1
|
Pan M, Qian C, Huo S, Wu Y, Zhao X, Ying Y, Wang B, Yang H, Yeerken A, Wang T, Fu M, Wang L, Wei Y, Zhao Y, Shao C, Wang H, Zhao C. Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via Akkermansia muciniphila. Gut Microbes 2025; 17:2447834. [PMID: 39782002 PMCID: PMC11730363 DOI: 10.1080/19490976.2024.2447834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation. In this study, we analyzed 110 athletes undergoing closed training and found that fecal lactate levels were significantly associated with anxiety indicators. We observed a significant negative correlation between Akkermansia abundance and anxiety levels in athletes. Co-supplementation with lactate and Akkermansia muciniphila (A. muciniphila) modulated tryptophan metabolism by increasing key enzyme TPH1 and reducing IDO1, thus shifting metabolism from kynurenine (Kyn) to 5-HT. In addition, lactate enhanced the propionate production capacity of A. muciniphila, potentially contributing to anxiety reduction in mice. Taken together, these findings suggest that enteric lactate and A. muciniphila collaboratively restore the imbalance in tryptophan metabolism, leading to increased 5-HT activity and alleviating anxiety phenotypes. This study highlights the intricate interplay between gut metabolites and anxiety regulation, offering potential avenues for microbiota-targeted therapeutic strategies for anxiety.
Collapse
Affiliation(s)
- Miaomiao Pan
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglang Qian
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoye Huo
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuchen Wu
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | | | - Boyu Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Yang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anaguli Yeerken
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongyao Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengwei Fu
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihong Wang
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuhuan Wei
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yunhua Zhao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Chunhai Shao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Clinical Nutrition, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijing Wang
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chao Zhao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Chen Y, Fang JY. The role of colonic microbiota amino acid metabolism in gut health regulation. CELL INSIGHT 2025; 4:100227. [PMID: 39926315 PMCID: PMC11803165 DOI: 10.1016/j.cellin.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/11/2025]
Abstract
The human gut microbiota plays a critical role in maintaining host homeostasis through metabolic activities. Among these, amino acid (AA) metabolism by the microbiota in the large intestine is highly heterogeneous and relevant to host health. Despite increasing interest, microbial AA metabolism remains relatively unexplored. This review highlights recent advances in colonic microbial AA metabolism, including auxotrophies, AA synthesis, and dissimilatory AA metabolites, and their implications in gut health, focusing on major gastrointestinal diseases including colorectal cancer, inflammatory bowel disease, and irritable bowel syndrome.
Collapse
Affiliation(s)
- Youli Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
3
|
Nam SL, Tarazona Carrillo KS, de la Mata AP, Giebelhaus RT, de Bruin OM, Doukhanine E, Harynuk JJ. Evaluation of solutions for stabilizing feces in metabolomics studies using GC × GC-TOFMS. Metabolomics 2025; 21:31. [PMID: 39982619 DOI: 10.1007/s11306-025-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION Fecal metabolomics studies have garnered interest in recent years due to the potential for these samples to provide unique information about an individual. Stool is a dynamic mixture of human excrement, microbiota, and enzymes that yields a constantly changing metabolite profile. The main challenge in a fecal metabolomics study is ensuring that the metabolite profile changes as little as possible between sample collection and sample processing/analysis. OBJECTIVES This study aimed to evaluate the efficacy of five solutions in preserving human fecal metabolites over a seven-day storage period at ambient temperature, enabling at-home collection, cost-effective ambient transport and sample storage. METHOD Five solutions with varying chemical compositions were evaluated for their ability to stabilize fecal metabolites. Samples were stored at ambient temperature for seven days, and metabolites were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). The stabilizing efficacy of the solutions was assessed using total useful peak area (TUPA), absolute relative change (ARC) and compound class-based analyses, comparing the initial, stabilized, and unstabilized samples. RESULTS Different solutions demonstrated varied efficiencies for different compound classes. Overall, the results indicated that the use of stabilization solutions significantly minimized changes in the fecal metabolite profile compared to unstabilized samples left at room temperature for one week. CONCLUSION This study demonstrates that stabilization solutions are effective in preserving fecal metabolites during storage at ambient temperature, supporting the feasibility of at-home sample collection.
Collapse
Affiliation(s)
- Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - Kieran S Tarazona Carrillo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - A Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | - Ryland T Giebelhaus
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- The Metabolomics Innovation Centre, Edmonton, AB, Canada
| | | | | | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
- The Metabolomics Innovation Centre, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
5
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
6
|
Xu N, Lin H, Lin L, Tang M, Zhang Z, Yang C, Wang W. Visual and Quantitative Analysis of Dietary Fiber-Microbiota Interactions via Metabolic Labeling In Vivo. Chembiochem 2025; 26:e202400922. [PMID: 39538366 DOI: 10.1002/cbic.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Dietary fiber (DF)-based interventions are crucial in establishing a health-promoting gut microbiota. However, directly investigating DFs' in vivo interactions with intestinal bacteria remains challenging due to the lack of suitable tools. Here, we develop an in vivo metabolic labeling-based strategy, which enables not only imaging and identifying the bacteria that bind with specific DF in the intestines, but also quantifying DF's impact on their metabolic status. Four DFs, including galactan, rhamnogalacturonan and two inulins, are fluorescently derivatized and used for in vivo labeling to visually record DFs' interactions with gut bacteria. The subsequent cell-sorting, 16S rDNA sequencing, and fluorescence in situ hybridization identify the taxa that bind each DF. We then select a DF-binding species newly identified herein and verify its DF-catabolizing capability in vitro. Furthermore, we find that the indigenous metabolic status of Gram-positive bacteria, whether inulin-binders or not, is significantly enhanced by the inulin supplement. This trend is not observed in Gram-negative microbiota, even for the inulin-binders, demonstrating the ability of our methods in differentiating the primary, secondary DF-degraders from cross-feeders, a question that is difficult to answer by using other methods. Our strategy provides a novel chemical biology tool for deciphering the complex DF-bacteria interactions in the gut.
Collapse
Affiliation(s)
- Ningning Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mi Tang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Yong F, Liu B, Li H, Hao H, Fan Y, Datsomor O, Han R, Jiang H, Che D. Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. J Anim Sci Biotechnol 2025; 16:1. [PMID: 39748438 PMCID: PMC11697959 DOI: 10.1186/s40104-024-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. METHODS Thirty-six growing barrows (47.2 ± 1.5 kg) were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3 β-glucan-to-arabinoxylan ratios. In the experiment, nutrient utilization, energy metabolism, fecal microbial community, and production and absorption of short-chain fatty acid (SCFA) of pigs were investigated. In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig's hindgut. RESULTS The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber. In animal experiments, increasing the dietary apparent viscosity and the β-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter (P < 0.05). In addition, increasing dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased gas exchange, heat production, and protein oxidation, and decreased energy deposition (P < 0.05). The dietary apparent viscosity and β-glucan-to-arabinoxylan ratios had linear interaction effects on the digestible energy, metabolizable energy, retained energy (RE), and net energy (NE) of the diets (P < 0.05). At the same time, the increase of dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased SCFA production and absorption (P < 0.05). Increasing the dietary apparent viscosity and β-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria (P < 0.05) and the relative abundance of beneficial bacteria. Furthermore, increasing the dietary β-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta (P < 0.001). Finally, the prediction equations for RE and NE were established. CONCLUSION Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization, energy metabolism, and pig gut microbiota composition and metabolites.
Collapse
Affiliation(s)
- Feng Yong
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bo Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Houxu Hao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Osmond Datsomor
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hailong Jiang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Dongsheng Che
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Held NA, Krishna A, Crippa D, Battaje RR, Devaux AJ, Dragan A, Manhart M. Nutrient colimitation is a quantitative, dynamic property of microbial populations. Proc Natl Acad Sci U S A 2024; 121:e2400304121. [PMID: 39693349 DOI: 10.1073/pnas.2400304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Resource availability dictates how fast and how much microbial populations grow. Quantifying the relationship between microbial growth and resource concentrations makes it possible to promote, inhibit, and predict microbial activity. Microbes require many resources, including macronutrients (e.g., carbon and nitrogen), micronutrients (e.g., metals), and complex nutrients like vitamins and amino acids. When multiple resources are scarce, as frequently occurs in nature, microbes may experience resource colimitation in which more than one resource simultaneously limits growth. Despite growing evidence for colimitation, the data are difficult to interpret and compare due to a lack of quantitative measures of colimitation and systematic tests of resource conditions. We hypothesize that microbes experience a continuum of nutrient limitation states and that nutrient colimitation is common in the laboratory and in nature. To address this, we develop a quantitative theory of resource colimitation that captures the range of possible limitation states and describes how they can change dynamically with resource conditions. We apply this approach to clonal populations of Escherichia coli to show that colimitation occurs in common laboratory conditions. We also show that growth rate and growth yield are colimited differently, reflecting the different underlying biology of these traits. Finally, we analyze environmental data to provide intuition for the continuum of limitation and colimitation conditions in nature. Altogether our results provide a quantitative framework for understanding and quantifying colimitation of microbes in biogeochemical, biotechnology, and human health contexts.
Collapse
Affiliation(s)
- Noelle A Held
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Aswin Krishna
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Donat Crippa
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Rachana Rao Battaje
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
| | - Alexander J Devaux
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Anastasia Dragan
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Michael Manhart
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
9
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Mordant A, Blakeley-Ruiz JA, Kleiner M. Stable isotope fingerprinting can directly link intestinal microorganisms with their carbon source and captures diet-induced substrate switching in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627769. [PMID: 39713332 PMCID: PMC11661160 DOI: 10.1101/2024.12.10.627769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Diet has strong impacts on the composition and function of the gut microbiota with implications for host health. Therefore, it is critical to identify the dietary components that support growth of specific microorganisms in vivo. We used protein-based stable isotope fingerprinting (Protein-SIF) to link microbial species in gut microbiota to their carbon sources by measuring each microbe's natural 13C content (δ13C) and matching it to the 13C content of available substrates. We fed gnotobiotic mice, inoculated with a 13 member microbiota, diets in which the 13C content of all components was known. We varied the source of protein, fiber or fat to observe 13C signature changes in microbial consumers of these substrates. We observed significant changes in the δ13C values and abundances of specific microbiota species, as well as host proteins, in response to changes in 13C signature or type of protein, fiber, and fat sources. Using this approach we were able to show that upon switching dietary source of protein, fiber, or fat (1) some microbial species continued to obtain their carbon from the same dietary component (e.g., protein); (2) some species switched their main substrate type (e.g., from protein to carbohydrates); and (3) some species might derive their carbon through foraging on host compounds. Our results demonstrate that Protein-SIF can be used to identify the dietary-derived substrates assimilated into proteins by microbes in the intestinal tract; this approach holds promise for the analysis of microbiome substrate usage in humans without the need of substrate labeling. Significance The gut microbiota plays a critical role in the health of animals including humans, influencing metabolism, the immune system, and even behavior. Diet is one of the most significant factors in determining the function and composition of the gut microbiota, but our understanding of how specific dietary components directly impact individual microbes remains limited. We present the application of an approach that measures the carbon isotope "fingerprint" of proteins in biological samples. This fingerprint is similar to the fingerprint of the substrate used to make the proteins. We describe how we used this approach in mice to determine which dietary components specific intestinal microbes use as carbon sources to make their proteins. This approach can directly identify components of an animal's diet that are consumed by gut microbes.
Collapse
Affiliation(s)
- Angie Mordant
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| | | | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| |
Collapse
|
11
|
Cheng H, Xu L, Zhu H, Bu T, Li Z, Zhao S, Yang K, Sun P, Cai M. Structural characterization of oligosaccharide from Dendrobium officinale and its properties in vitro digestion and fecal fermentation. Food Chem 2024; 460:140511. [PMID: 39047478 DOI: 10.1016/j.foodchem.2024.140511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Oligosaccharides from Dendrobium officinale (DOO) is a kind of new potential prebiotic for health. In this study, structural characteristics, digestion properties and regulatory function on intestinal flora of DOO were investigated. An oligosaccharide, DOO 1-1, was purified by DEAE-Sepharose Fast Flow and Sephadex G-25, and its physicochemical properties were characterized as a glucomannan oligosaccharide with a molecular weight of 1560 Da (DP = 9). In vitro simulated digestion, it proved that the structure of DOO 1-1 was degraded hardly in the simulated gastric and small intestinal fluid. By evaluating the gas, short-chain fatty acids and intestinal microbiota in vitro fermentation, DOO has an excellent regulatory effect on intestinal microbiota, especially promoting the proliferation of Bacteroidetes and Actinobacteria. Therefore, DOO can be used as a potential prebiotic in functional foods.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Shuna Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China.
| |
Collapse
|
12
|
Ghadimi D, Kaya AŞN, Krüger S, Röcken C, Schäfer H, Uchiyama J, Matsuzaki S, Bockelmann W. Exploring interplay between bovine milk-derived α-lactalbumin, pathogenic bacteria, and bacteriophages at the molecular interface of inflammation. Comp Immunol Microbiol Infect Dis 2024; 115:102271. [PMID: 39489117 DOI: 10.1016/j.cimid.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
There is so far no available data about how the additive, synergistic, or antagonistic effects of the combined form of alpha-lactalbumin (α-La) and bacteriophages might modulate the cellular milieu of the host-pathogen interface. A co-culture of colonocytes and hepatocytes was stimulated with Pseudomonas aeruginosa PAO1 in the presence of KPP22 phage and incubated for 6 hours in medium alone or medium supplemented with bovine milk-origin α-La. The combination of KPP22 phage and α-La significantly inhibited P.a PAO1-elicited secretion of IL-1β, IL-6, and ICAM-1, which are the mediators and enzymes associated with the inflammatory response to an infectious-inflamed milieu. Cell viability was higher in the P.a PAO1+ KPP22 phage group compared to the P.a PAO1alone group. KPP22 phage and α-La, either alone or in combination, rescued P.a PAO1-induced aberrant PGE1/PGE2 production ratios. The convergence of ingested α-La and phages mitigates pro-inflammatory mediators. α-La leads to an increased sensitivity of opportunistic pathogenic bacteria to phages. Structural, functional, or immunological similarities between ingested α-La and phages play an important role in the mitigation of infection-driven pathobiological processes.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, Kiel D-24103, Germany.
| | - Aysel Şahi N Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey
| | - Sandra Krüger
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, Kiel D-24105, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, Kiel D-24105, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Christian-Albrechts-University & UKSH Campus Kiel, Kiel 24105, Germany
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, Kiel D-24103, Germany
| |
Collapse
|
13
|
Warmbrunn MV, Attaye I, Horak A, Banerjee R, Massey WJ, Varadharajan V, Rampanelli E, Hao Y, Dutta S, Nemet I, Aron-Wisnewsky J, Clément K, Koopen A, Wortelboer K, Bergh PO, Davids M, Mohamed N, Kemper EM, Hazen S, Groen AK, van Raalte DH, Herrema H, Backhed F, Brown JM, Nieuwdorp M. Kinetics of imidazole propionate from orally delivered histidine in mice and humans. NPJ Biofilms Microbiomes 2024; 10:118. [PMID: 39496629 PMCID: PMC11535228 DOI: 10.1038/s41522-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Imidazole Propionate (ImP), a gut-derived metabolite from histidine, affects insulin signaling in mice and is elevated in type 2 diabetes (T2D). However, the source of histidine and the role of the gut microbiota remain unclear. We conducted an intervention study in mice and humans, comparing ImP kinetics in mice on a high-fat diet with varying histidine levels and antibiotics, and assessed ImP levels in healthy and T2D subjects with histidine supplementation. Results show that dietary histidine is metabolized to ImP, with antibiotic-induced gut microbiota suppression reducing ImP levels in mice. In contrast, oral histidine supplementation resulted in increases in circulating ImP levels in humans, whereas antibiotic treatment increased ImP levels, which was associated with a bloom of several bacterial genera that have been associated with ImP production, such as Lactobacilli. Our findings highlight the gut microbiota's crucial role in regulating ImP and the complexity of translating mouse models to humans.
Collapse
Affiliation(s)
- Moritz V Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
- Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands.
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony Horak
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Youling Hao
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Sumita Dutta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris,Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris,Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France
| | - Annefleur Koopen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Per-Olof Bergh
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Nadia Mohamed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Department of Clinical Pharmacology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Stanley Hazen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Daniel H van Raalte
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Fredrik Backhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Miller ZR, O'Dwyer JP. Metabolic Trade-Offs Can Reverse the Resource-Diversity Relationship. Am Nat 2024; 204:E85-E98. [PMID: 39486030 DOI: 10.1086/732110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractFor species that partition resources, the classic expectation is that increasing resource diversity allows for increased species diversity. On the other hand, for neutral species, such as those competing equally for a single resource, diversity reflects a balance between the rate of introduction of novelty (e.g., by immigration or speciation) and the rate of extinction. Recent models of microbial metabolism have identified scenarios where metabolic trade-offs among species partitioning multiple resources can produce emergent neutral-like dynamics. In this hybrid scenario, one might expect that both resource diversity and immigration will act to boost species diversity. We show, however, that the reverse may be true: when metabolic trade-offs hold and population sizes are sufficiently large, increasing resource diversity can act to reduce species diversity, sometimes drastically. This reversal is explained by a generic transition between neutral- and niche-like dynamics, driven by the diversity of resources. The inverted resource-diversity relationship that results may be a signature of consumer-resource systems with strong metabolic trade-offs.
Collapse
|
15
|
Duan Y, Dai J, Lu Y, Qiao H, Liu N. Disentangling the molecular mystery of tumour-microbiota interactions: Microbial metabolites. Clin Transl Med 2024; 14:e70093. [PMID: 39568157 PMCID: PMC11578933 DOI: 10.1002/ctm2.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
The profound impact of the microbiota on the initiation and progression of cancer has been a focus of attention. In recent years, many studies have shown that microbial metabolites serve as key hubs that connect the microbiome and cancer progression, but the underlying molecular mechanisms have not been fully elucidated. Multiple mechanisms that influence tumour development and therapy resistance, including disrupting cellular signalling pathways, triggering oxidative stress, inducing metabolic reprogramming and reshaping tumour immune microenvironment, are reviewed. Focusing on recent advancements in this field, this review also summarises the methodological framework of studies regarding microbial metabolites. In this review, we outline the current state of research on tumour-associated microbial metabolites and describe the challenges in future scientific research and clinical applications. KEY POINTS: Metabolites derived from both gut and intratumoural microbiota play important roles in cancer initiation and progression. The dual roles of microbial metabolites pose an obstacle for clinical translations. Absolute quantification and tracing techniques of microbial metabolites are essential for addressing the gaps in studies on microbial metabolites. Integrating microbial metabolomics with multi-omics transcends current research paradigms.
Collapse
Affiliation(s)
- Yu‐Fei Duan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Jia‐Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Ying‐Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| |
Collapse
|
16
|
Kiriyama Y, Tokumaru H, Sadamoto H, Kobayashi S, Nochi H. Effects of Phenolic Acids Produced from Food-Derived Flavonoids and Amino Acids by the Gut Microbiota on Health and Disease. Molecules 2024; 29:5102. [PMID: 39519743 PMCID: PMC11548037 DOI: 10.3390/molecules29215102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiota metabolizes flavonoids, amino acids, dietary fiber, and other components of foods to produce a variety of gut microbiota-derived metabolites. Flavonoids are the largest group of polyphenols, and approximately 7000 flavonoids have been identified. A variety of phenolic acids are produced from flavonoids and amino acids through metabolic processes by the gut microbiota. Furthermore, these phenolic acids are easily absorbed. Phenolic acids generally represent phenolic compounds with one carboxylic acid group. Gut microbiota-derived phenolic acids have antiviral effects against several viruses, such as SARS-CoV-2 and influenza. Furthermore, phenolic acids influence the immune system by inhibiting the secretion of proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α. In the nervous systems, phenolic acids may have protective effects against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, phenolic acids can improve levels of blood glucose, cholesterols, and triglycerides. Phenolic acids also improve cardiovascular functions, such as blood pressure and atherosclerotic lesions. This review focuses on the current knowledge of the effects of phenolic acids produced from food-derived flavonoids and amino acids by the gut microbiota on health and disease.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiroshi Tokumaru
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| |
Collapse
|
17
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Xiao Y, Gao X, Yuan J. Comparative Study of an Antioxidant Compound and Ethoxyquin on Feed Oxidative Stability and on Performance, Antioxidant Capacity, and Intestinal Health in Starter Broiler Chickens. Antioxidants (Basel) 2024; 13:1229. [PMID: 39456482 PMCID: PMC11505240 DOI: 10.3390/antiox13101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Concerns over the safety of ethoxyquin (EQ) highlight the need for safer, more effective feed antioxidants. This study investigated a healthier antioxidant compound (AC) as a potential alternative to EQ in broilers. A total of 351 one-day-old Arbor Acres Plus male broilers were randomly assigned to three treatments for 21 days: control (CON), EQ group (200 g/ton EQ at 60% purity), and AC group (200 g/ton AC containing 18% butylated hydroxytoluene, 3% citric acid, and 1% tertiary butylhydroquinone). AC supplementation reduced the acid value, peroxide value, and malondialdehyde content in stored feed, decreased feed intake and the feed conversion ratio without affecting body weight gain, and enhanced antioxidant capacity (liver total antioxidant capacity and superoxide dismutase; intestinal catalase and glutathione peroxidase 7). It improved intestinal morphology and decreased barrier permeability (lower diamine oxidase and D-lactate), potentially by promoting ZO-1, Occludin, and Mucin2 expression. The AC also upregulated NF-κB p50 and its inhibitor (NF-κB p105), enhancing immune regulation. Additionally, the AC tended to increase beneficial gut microbiota, including Lactobacillus, and reduced Bacteroides, Corprococcus, and Anaeroplasma. Compared to EQ, the AC further enhanced feed oxidative stability, the feed conversion ratio, intestinal morphology and barrier functions, and inflammatory status, suggesting its potential as a superior alternative to EQ for broiler diets.
Collapse
Affiliation(s)
| | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (X.G.)
| |
Collapse
|
19
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
20
|
Liu A, Tian B, Qiu C, Su KJ, Jiang L, Zhao C, Song M, Liu Y, Qu G, Zhou Z, Zhang X, Gnanesh SSM, Thumbigere-Math V, Luo Z, Tian Q, Zhang LS, Wu C, Ding Z, Shen H, Deng HW. Multi-View Integrative Approach For Imputing Short-Chain Fatty Acids and Identifying Key factors predicting Blood SCFA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614767. [PMID: 39386638 PMCID: PMC11463355 DOI: 10.1101/2024.09.25.614767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fiber within gastrointestinal tract. SCFAs produced by gut microbiotas (GMs) are absorbed by host, reach bloodstream, and are distributed to different organs, thus influencing host physiology. However, due to the limited budget or the poor sensitivity of instruments, most studies on GMs have incomplete blood SCFA data, limiting our understanding of the metabolic processes within the host. To address this gap, we developed an innovative multi-task multi-view integrative approach (M2AE, Multi-task Multi-View Attentive Encoders), to impute blood SCFA levels using gut metagenomic sequencing (MGS) data, while taking into account the intricate interplay among the gut microbiome, dietary features, and host characteristics, as well as the nuanced nature of SCFA dynamics within the body. Here, each view represents a distinct type of data input (i.e., gut microbiome compositions, dietary features, or host characteristics). Our method jointly explores both view-specific representations and cross-view correlations for effective predictions of SCFAs. We applied M2AE to two in-house datasets, which both include MGS and blood SCFAs profiles, host characteristics, and dietary features from 964 subjects and 171 subjects, respectively. Results from both of two datasets demonstrated that M2AE outperforms traditional regression-based and neural-network based approaches in imputing blood SCFAs. Furthermore, a series of gut bacterial species (e.g., Bacteroides thetaiotaomicron and Clostridium asparagiforme), host characteristics (e.g., race, gender), as well as dietary features (e.g., intake of fruits, pickles) were shown to contribute greatly to imputation of blood SCFAs. These findings demonstrated that GMs, dietary features and host characteristics might contribute to the complex biological processes involved in blood SCFA productions. These might pave the way for a deeper and more nuanced comprehension of how these factors impact human health.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Chen Zhao
- College of Computing and Software Engineering, Kennesaw State University, GA, USA
| | - Meng Song
- College of Science, Xi'an Shiyou University, Xi'an, P.R. China
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Ziyu Zhou
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Shashank Sajjan Mungasavalli Gnanesh
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland Baltimore School of Dentistry, Baltimore, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA
| | - Zhengming Ding
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
21
|
Chiang BH, Vega G, Dunwoody SC, Patnode ML. Bacterial interactions on nutrient-rich surfaces in the gut lumen. Infect Immun 2024; 92:e0048023. [PMID: 38506518 PMCID: PMC11384750 DOI: 10.1128/iai.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.
Collapse
Affiliation(s)
- Bo Huey Chiang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Giovanni Vega
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Sarah C Dunwoody
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Michael L Patnode
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
22
|
Shen H, Zhou L, Zhang H, Yang Y, Jiang L, Wu D, Shu H, Zhang H, Xie L, Zhou K, Cheng C, Yang L, Jiang J, Wang S, Han Y, Zhu J, Xu L, Liu Z, Wang H, Yin S. Dietary fiber alleviates alcoholic liver injury via Bacteroides acidifaciens and subsequent ammonia detoxification. Cell Host Microbe 2024; 32:1331-1346.e6. [PMID: 38959900 DOI: 10.1016/j.chom.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hao Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yuanru Yang
- Department of Blood Transfusion, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Dongqing Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hang Shu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hejiao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Kaichen Zhou
- Institute for Immunology, School of Basic Medical Science, Tsinghua University, Beijing 100084, China
| | - Chen Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Lei Yang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiali Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Siya Wang
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230002, China; Anhui Key Laboratory of Geriatric Immunology and Nutrition Therapy, Hefei 230027, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei 230032, China
| | - Jiayi Zhu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei 230032, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhihua Liu
- Institute for Immunology, School of Basic Medical Science, Tsinghua University, Beijing 100084, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Shi Yin
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230002, China; Anhui Key Laboratory of Geriatric Immunology and Nutrition Therapy, Hefei 230027, China.
| |
Collapse
|
23
|
Wang C, Deng W, Huang Z, Li C, Wei R, Zhu Y, Wu K, Li C, Deng L, Wei M, Chen X, Li D. Nutrient Utilization and Gut Microbiota Composition in Giant Pandas of Different Age Groups. Animals (Basel) 2024; 14:2324. [PMID: 39199858 PMCID: PMC11350801 DOI: 10.3390/ani14162324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu 610051, China (Z.H.)
| |
Collapse
|
24
|
Xiong Y, Mueller RS, Feng S, Guo X, Pan C. Proteomic stable isotope probing with an upgraded Sipros algorithm for improved identification and quantification of isotopically labeled proteins. MICROBIOME 2024; 12:148. [PMID: 39118147 PMCID: PMC11313024 DOI: 10.1186/s40168-024-01866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching. RESULTS In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% 13C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% 13C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two 13C-SIP experiments on a real-world soil community. The labeled proteins were used to trace 13C from 13C-methanol and 13C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins. CONCLUSION Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.
Collapse
Affiliation(s)
- Yi Xiong
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Shichao Feng
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
| | - Xuan Guo
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
25
|
Noecker C, Turnbaugh PJ. Emerging tools and best practices for studying gut microbial community metabolism. Nat Metab 2024; 6:1225-1236. [PMID: 38961185 DOI: 10.1038/s42255-024-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The human gut microbiome vastly extends the set of metabolic reactions catalysed by our own cells, with far-reaching consequences for host health and disease. However, our knowledge of gut microbial metabolism relies on a handful of model organisms, limiting our ability to interpret and predict the metabolism of complex microbial communities. In this Perspective, we discuss emerging tools for analysing and modelling the metabolism of gut microorganisms and for linking microorganisms, pathways and metabolites at the ecosystem level, highlighting promising best practices for researchers. Continued progress in this area will also require infrastructure development to facilitate cross-disciplinary synthesis of scientific findings. Collectively, these efforts can enable a broader and deeper understanding of the workings of the gut ecosystem and open new possibilities for microbiome manipulation and therapy.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Maki KA, Sack MN, Hall KD. Ultra-processed foods: increasing the risk of inflammation and immune dysregulation? Nat Rev Immunol 2024; 24:453-454. [PMID: 38831164 DOI: 10.1038/s41577-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Katherine A Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
28
|
Xu X, Chen Z, Bartman CR, Xing X, Olszewski K, Rabinowitz JD. One-carbon unit supplementation fuels purine synthesis in tumor-infiltrating T cells and augments checkpoint blockade. Cell Chem Biol 2024; 31:932-943.e8. [PMID: 38759619 DOI: 10.1016/j.chembiol.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.
Collapse
Affiliation(s)
- Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Zihong Chen
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Caroline R Bartman
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Xi Xing
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Kellen Olszewski
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
29
|
Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, Wang Y, Hennig B, Deng P. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. MICROBIOME 2024; 12:90. [PMID: 38750595 PMCID: PMC11094917 DOI: 10.1186/s40168-024-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.
Collapse
Affiliation(s)
- Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jing Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, 900 S. Limestone St, 501 Wethington Health Sciences Bldg, Lexington, KY, 40536, USA.
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China.
| |
Collapse
|
30
|
Li TT, Chen X, Huo D, Arifuzzaman M, Qiao S, Jin WB, Shi H, Li XV, Iliev ID, Artis D, Guo CJ. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 2024; 32:661-675.e10. [PMID: 38657606 PMCID: PMC11636940 DOI: 10.1016/j.chom.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.
Collapse
Affiliation(s)
- Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xi Chen
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Da Huo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Shanshan Qiao
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Huiqing Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xin V Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Wang A, Zou Y, Liu S, Zhang X, Li T, Zhang L, Wang R, Xia Y, Li X, Zhang Z, Liu T, Ju Z, Wang R, Loscalzo J, Yang Y, Zhao Y. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nat Protoc 2024; 19:1311-1347. [PMID: 38307980 DOI: 10.1038/s41596-023-00948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 02/04/2024]
Abstract
As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.
Collapse
Affiliation(s)
- Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Hwang O, Emmett B, Andersen D, Howe A, Ro K, Trabue S. Effects of swine manure dilution with lagoon effluent on microbial communities and odor formation in pit recharge systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120884. [PMID: 38643622 DOI: 10.1016/j.jenvman.2024.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Pit recharge systems (PRS) control odor by managing organic solids in swine manure. However, there needs to be more understanding of PRS's effect on the microbiome composition and its impact on odor formation. A study was conducted to understand how recharge intervals used in PRS impact manure microbiome and odor formation. Bioreactors dynamically loaded simulated recharge intervals of 14, 10, and 4 days by diluting swine manure with lagoon effluent at varying ratios. Treatment ratios tested included 10:0 (control), 7:3 (typical Korean PRS), 5:5 (enhanced PRS #1), and 2:8 (enhanced PRS #2). Manure microbial membership, chemical concentrations, and odorant concentrations were used to identify the interactions between microbiota, manure, and odor. The initial microbial community structure was controlled by dilution ratio and manure barn source material. Firmicutes and Proteobacteria were the dominant microbial phyla in manure and lagoon effluent, respectively, and significantly decreased or increased with dilution. Key microbial species were Clostridium saudiense in manure and Pseudomonas caeni in lagoon effluent. Percentages of these species declined by 8.9% or increased by 17.6%, respectively, with each unit dilution. Microbial community composition was controlled by both treatment (i.e., manure dilution ratio and barn source material) and environmental factors (i.e., solids and pH). Microbiome composition was correlated with manure odor formation profiles, but this effect was inseparable from environmental factors, which explained over 75% of the variance in odor profiles. Consequently, monitoring solids and pH in recharge waters will significantly impact odor control in PRS.
Collapse
Affiliation(s)
- Okhwa Hwang
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-Ro, Iseo-Myeon, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea.
| | - Bryan Emmett
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States.
| | - Daniel Andersen
- Department of Agricultural and Biosystems Engineering, 3348 Elings Hall, Iowa State University, Ames, IA, 50011, United States.
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, 3348 Elings Hall, Iowa State University, Ames, IA, 50011, United States.
| | - Kyoung Ro
- USDA Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, 2611 West Lucas St., Florence, SC, 29501, United States.
| | - Steven Trabue
- USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard, Ames, IA, 50011, United States.
| |
Collapse
|
33
|
Huyan Z, Pellegrini N, Rubert J, Steegenga WT, Capuano E. Levels of lipid-derived gut microbial metabolites differ among plant matrices in an in vitro model of colon fermentation. Food Res Int 2024; 184:114230. [PMID: 38609219 DOI: 10.1016/j.foodres.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.
Collapse
Affiliation(s)
- Zongyao Huyan
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
34
|
Yao T, Wang H, Lin K, Wang R, Guo S, Chen P, Wu H, Liu T, Wang R. Exercise-induced microbial changes in preventing type 2 diabetes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:892-899. [PMID: 36795181 DOI: 10.1007/s11427-022-2272-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The metabolic benefits associated with long-term physical activity are well appreciated and growing evidence suggests that it involves the gut microbiota. Here we re-evaluated the link between exercise-induced microbial changes and those associated with prediabetes and diabetes. We found that the relative abundances of substantial amounts of diabetes-associated metagenomic species associated negatively with physical fitness in a Chinese athlete students cohort. We additionally showed that those microbial changes correlated more with handgrip strength, a simple but valuable biomarker suggestive of the diabetes states, than maximum oxygen intake, one of the key surrogates for endurance training. Moreover, the causal relationships among exercise, risks for diabetes, and gut microbiota were explored based on mediation analysis. We propose that the protective roles of exercise against type 2 diabetes are mediated, at least partly, by the gut microbiota.
Collapse
Affiliation(s)
- Ting Yao
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200433, China
| | - Kaiqing Lin
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shanshan Guo
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, and Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Tiemin Liu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
35
|
Yu YM, Li GF, Ren YL, Xu XY, Xu ZH, Geng Y, Mao Y. A Free Amino Acid Diet Alleviates Colorectal Tumorigenesis through Modulating Gut Microbiota and Metabolites. Nutrients 2024; 16:1040. [PMID: 38613073 PMCID: PMC11013359 DOI: 10.3390/nu16071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC), a major global health concern, may be influenced by dietary protein digestibility impacting gut microbiota and metabolites, which is crucial for cancer therapy effectiveness. This study explored the effects of a casein protein diet (CTL) versus a free amino acid (FAA)-based diet on CRC progression, gut microbiota, and metabolites using carcinogen-induced (AOM/DSS) and spontaneous genetically induced (ApcMin/+ mice) CRC mouse models. Comprehensive approaches including 16s rRNA gene sequencing, transcriptomics, metabolomics, and immunohistochemistry were utilized. We found that the FAA significantly attenuated CRC progression, evidenced by reduced colonic shortening and histopathological alterations compared to the CTL diet. Notably, the FAA enriched beneficial gut bacteria like Akkermansia and Bacteroides and reversed CRC-associated dysbiosis. Metabolomic analysis highlighted an increase in ornithine cycle metabolites and specific fatty acids, such as Docosapentaenoic acid (DPA), in FAA-fed mice. Transcriptomic analysis revealed that FAA up-regulated Egl-9 family hypoxia inducible factor 3 (Egln 3) and downregulated several cancer-associated pathways including Hippo, mTOR, and Wnt signaling. Additionally, DPA was found to significantly induce EGLN 3 expression in CRC cell lines. These results suggest that FAA modulate gut microbial composition, enhance protective metabolites, improve gut barrier functions, and inhibit carcinogenic pathways.
Collapse
Affiliation(s)
- Yang-Meng Yu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Gui-Fang Li
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Yi-Lin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin-Yi Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Zheng-Hong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Yan Geng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| |
Collapse
|
36
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Hecht AL, Harling LC, Friedman ES, Tanes C, Lee J, Firrman J, Hao F, Tu V, Liu L, Patterson AD, Bittinger K, Goulian M, Wu GD. Dietary carbohydrates regulate intestinal colonization and dissemination of Klebsiella pneumoniae. J Clin Invest 2024; 134:e174726. [PMID: 38512401 PMCID: PMC11060737 DOI: 10.1172/jci174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.
Collapse
Affiliation(s)
- Aaron L. Hecht
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa C. Harling
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Junhee Lee
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
39
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
40
|
Doranga S, Conway T. Nitrogen assimilation by E. coli in the mammalian intestine. mBio 2024; 15:e0002524. [PMID: 38380942 PMCID: PMC10936423 DOI: 10.1128/mbio.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Nitrogen is an essential element for all living organisms, including Escherichia coli. Potential nitrogen sources are abundant in the intestine, but knowledge of those used specifically by E. coli to colonize remains limited. Here, we sought to determine the specific nitrogen sources used by E. coli to colonize the streptomycin-treated mouse intestine. We began by investigating whether nitrogen is limiting in the intestine. The NtrBC two-component system upregulates approximately 100 genes in response to nitrogen limitation. We showed that NtrBC is crucial for E. coli colonization, although most genes of the NtrBC regulon are not induced, which indicates that nitrogen is not limiting in the intestine. RNA-seq identified upregulated genes in colonized E. coli involved in transport and catabolism of seven amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine. Competitive colonization experiments revealed that L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides serve as nitrogen sources for E. coli in the intestine. Furthermore, the colonization defect of a L-serine deaminase mutant was rescued by excess nitrogen in the drinking water but not by an excess of carbon and energy, demonstrating that L-serine serves primarily as a nitrogen source. Similar rescue experiments showed that N-acetylneuraminic acid serves as both a carbon and nitrogen source. To a minor extent, aspartate and ammonia also serve as nitrogen sources. Overall, these findings demonstrate that E. coli utilizes multiple nitrogen sources for successful colonization of the mouse intestine, the most important of which is L-serine. IMPORTANCE While much is known about the carbon and energy sources that are used by E. coli to colonize the mammalian intestine, very little is known about the sources of nitrogen. Interrogation of colonized E. coli by RNA-seq revealed that nitrogen is not limiting, indicating an abundance of nitrogen sources in the intestine. Pathways for assimilation of nitrogen from several amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine were induced in mice. Competitive colonization assays confirmed that mutants lacking catabolic pathways for L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides had colonization defects. Rescue experiments in mice showed that L-serine serves primarily as a nitrogen source, whereas N-acetylneuraminic acid provides both carbon and nitrogen. Of the many nitrogen assimilation mutants tested, the largest colonization defect was for an L-serine deaminase mutant, which demonstrates L-serine is the most important nitrogen source for colonized E. coli.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
41
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
43
|
Yu KB, Son C, Chandra A, Paramo J, Novoselov A, Özcan E, Kazmi SA, Lum GR, Lopez-Romero A, Lynch JB, Hsiao EY. Complex carbohydrate utilization by gut bacteria modulates host food preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580152. [PMID: 38405943 PMCID: PMC10888876 DOI: 10.1101/2024.02.13.580152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The gut microbiota interacts directly with dietary nutrients and has the ability to modify host feeding behavior, but the underlying mechanisms remain poorly understood. Select gut bacteria digest complex carbohydrates that are non-digestible by the host and liberate metabolites that serve as additional energy sources and pleiotropic signaling molecules. Here we use a gnotobiotic mouse model to examine how differential fructose polysaccharide metabolism by commensal gut bacteria influences host preference for diets containing these carbohydrates. Bacteroides thetaiotaomicron and Bacteroides ovatus selectively ferment fructans with different glycosidic linkages: B. thetaiotaomicron ferments levan with β2-6 linkages, whereas B. ovatus ferments inulin with β2-1 linkages. Since inulin and levan are both fructose polymers, inulin and levan diet have similar perceptual salience to mice. We find that mice colonized with B. thetaiotaomicron prefer the non-fermentable inulin diet, while mice colonized with B. ovatus prefer the non-fermentable levan diet. Knockout of bacterial fructan utilization genes abrogates this preference, whereas swapping the fermentation ability of B. thetaiotaomicron to inulin confers host preference for the levan diet. Bacterial fructan fermentation and host behavioral preference for the non-fermentable fructan are associated with increased neuronal activation in the arcuate nucleus of the hypothalamus, a key brain region for appetite regulation. These results reveal that selective nutrient metabolism by gut bacteria contributes to host associative learning of dietary preference, and further informs fundamental understanding of the biological determinants of food choice.
Collapse
Affiliation(s)
- Kristie B Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Celine Son
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anisha Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Anna Novoselov
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ezgi Özcan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gregory R Lum
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jonathan B Lynch
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Current address: Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Weng CY, Suarez C, Cheang SE, Couture G, Goodson ML, Barboza M, Kalanetra KM, Masarweh CF, Mills DA, Raybould HE, Lebrilla CB. Quantifying Gut Microbial Short-Chain Fatty Acids and Their Isotopomers in Mechanistic Studies Using a Rapid, Readily Expandable LC-MS Platform. Anal Chem 2024; 96:2415-2424. [PMID: 38288711 PMCID: PMC10867797 DOI: 10.1021/acs.analchem.3c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Short-chain fatty acids (SCFAs) comprise the largest group of gut microbial fermentation products. While absorption of most nutrients occurs in the small intestine, indigestible dietary components, such as fiber, reach the colon and are processed by the gut microbiome to produce a wide array of metabolites that influence host physiology. Numerous studies have implicated SCFAs as key modulators of host health, such as in regulating irritable bowel syndrome (IBS). However, robust methods are still required for their detection and quantitation to meet the demands of biological studies probing the complex interplay of the gut-host-health paradigm. In this study, a sensitive, rapid-throughput, and readily expandible UHPLC-QqQ-MS platform using 2-PA derivatization was developed for the quantitation of gut-microbially derived SCFAs, related metabolites, and isotopically labeled homologues. The utility of this platform was then demonstrated by investigating the production of SCFAs in cecal contents from mice feeding studies, human fecal bioreactors, and fecal/bacterial fermentations of isotopically labeled dietary carbohydrates. Overall, the workflow proposed in this study serves as an invaluable tool for the rapidly expanding gut-microbiome and precision nutrition research field.
Collapse
Affiliation(s)
- Cheng-Yu
Charlie Weng
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Christopher Suarez
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Shawn Ehlers Cheang
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Garret Couture
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael L. Goodson
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Mariana Barboza
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Karen M. Kalanetra
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Chad F. Masarweh
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - David A. Mills
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Helen E. Raybould
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
45
|
Gao X, Xu F, Li T, Huang P, Yu L, Tian F, Zhao J, Chen W, Zhai Q. CAZymes-associated method to explore glycans that mitigate DSS-induced colitis via targeting Bacteroides cellulosilyticus. Int J Biol Macromol 2024; 258:128694. [PMID: 38096941 DOI: 10.1016/j.ijbiomac.2023.128694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Improving Bacteroides cellulosilyticus abundance is a feasible approach to treating inflammatory bowel disease (IBD). Although B. cellulosilyticus is responsive to dietary components, untargeted manipulation cannot focus on target microbe and lead to an increase in harmful bacteria in the microbiota. Breakthroughs in methods for regulating specific microbes, but the protocols are expensive, time-consuming, and difficult to follow. Glycans based on microbial-carbohydrate-active enzymes (CAZymes) would provide a potential solution. We propose a method based on CAZymes to explore polysaccharides that target specific gut microbes and alleviate diseases. The designed polysaccharides (Arabinogalactan, AG) enrich the abundance of B. cellulosilyticus in single-strain co-cultures, fermentation in vitro, and mouse models in vivo. Supplementation with AG relieved mice from colitis and clinical symptoms. We reveal that AG directly alters B. cellulosilyticus level and cooperative microbes, resulting in remission of colitis. Our glycan design pipeline is a promising way to improve disease through the targeted enhancement of specific microbes.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - FuSheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tangjun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pan Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
46
|
Quinn A, El Chazli Y, Escrig S, Daraspe J, Neuschwander N, McNally A, Genoud C, Meibom A, Engel P. Host-derived organic acids enable gut colonization of the honey bee symbiont Snodgrassella alvi. Nat Microbiol 2024; 9:477-489. [PMID: 38225461 PMCID: PMC11343714 DOI: 10.1038/s41564-023-01572-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Diverse bacteria can colonize the animal gut using dietary nutrients or by engaging in microbial crossfeeding interactions. Less is known about the role of host-derived nutrients in enabling gut bacterial colonization. Here we examined metabolic interactions within the evolutionary ancient symbiosis between the honey bee (Apis mellifera) and the core gut microbiota member Snodgrassella alvi. This betaproteobacterium is incapable of metabolizing saccharides, yet colonizes the honey bee gut in the presence of a sugar-only diet. Using comparative metabolomics, 13C-tracers and nanoscale secondary ion mass spectrometry (NanoSIMS), we show in vivo that S. alvi grows on host-derived organic acids, including citrate, glycerate and 3-hydroxy-3-methylglutarate, which are actively secreted by the host into the gut lumen. S. alvi also modulates tryptophan metabolism in the gut by converting kynurenine to anthranilate. These results suggest that S. alvi is adapted to a specific metabolic niche in the honey bee gut that depends on host-derived nutritional resources.
Collapse
Affiliation(s)
- Andrew Quinn
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yassine El Chazli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Neuschwander
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Aoife McNally
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
47
|
Michellod D, Liebeke M. Host-microbe metabolic dialogue. Nat Microbiol 2024; 9:318-319. [PMID: 38316925 DOI: 10.1038/s41564-023-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
- Dolma Michellod
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max-Planck Institute for Marine Microbiology, Bremen, Germany.
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany.
| |
Collapse
|
48
|
Ioannou A, Berkhout MD, Scott WT, Blijenberg B, Boeren S, Mank M, Knol J, Belzer C. Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides. THE ISME JOURNAL 2024; 18:wrae209. [PMID: 39423288 PMCID: PMC11542058 DOI: 10.1093/ismejo/wrae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a four and five human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of five human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with four human milk oligosaccharides supported the dominance of B. infantis, in four of six replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - William T Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Stippeneng 2, Wageningen 6708WE, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| | - Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, Utrecht 3584CT, the Netherlands
| | - Jan Knol
- Danone Nutricia Research, Uppsalalaan 12, Utrecht 3584CT, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands
| |
Collapse
|
49
|
McBride MJ, Hunter CJ, Zhang Z, TeSlaa T, Xu X, Ducker GS, Rabinowitz JD. Glycine homeostasis requires reverse SHMT flux. Cell Metab 2024; 36:103-115.e4. [PMID: 38171330 DOI: 10.1016/j.cmet.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gregory S Ducker
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
50
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|