
Agyemang E, Gonneville AN, Tiruvadi-Krishnan S, Lamichhane R. Exploring GPCR conformational dynamics using single-molecule fluorescence. Methods 2024; 226:35-48. [PMID: 38604413 PMCID: PMC11098685 DOI: 10.1016/j.ymeth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Eugene Agyemang
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Alyssa N Gonneville
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
23
|
Bower JB, Robson SA, Ziarek JJ. Insights on the G protein-coupled receptor helix 8 solution structure and orientation using a neurotensin receptor 1 peptide. Protein Sci 2024; 33:e4976. [PMID: 38757374 PMCID: PMC11099793 DOI: 10.1002/pro.4976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.
Collapse
Affiliation(s)
- James B. Bower
- Molecular and Cellular Biochemistry DepartmentIndiana UniversityBloomingtonIndianaUSA
| | - Scott A. Robson
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Joshua J. Ziarek
- Molecular and Cellular Biochemistry DepartmentIndiana UniversityBloomingtonIndianaUSA
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
24
|
Mancinelli C, Marx DC, Gonzalez-Hernandez AJ, Huynh K, Mancinelli L, Arefin A, Khelashvilli G, Levitz J, Eliezer D. Control of G protein-coupled receptor function via membrane-interacting intrinsically disordered C-terminal domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553551. [PMID: 37645938 PMCID: PMC10462050 DOI: 10.1101/2023.08.16.553551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals a novel mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.
Collapse
Affiliation(s)
- Chiara Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- equal contribution
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- equal contribution
| | | | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucia Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - George Khelashvilli
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
25
|
Zhao J, Elgeti M, O'Brien ES, Sár CP, Ei Daibani A, Heng J, Sun X, White E, Che T, Hubbell WL, Kobilka BK, Chen C. Ligand efficacy modulates conformational dynamics of the µ-opioid receptor. Nature 2024; 629:474-480. [PMID: 38600384 PMCID: PMC11078757 DOI: 10.1038/s41586-024-07295-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of β-arrestin-1 with the μOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.
Collapse
Affiliation(s)
- Jiawei Zhao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Drug Discovery, University of Leipzig Medical Center, Leipzig, Germany.
| | - Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cecília P Sár
- Institute of Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Pécs, Pécs, Hungary
| | - Amal Ei Daibani
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jie Heng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Elizabeth White
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Götz M, Barth A, Bohr SSR, Börner R, Chen J, Cordes T, Erie DA, Gebhardt C, Hadzic MCAS, Hamilton GL, Hatzakis NS, Hugel T, Kisley L, Lamb DC, de Lannoy C, Mahn C, Dunukara D, de Ridder D, Sanabria H, Schimpf J, Seidel CAM, Sigel RKO, Sletfjerding MB, Thomsen J, Vollmar L, Wanninger S, Weninger KR, Xu P, Schmid S. Reply to: On the statistical foundation of a recent single molecule FRET benchmark. Nat Commun 2024; 15:3626. [PMID: 38688911 PMCID: PMC11061175 DOI: 10.1038/s41467-024-47734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Markus Götz
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Søren S-R Bohr
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Richard Börner
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | | | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Don C Lamb
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Carlos de Lannoy
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dushani Dunukara
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Magnus B Sletfjerding
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Center for optimised oligo escape and control of disease University of Copenhagen, 2100 Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Hai G, Bai J, Liu Y, Li J, Liu A, Wang J, Liu Q, Liu W, Wan P, Fu X. Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli. Front Bioeng Biotechnol 2024; 12:1376205. [PMID: 38529403 PMCID: PMC10961424 DOI: 10.3389/fbioe.2024.1376205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Guiping Hai
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jiachen Bai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijun Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Gurevich VV, Gurevich EV. Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. APPLIED MAGNETIC RESONANCE 2024; 55:11-25. [DOI: 10.1007/s00723-023-01561-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 02/03/2025]
|
29
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Kim S, Ge J, Kim D, Lee JJ, Choi YJ, Chen W, Bowman JW, Foo SS, Chang LC, Liang Q, Hara D, Choi I, Kim MH, Eoh H, Jung JU. TXNIP-mediated crosstalk between oxidative stress and glucose metabolism. PLoS One 2024; 19:e0292655. [PMID: 38329960 PMCID: PMC10852281 DOI: 10.1371/journal.pone.0292655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/26/2023] [Indexed: 02/10/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has emerged as a key player in cancer and diabetes since it targets thioredoxin (TRX)-mediated redox regulation and glucose transporter (GLUT)-mediated metabolism. TXNIP consists of two arrestin (ARR, N-ARR and C-ARR) domains at its amino-terminus and two PPxY (PY) motifs and a di-leucine (LL) motif for endocytosis at its carboxyl-terminus. Here, we report that TXNIP shuffles between TRX and GLUTs to regulate homeostasis of intracellular oxidative stress and glucose metabolism. While TXNIP functions as a gatekeeper of TRX by default, it robustly interacted with class I GLUTs through its C-ARR domain upon increase of intracellular reactive oxygen species. This interaction prompted the surface expression downregulation and lysosomal degradation of GLUTs by its carboxyl-terminal LL endocytic signaling motif to attenuate glucose uptake. Consequently, TXNIP expression significantly limited glucose uptake, leading to the suppression of glycolysis, hexosamine biosynthesis, and the pentose phosphate pathway. Our findings establish a fundamental link between ROS and glucose metabolism through TXNIP and provide a promising target for the drug development against GLUT-related metabolic disorders.
Collapse
Affiliation(s)
- Stephanie Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jianning Ge
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dokyun Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - James W. Bowman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lin-Chun Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qiming Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daiki Hara
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
31
|
Abboud D, Abboud C, Inoue A, Twizere JC, Hanson J. Basal interaction of the orphan receptor GPR101 with arrestins leads to constitutive internalization. Biochem Pharmacol 2024; 220:116013. [PMID: 38151077 DOI: 10.1016/j.bcp.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
GPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (β-arrestin 1) and Arrestin 3 (β-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function.
Collapse
Affiliation(s)
- Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium.
| |
Collapse
|
32
|
Kish M, Ivory DP, Phillips JJ. Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J Am Chem Soc 2024; 146:298-307. [PMID: 38158228 PMCID: PMC10786028 DOI: 10.1021/jacs.3c08934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
It remains a major challenge to ascertain the specific structurally dynamic changes that underpin protein functional switching. There is a growing need in molecular biology and drug discovery to complement structural models with the ability to determine the dynamic structural changes that occur as these proteins are regulated and function. The archetypal allosteric enzyme glycogen phosphorylase is a clinical target of great interest to treat type II diabetes and metastatic cancers. Here, we developed a time-resolved nonequilibrium millisecond hydrogen/deuterium-exchange mass spectrometry (HDX-MS) approach capable of precisely locating dynamic structural changes during allosteric activation and inhibition of glycogen phosphorylase. We resolved obligate transient changes in the localized structure that are absent when directly comparing active/inactive states of the enzyme and show that they are common to allosteric activation by AMP and inhibition by caffeine, operating at different sites. This indicates that opposing allosteric regulation by inhibitor and activator ligands is mediated by pathways that intersect with a common structurally dynamic motif. This mass spectrometry approach uniquely stands to discover local transient structural dynamics and could be used broadly to identify features that influence the structural transitions of proteins.
Collapse
Affiliation(s)
- Monika Kish
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Dylan P. Ivory
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Jonathan J. Phillips
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
- Alan
Turing Institute, British Library, London NW1 2DB, U.K.
| |
Collapse
|
33
|
Barki N, Jenkins L, Marsango S, Dedeo D, Bolognini D, Dwomoh L, Abdelmalik AM, Nilsen M, Stoffels M, Nagel F, Schulz S, Tobin AB, Milligan G. Phosphorylation bar-coding of free fatty acid receptor 2 is generated in a tissue-specific manner. eLife 2023; 12:RP91861. [PMID: 38085667 PMCID: PMC10715726 DOI: 10.7554/elife.91861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer296/pSer297 or pThr306/pThr310 provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ. In white adipose tissue, phosphorylation of residues Ser296/Ser297 was enhanced upon agonist activation whilst Thr306/Thr310 did not become phosphorylated. By contrast, in immune cells from Peyer's patches Thr306/Thr310 become phosphorylated in a strictly agonist-dependent fashion whilst in enteroendocrine cells of the colon both Ser296/Ser297 and Thr306/Thr310 were poorly phosphorylated. The concept of phosphorylation bar-coding has centred to date on the potential for different agonists to promote distinct receptor phosphorylation patterns. Here, we demonstrate that this occurs for the same agonist-receptor pairing in different patho-physiologically relevant target tissues. This may underpin why a single G protein-coupled receptor can generate different functional outcomes in a tissue-specific manner.
Collapse
Affiliation(s)
- Natasja Barki
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Sara Marsango
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Domonkos Dedeo
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Daniele Bolognini
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Louis Dwomoh
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Aisha M Abdelmalik
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Margaret Nilsen
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Manon Stoffels
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | | | - Stefan Schulz
- 7TM Antibodies GmbHJenaGermany
- Institute of Pharmacology and Toxicology, University Hospital JenaJenaGermany
| | - Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
34
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
35
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
36
|
Zhai R, Wang Z, Chai Z, Niu X, Li C, Jin C, Hu Y. Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy. Nat Commun 2023; 14:7865. [PMID: 38030602 PMCID: PMC10686989 DOI: 10.1038/s41467-023-43694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
β-Arrestins (βarrs) are functionally versatile proteins that play critical roles in the G-protein-coupled receptor (GPCR) signaling pathways. While it is well established that the phosphorylated receptor tail plays a central role in βarr activation, emerging evidence highlights the contribution from membrane lipids. However, detailed molecular mechanisms of βarr activation by different binding partners remain elusive. In this work, we present a comprehensive study of the structural changes in critical regions of βarr1 during activation using 19F NMR spectroscopy. We show that phosphopeptides derived from different classes of GPCRs display different βarr1 activation abilities, whereas binding of the membrane phosphoinositide PIP2 stabilizes a distinct partially activated conformational state. Our results further unveil a sparsely-populated activation intermediate as well as complex cross-talks between different binding partners, implying a highly multifaceted conformational energy landscape of βarr1 that can be intricately modulated during signaling.
Collapse
Affiliation(s)
- Ruibo Zhai
- School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Zhuoqi Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zhaofei Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China
| | - Changwen Jin
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China.
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Joint Laboratory of the National Centers for Magnetic Resonance in Wuhan and in Beijing, Wuhan, 430071, China.
| |
Collapse
|
37
|
Tatsumi R, Aihara S, Matsune S, Aoki J, Inoue A, Shimizu T, Nakamura M. Stepwise phosphorylation of BLT1 defines complex assemblies with β-arrestin serving distinct functions. FASEB J 2023; 37:e23213. [PMID: 37795742 DOI: 10.1096/fj.202301440r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of β-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a β-arrestin-bound low-affinity state. This configuration, referred to as the "low-LTB4 -induced complex," necessitates the finger loop region and the phosphoinositide-binding motif of β-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed "high-LTB4 -induced complex." This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, β-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein β-arrestins perform distinct functions.
Collapse
Affiliation(s)
- Riko Tatsumi
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Saki Aihara
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Seiya Matsune
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
- Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (AMED-CREST), Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
38
|
Li W, Zhu Y, Wang W, He D, Feng L, Li Z. Src tyrosine kinase promotes cardiac remodeling induced by chronic sympathetic activation. Biosci Rep 2023; 43:BSR20231097. [PMID: 37650260 PMCID: PMC10611920 DOI: 10.1042/bsr20231097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Cardiac remodeling serves as the underlying pathological basis for numerous cardiovascular diseases and represents a pivotal stage for intervention. The excessive activation of β-adrenergic receptors (β-ARs) assumes a crucial role in cardiac remodeling. Nonetheless, the underlying molecular mechanisms governing β-AR-induced cardiac remodeling remain largely unresolved. In the present study, we identified Src tyrosine kinase as a key player in the cardiac remodeling triggered by excessive β-AR activation. Our findings demonstrated that Src mediates isoproterenol (ISO)-induced cardiac hypertrophy, fibrosis, and inflammation in vivo. Furthermore, Src facilitates β-AR-mediated proliferation and transdifferentiation of cardiac fibroblasts, and hypertrophy and cardiomyocytes in vitro. Subsequent investigations have substantiated that Src mediates β-AR induced the extracellular signal-regulated protein kinase (ERK1/2) signaling pathway activated by β-AR. Our research presents compelling evidence that Src promotes β-AR-induced cardiac remodeling in both in vivo and in vitro settings. It establishes the promoting effect of the β-AR/Src/ERK signaling pathway on overall cardiac remodeling in cardiac fibroblasts and underscores the potential of Src as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Wenqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Dan He
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
39
|
Kahsai AW, Shah KS, Shim PJ, Lee MA, Shreiber BN, Schwalb AM, Zhang X, Kwon HY, Huang LY, Soderblom EJ, Ahn S, Lefkowitz RJ. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2303794120. [PMID: 37844230 PMCID: PMC10614829 DOI: 10.1073/pnas.2303794120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
β-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. β-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. β-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, β-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by β-arrestins. Here, we demonstrate that β-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that β-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which β-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state β-arrestin 2 is more robust than by active-state β-arrestin 1, highlighting differential capacities of β-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which β-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.
Collapse
Affiliation(s)
- Alem W. Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kunal S. Shah
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Paul J. Shim
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Medicine, College of Medicine, The University of Arizona, Phoenix, AZ85004
| | - Mason A. Lee
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Bowie N. Shreiber
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Allison M. Schwalb
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Xingdong Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Henry Y. Kwon
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- General Surgery Residency Program, Henry Ford Hospital, Detroit, MI48202
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Erik J. Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC27710
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Biochemistry, Duke University Medical Center, Durham, NC27710
- Department of Chemistry, Duke University Medical Center, Durham, NC27710
- HHMI, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
40
|
Zheng C, Javitch JA, Lambert NA, Donthamsetti P, Gurevich VV. In-Cell Arrestin-Receptor Interaction Assays. Curr Protoc 2023; 3:e890. [PMID: 37787634 PMCID: PMC10566372 DOI: 10.1002/cpz1.890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
G protein-coupled receptors (GPCRs) represent ∼30% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which function in different signaling pathways. Given that functionally selective or biased ligands preferentially activate one of these two groups of pathways, they may be superior medications for certain disease states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for assays that monitor reversible arrestin recruitment to GPCRs in living cells using either bioluminescence resonance energy transfer (BRET) or nanoluciferase complementation (NanoLuc). Two types of assays can be used: one configuration directly measures arrestin recruitment to a GPCR fused to a protein tag at its intracellular C-terminus, whereas the other configuration detects arrestin translocation to the plasma membrane in response to activation of an unmodified GPCR. Together, these assays are powerful tools for studying dynamic interactions between GPCRs and arrestins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Receptor-arrestin BRET assay to measure ligand-induced recruitment of arrestin to receptors Basic Protocol 2: Receptor-arrestin NANOBIT assay to measure ligand-induced recruitment of arrestin to receptors Alternative Protocol 1: BRET assay to measure ligand-induced recruitment of arrestin to the plasma membrane Alternative Protocol 2: NANOBIT assay to measure ligand-induced recruitment of arrestin to the plasma membrane Support Protocol 1: Optimization of polyethylenimine (PEI) concentration for transfection.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
41
|
Maggio R, Fasciani I, Petragnano F, Coppolino MF, Scarselli M, Rossi M. Unraveling the Functional Significance of Unstructured Regions in G Protein-Coupled Receptors. Biomolecules 2023; 13:1431. [PMID: 37892113 PMCID: PMC10604838 DOI: 10.3390/biom13101431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Unstructured regions in functional proteins have gained attention in recent years due to advancements in informatics tools and biophysical methods. G protein-coupled receptors (GPCRs), a large family of cell surface receptors, contain unstructured regions in the form of the i3 loop and C-terminus. This review provides an overview of the functional significance of these regions in GPCRs. GPCRs transmit signals from the extracellular environment to the cell interior, regulating various physiological processes. The i3 loop, located between the fifth and sixth transmembrane helices, and the C-terminus, connected to the seventh transmembrane helix, are determinant of interactions with G proteins and with other intracellular partners such as arrestins. Recent studies demonstrate that the i3 loop and C-terminus play critical roles in allosterically regulating GPCR activation. They can act as autoregulators, adopting conformations that, by restricting G protein access, modulate receptor coupling specificity. The length and unstructured nature of the i3 loop and C-terminus provide unique advantages in GPCR interactions with intracellular protein partners. They act as "fishing lines", expanding the radius of interaction and enabling GPCRs to tether scaffolding proteins, thus facilitating receptor stability during cell membrane movements. Additionally, the i3 loop may be involved in domain swapping between GPCRs, generating novel receptor dimers with distinct binding and coupling characteristics. Overall, the i3 loop and C-terminus are now widely recognized as crucial elements in GPCR function and regulation. Understanding their functional roles enhances our comprehension of GPCR structure and signaling complexity and holds promise for advancements in receptor pharmacology and drug development.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Maria Francesca Coppolino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| |
Collapse
|
42
|
Colson L, Kwon Y, Nam S, Bhandari A, Maya NM, Lu Y, Cho Y. Trends in Single-Molecule Total Internal Reflection Fluorescence Imaging and Their Biological Applications with Lab-on-a-Chip Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:7691. [PMID: 37765748 PMCID: PMC10537725 DOI: 10.3390/s23187691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Single-molecule imaging technologies, especially those based on fluorescence, have been developed to probe both the equilibrium and dynamic properties of biomolecules at the single-molecular and quantitative levels. In this review, we provide an overview of the state-of-the-art advancements in single-molecule fluorescence imaging techniques. We systematically explore the advanced implementations of in vitro single-molecule imaging techniques using total internal reflection fluorescence (TIRF) microscopy, which is widely accessible. This includes discussions on sample preparation, passivation techniques, data collection and analysis, and biological applications. Furthermore, we delve into the compatibility of microfluidic technology for single-molecule fluorescence imaging, highlighting its potential benefits and challenges. Finally, we summarize the current challenges and prospects of fluorescence-based single-molecule imaging techniques, paving the way for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Soobin Nam
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Avinashi Bhandari
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Nolberto Martinez Maya
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| |
Collapse
|
43
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
44
|
Maharana J, Sarma P, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R, Shukla AK. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Mol Cell 2023; 83:2091-2107.e7. [PMID: 37209686 PMCID: PMC7615930 DOI: 10.1016/j.molcel.2023.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Agonist-induced GPCR phosphorylation is a key determinant for the binding and activation of β-arrestins (βarrs). However, it is not entirely clear how different GPCRs harboring divergent phosphorylation patterns impart converging active conformation on βarrs leading to broadly conserved functional responses such as desensitization, endocytosis, and signaling. Here, we present multiple cryo-EM structures of activated βarrs in complex with distinct phosphorylation patterns derived from the carboxyl terminus of different GPCRs. These structures help identify a P-X-P-P type phosphorylation motif in GPCRs that interacts with a spatially organized K-K-R-R-K-K sequence in the N-domain of βarrs. Sequence analysis of the human GPCRome reveals the presence of this phosphorylation pattern in a large number of receptors, and its contribution in βarr activation is demonstrated by targeted mutagenesis experiments combined with an intrabody-based conformational sensor. Taken together, our findings provide important structural insights into the ability of distinct GPCRs to activate βarrs through a significantly conserved mechanism.
Collapse
Affiliation(s)
- Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
45
|
Bumbak F, Bower JB, Zemmer SC, Inoue A, Pons M, Paniagua JC, Yan F, Ford J, Wu H, Robson SA, Bathgate RAD, Scott DJ, Gooley PR, Ziarek JJ. Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314. Nat Commun 2023; 14:3328. [PMID: 37286565 PMCID: PMC10247727 DOI: 10.1038/s41467-023-38894-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. β-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A β-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.
Collapse
Affiliation(s)
- Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - James B Bower
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Skylar C Zemmer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fei Yan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Ford
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
46
|
Portales-Castillo I, Dean T, Cheloha RW, Creemer BA, Vilardaga JP, Savransky S, Khatri A, Jüppner H, Gardella TJ. Altered Signaling and Desensitization Responses in PTH1R Mutants Associated with Eiken Syndrome. Commun Biol 2023; 6:599. [PMID: 37268817 PMCID: PMC10238420 DOI: 10.1038/s42003-023-04966-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
The parathyroid hormone receptor type 1 (PTH1R) is a G protein-coupled receptor that plays key roles in regulating calcium homeostasis and skeletal development via binding the ligands, PTH and PTH-related protein (PTHrP), respectively. Eiken syndrome is a rare disease of delayed bone mineralization caused by homozygous PTH1R mutations. Of the three mutations identified so far, R485X, truncates the PTH1R C-terminal tail, while E35K and Y134S alter residues in the receptor's amino-terminal extracellular domain. Here, using a variety of cell-based assays, we show that R485X increases the receptor's basal rate of cAMP signaling and decreases its capacity to recruit β-arrestin2 upon ligand stimulation. The E35K and Y134S mutations each weaken the binding of PTHrP leading to impaired β-arrestin2 recruitment and desensitization of cAMP signaling response to PTHrP but not PTH. Our findings support a critical role for interaction with β-arrestin in the mechanism by which the PTH1R regulates bone formation.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, BJCIH Building, 425 South Euclid St, St. Louis, MO, 63110, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Ross W Cheloha
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Brendan A Creemer
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
47
|
Isaikina P, Petrovic I, Jakob RP, Sarma P, Ranjan A, Baruah M, Panwalkar V, Maier T, Shukla AK, Grzesiek S. A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes. Mol Cell 2023:S1097-2765(23)00326-X. [PMID: 37244255 DOI: 10.1016/j.molcel.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.
Collapse
Affiliation(s)
- Polina Isaikina
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ivana Petrovic
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashutosh Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Minakshi Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vineet Panwalkar
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
48
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
49
|
Xie B, Le Rouzic VP, Goldberg A, Tsai MHM, Chen L, Zhang T, Sinha A, Pan YX, Baumann MH, Shi L. Binding preference at the μ-opioid receptor underlies distinct pharmacology of cyclopropyl versus valeryl analogs of fentanyl. Neuropharmacology 2023; 227:109442. [PMID: 36731721 PMCID: PMC9974845 DOI: 10.1016/j.neuropharm.2023.109442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining μ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated β-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.
Collapse
Affiliation(s)
- Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Valerie P Le Rouzic
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Tiffany Zhang
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Antara Sinha
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA; Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
50
|
Aydin Y, Böttke T, Lam JH, Ernicke S, Fortmann A, Tretbar M, Zarzycka B, Gurevich VV, Katritch V, Coin I. Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells. Nat Commun 2023; 14:1151. [PMID: 36859440 PMCID: PMC9977954 DOI: 10.1038/s41467-023-36797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Understanding the molecular basis of arrestin-mediated regulation of GPCRs is critical for deciphering signaling mechanisms and designing functional selectivity. However, structural studies of GPCR-arrestin complexes are hampered by their highly dynamic nature. Here, we dissect the interaction of arrestin-2 (arr2) with the secretin-like parathyroid hormone 1 receptor PTH1R using genetically encoded crosslinking amino acids in live cells. We identify 136 intermolecular proximity points that guide the construction of energy-optimized molecular models for the PTH1R-arr2 complex. Our data reveal flexible receptor elements missing in existing structures, including intracellular loop 3 and the proximal C-tail, and suggest a functional role of a hitherto overlooked positively charged region at the arrestin N-edge. Unbiased MD simulations highlight the stability and dynamic nature of the complex. Our integrative approach yields structural insights into protein-protein complexes in a biologically relevant live-cell environment and provides information inaccessible to classical structural methods, while also revealing the dynamics of the system.
Collapse
Affiliation(s)
- Yasmin Aydin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Thore Böttke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stefan Ernicke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Anna Fortmann
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Maik Tretbar
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Barbara Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Vsevolod V Gurevich
- Department of Phar-macology, Vanderbilt University, Nashville, TN, 37232-0146, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| | - Irene Coin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|