1
|
Kabelitz D, Cierna L, Juraske C, Zarobkiewicz M, Schamel WW, Peters C. Empowering γδ T-cell functionality with vitamin C. Eur J Immunol 2024; 54:e2451028. [PMID: 38616772 DOI: 10.1002/eji.202451028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, UKSH Campus Kiel, Kiel, Germany
| | - Lea Cierna
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
2
|
Ghahramanipour Z, Alipour S, Masoumi J, Rostamlou A, Hatami-Sadr A, Heris JA, Naseri B, Jafarlou M, Baradaran B. Regulation of Dendritic Cell Functions by Vitamins as Promising Therapeutic Strategy for Immune System Disorders. Adv Biol (Weinh) 2023; 7:e2300142. [PMID: 37423961 DOI: 10.1002/adbi.202300142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/11/2023]
Abstract
A functional immune system is crucial for a healthy life, protecting from infections, tumors, or autoimmune disorders; these are accomplished by the interaction between various immune cells. Nourishment, particularly micronutrients, are very important components in the immune system balance, therefore this review emphasizes the vitamins (D, E, A, C) and Dendritic cells' subsets due to vitamins' roles in immune processes, especially on dendritic cells' functions, maturation, and cytokine production. Current studies reveal significant benefits related to vitamins, including vitamin E, which can contribute to the control of dendritic cells' function and maturation. Furthermore, vitamin D plays an immunoregulatory and anti-inflammatory role in the immune system. Metabolite of vitamin A which is called retinoic acid leads to T cells' differentiation to T helper 1 or T helper 17, so low levels of this vitamin exacerbate the menace of infectious diseases, and vitamin C has anti-oxidant effects on dendritic cells and modulate their activation and differentiation program. Additionally, the correlation between the amount of vitamin and the occurrence or progression of allergic diseases and autoimmunity disorders is discussed according to the results of previous studies.
Collapse
Affiliation(s)
- Zahra Ghahramanipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, 35040, Turkey
| | | | - Javad Ahmadian Heris
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| |
Collapse
|
3
|
High-Dose Intravenous Ascorbate in Sepsis, a Pro-Oxidant Enhanced Microbicidal Activity and the Effect on Neutrophil Functions. Biomedicines 2022; 11:biomedicines11010051. [PMID: 36672559 PMCID: PMC9855518 DOI: 10.3390/biomedicines11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vitamin C (ascorbic acid), a water-soluble essential vitamin, is well-known as an antioxidant and an essential substrate for several neutrophil functions. Because of (i) the importance of neutrophils in microbial control and (ii) the relatively low vitamin C level in neutrophils and in plasma during stress, vitamin C has been studied in sepsis (a life-threatening organ dysfunction from severe infection). Surprisingly, the supraphysiologic blood level of vitamin C (higher than 5 mM) after the high-dose intravenous vitamin C (HDIVC) for 4 days possibly induces the pro-oxidant effect in the extracellular space. As such, HDIVC demonstrates beneficial effects in sepsis which might be due to the impacts on an enhanced microbicidal activity through the improved activity indirectly via enhanced neutrophil functions and directly from the extracellular pro-oxidant effect on the organismal membrane. The concentration-related vitamin C properties are also observed in the neutrophil extracellular traps (NETs) formation as ascorbate inhibits NETs at 1 mM (or less) but facilitates NETs at 5 mM (or higher) concentration. The longer duration of HDIVC administration might be harmful in sepsis because NETs and pro-oxidants are partly responsible for sepsis-induced injuries, despite the possible microbicidal benefit. Despite the negative results in several randomized control trials, the short course HDIVC might be interesting to use in some selected groups, such as against anti-biotic resistant organisms. More studies on the proper use of vitamin C, a low-cost and widely available drug, in sepsis are warranted.
Collapse
|
4
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
5
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
6
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
7
|
Furqan M, Abu-Hejleh T, Stephens LM, Hartwig SM, Mott SL, Pulliam CF, Petronek M, Henrich JB, Fath MA, Houtman JC, Varga SM, Bodeker KL, Bossler AD, Bellizzi AM, Zhang J, Monga V, Mani H, Ivanovic M, Smith BJ, Byrne MM, Zeitler W, Wagner BA, Buettner GR, Cullen JJ, Buatti JM, Spitz DR, Allen BG. Pharmacological ascorbate improves the response to platinum-based chemotherapy in advanced stage non-small cell lung cancer. Redox Biol 2022; 53:102318. [PMID: 35525024 PMCID: PMC9079696 DOI: 10.1016/j.redox.2022.102318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Platinum-based chemotherapy with or without immunotherapy is the mainstay of treatment for advanced stage non-small cell lung cancer (NSCLC) lacking a molecular driver alteration. Pre-clinical studies have reported that pharmacological ascorbate (P-AscH-) enhances NSCLC response to platinum-based therapy. We conducted a phase II clinical trial combining P-AscH- with carboplatin-paclitaxel chemotherapy. EXPERIMENTAL DESIGN Chemotherapy naïve advanced stage NSCLC patients received 75 g ascorbate twice per week intravenously with carboplatin and paclitaxel every three weeks for four cycles. The primary endpoint was to improve tumor response per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 compared to the historical control of 20%. The trial was conducted as an optimal Simon's two-stage design. Blood samples were collected for exploratory analyses. RESULTS The study enrolled 38 patients and met its primary endpoint with an objective response rate of 34.2% (p = 0.03). All were confirmed partial responses (cPR). The disease control rate was 84.2% (stable disease + cPR). Median progression-free and overall survival were 5.7 months and 12.8 months, respectively. Treatment-related adverse events (TRAE) included one grade 5 (neutropenic fever) and five grade 4 events (cytopenias). Cytokine and chemokine data suggest that the combination elicits an immune response. Immunophenotyping of peripheral blood mononuclear cells demonstrated an increase in effector CD8 T-cells in patients with a progression-free survival (PFS) ≥ 6 months. CONCLUSIONS The addition of P-AscH- to platinum-based chemotherapy improved tumor response in advanced stage NSCLC. P-AscH- appears to alter the host immune response and needs further investigation as a potential adjuvant to immunotherapy.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Corresponding author. Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, C21-K GH, Iowa City, IA, 52242, USA.
| | - Taher Abu-Hejleh
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA
| | - Sarah L. Mott
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Casey F. Pulliam
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Michael Petronek
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - John B. Henrich
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Melissa A. Fath
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Jon C. Houtman
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Interdisciplinary Graduate Program in Immunology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA
| | - Steven M. Varga
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Interdisciplinary Graduate Program in Immunology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA,Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Kellie L. Bodeker
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Aaron D. Bossler
- Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Andrew M. Bellizzi
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Jun Zhang
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Hariharasudan Mani
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Marina Ivanovic
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Brian J. Smith
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Biostatistics, College of Public Health, University of Iowa, 145 N. Riverside Dr, Iowa City, IA, 52242, USA
| | - Margaret M. Byrne
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - William Zeitler
- Department of Internal Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Brett A. Wagner
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Garry R. Buettner
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Joseph J. Cullen
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - John M. Buatti
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Douglas R. Spitz
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Bryan G. Allen
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA,Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| |
Collapse
|
8
|
Coppock D, Violet PC, Vasquez G, Belden K, Foster M, Mullin B, Magee D, Mikell I, Shah L, Powers V, Curcio B, Monti D, Levine M. Pharmacologic Ascorbic Acid as Early Therapy for Hospitalized Patients with COVID-19: A Randomized Clinical Trial. Life (Basel) 2022; 12:453. [PMID: 35330204 PMCID: PMC8954118 DOI: 10.3390/life12030453] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/29/2023] Open
Abstract
Despite the widespread availability of effective vaccines, new cases of infection with severe acute respiratory syndrome coronavirus-2, the cause of coronavirus disease 2019 (COVID-19), remain a concern in the settings of vaccine hesitancy and vaccine breakthrough. In this randomized, controlled, phase 2 trial, we hypothesized that high-dose ascorbic acid delivered intravenously to achieve pharmacologic concentrations may target the high viral phase of COVID-19 and thus improve early clinical outcomes. Sixty-six patients admitted with COVID-19 and requiring supplemental oxygen were randomized to receive either escalating doses of intravenous ascorbic acid plus standard of care or standard of care alone. The demographic and clinical characteristics were well-balanced between the two study arms. The primary outcome evaluated in this study was clinical improvement at 72 h after randomization. While the primary outcome was not achieved, point estimates for the composite outcome and its individual components of decreased use of supplemental oxygen, decreased use of bronchodilators, and the time to discharge were all favorable for the treatment arm. Possible favorable effects of ascorbic acid were most apparent during the first 72 h of hospitalization, although these effects disappeared over the course of the entire hospitalization. Future larger trials of intravenous ascorbic acid should be based on our current understanding of COVID-19 with a focus on the potential early benefits of ascorbic in hospitalized patients.
Collapse
Affiliation(s)
- Dagan Coppock
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA;
| | - Gustavo Vasquez
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Katherine Belden
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Michael Foster
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Bret Mullin
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Devon Magee
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Isabelle Mikell
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Lokesh Shah
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Victoria Powers
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Brian Curcio
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA;
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Sidney Kimmel Medical College, Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107, USA;
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Xie Y, Liu B, Wu Z. Identification of Serum Biomarkers and Pathways of Systemic Lupus Erythematosus with Skin Involvement Through GC/MS-Based Metabolomics Analysis. Clin Cosmet Investig Dermatol 2022; 15:77-86. [PMID: 35082507 PMCID: PMC8784912 DOI: 10.2147/ccid.s345372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Purpose Skin involvement is the second most common symptom of systemic lupus erythematosus (SLE), and the prevention of skin lesion development might benefit to lessen the system inflammation burden in SLE. However, the mechanisms of skin lesion in SLE remain unclear. Patients and Methods Metabolome based on gas chromatography-mass spectrometry (GC-MS) was used for comparison of serum metabolism among 11 SLE patients with skin lesion (SL), 10 SLE patients without skin lesion (SNL), and 16 healthy controls (HC). The analysis of metabolism profiles was through LUG database, Human Metabolome Database (HMDB) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG). Results A total of 14 most meaningful metabolites were found in SL patients compared to SNL patients, and 19 metabolic pathways were enriched. Meanwhile, L-alpha-aminobutyric acid, dehydroascorbic acid, glycine, and L-tyrosine achieved an area under receiver-operating characteristic (ROC) curve of 0.8636, 0.8091, 0.7727, and 0.7636, respectively, indicating their diagnostic potential for SL patients. In addition, the combined model of L-alpha-aminobutyric acid and dehydroascorbic acid provided better diagnostic accuracy. Conclusion The metabolomic features of SLE patients with skin lesion could be detected by GC/MS assay. Our study tried to provide new insights into the mechanism of SLE skin injury. Further validation of these findings through larger sample size studies may contribute to the use of metabolic profile analysis.
Collapse
Affiliation(s)
- Yongyi Xie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Baoyi Liu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| |
Collapse
|
10
|
Chen HY, Hsu M, Lio CWJ. Micro but mighty-Micronutrients in the epigenetic regulation of adaptive immune responses. Immunol Rev 2022; 305:152-164. [PMID: 34820863 PMCID: PMC8766944 DOI: 10.1111/imr.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Micronutrients are essential small molecules required by organisms in minute quantity for survival. For instance, vitamins and minerals, the two major categories of micronutrients, are central for biological processes such as metabolism, cell replication, differentiation, and immune response. Studies estimated that around two billion humans worldwide suffer from micronutrient deficiencies, also known as "hidden hunger," linked to weakened immune responses. While micronutrients affect the immune system at multiple levels, recent studies showed that micronutrients potentially impact the differentiation and function of immune cells as cofactors for epigenetic enzymes, including the 2-oxoglutarate-dependent dioxygenase (2OGDD) family involved in histone and DNA demethylation. Here, we will first provide an overview of the role of DNA methylation in T cells and B cells, followed by the micronutrients ascorbate (vitamin C) and iron, two critical cofactors for 2OGDD. We will discuss the emerging evidence of these micronutrients could regulate adaptive immune response by influencing epigenetic remodeling.
Collapse
Affiliation(s)
| | | | - Chan-Wang Jerry Lio
- Corresponding author: Chan-Wang Jerry Lio (), Address: 460 W 12 Ave, Columbus, Ohio, USA 43064, Tel: (614)-247-5337
| |
Collapse
|
11
|
Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M, Dermime S. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother 2021; 146:112553. [PMID: 34923342 DOI: 10.1016/j.biopha.2021.112553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cytokines involved in the immune response.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute and dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
12
|
Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol 2021; 12:765906. [PMID: 34899716 PMCID: PMC8663797 DOI: 10.3389/fimmu.2021.765906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Department of Pediatrics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
13
|
Hagino T, Okazaki S, Serizawa N, Suzuki K, Kaga M, Otsuka Y, Mikami E, Hoashi T, Saeki H, Matsuda H, Mitsui H, Kanda N. Dietary Habits in Japanese Patients with Alopecia Areata. Clin Cosmet Investig Dermatol 2021; 14:1579-1591. [PMID: 34737597 PMCID: PMC8560057 DOI: 10.2147/ccid.s335440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Purpose Alopecia areata (AA) is characterized by non-scarring, patchy hair loss caused by autoimmune reactions to anagen hair follicles. The pathogenesis of AA may be affected by the diet. However, the dietary habits of patients with AA have not been precisely examined. Therefore, the aim of this study was to investigate the dietary habits of patients with AA in comparison to those of healthy controls. Patients and Methods We evaluated the dietary habits of 70 adult Japanese patients with AA using a brief-type self-administered diet history questionnaire and compared them to the habits of age- and sex-matched healthy controls. Results Japanese patients with AA had a higher body mass index (BMI) and higher intakes of vitamin C and fruit than the controls. Logistic regression analysis showed that AA was associated with BMI. Retinol intake was positively correlated with severity of alopecia tool (SALT) score, and linear regression analysis revealed that retinol intake was a predictor of SALT score. Retinol intake among patients with moderate to severe AA (ie, a SALT score >25) was higher than that in patients with mild AA (a SALT score ≤25). The mean age of AA patients with atopic dermatitis (AD) was lower than that of AA patients without AD; however, there were no differences in nutrient or food intake between these two groups. Logistic regression analysis showed that the comorbidity AD was negatively associated with age. Conclusion AA was associated with a high BMI, and high retinol intake was a predictor of SALT score. Further studies should be conducted to clarify whether dietary intervention to reduce BMI or limit retinol intake can alter the development or severity of AA.
Collapse
Affiliation(s)
- Teppei Hagino
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan.,Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shizuka Okazaki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Naotaka Serizawa
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Kaori Suzuki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Mio Kaga
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Yohei Otsuka
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Erina Mikami
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | | | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Hiroki Matsuda
- Department of Dermatology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Hiroshi Mitsui
- Department of Dermatology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| |
Collapse
|
14
|
Carstens MR, Wasserfall CH, Acharya AP, Lewis J, Agrawal N, Koenders K, Bracho-Sanchez E, Keselowsky BG. GRAS-microparticle microarrays identify dendritic cell tolerogenic marker-inducing formulations. LAB ON A CHIP 2021; 21:3598-3613. [PMID: 34346460 PMCID: PMC8725777 DOI: 10.1039/d1lc00096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays, miniaturized platforms used for high-content studies, provide potential advantages over traditional in vitro investigation in terms of time, cost, and parallel analyses. Recently, microarrays have been leveraged to investigate immune cell biology by providing a platform with which to systematically investigate the effects of various agents on a wide variety of cellular processes, including those giving rise to immune regulation for application toward curtailing autoimmunity. A specific embodiment incorporates dendritic cells cultured on microarrays containing biodegradable microparticles. Such an approach allows immune cell and microparticle co-localization and release of compounds on small, isolated populations of cells, enabling a quick, convenient method to quantify a variety of cellular responses in parallel. In this study, the microparticle microarray platform was utilized to investigate a small library of sixteen generally regarded as safe (GRAS) compounds (ascorbic acid, aspirin, capsaicin, celastrol, curcumin, epigallocatechin-3-gallate, ergosterol, hemin, hydrocortisone, indomethacin, menadione, naproxen, resveratrol, retinoic acid, α-tocopherol, vitamin D3) for their ability to induce suppressive phenotypes in murine dendritic cells. Two complementary tolerogenic index ranking systems were proposed to summarize dendritic cell responses and suggested several lead compounds (celastrol, ergosterol, vitamin D3) and two secondary compounds (hemin, capsaicin), which warrant further investigation for applications toward suppression and tolerance.
Collapse
Affiliation(s)
- Matthew R Carstens
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jamal Lewis
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Nikunj Agrawal
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Kevin Koenders
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
16
|
Peters C, Kouakanou L, Kabelitz D. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. J Leukoc Biol 2020; 107:1009-1022. [PMID: 32034803 DOI: 10.1002/jlb.1mr1219-245r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (VitC) is an essential vitamin that needs to be provided through exogenous sources. It is a potent anti-oxidant, and an essential cofactor for many enzymes including a group of enzymes that modulate epigenetic regulation of gene expression. Moreover, VitC has a significant influence on T-cell differentiation, and can directly interfere with T-cell signaling. Conventional CD4 and CD8 T cells express the αβ TCR and recognize peptide antigens in the context of MHC presentation. The numerically small population of γδ T cells recognizes antigens in an MHC-independent manner. γδ T cells kill a broad variety of malignant cells, and because of their unique features, are interesting candidates for cancer immunotherapy. In this review, we summarize what is known about the influence of VitC on T-cell activation and differentiation with a special focus on γδ T cells. The known mechanisms of action of VitC on αβ T cells are discussed and extrapolated to the effects observed on γδ T-cell activation and differentiation. Overall, VitC enhances proliferation and effector functions of γδ T cells and thus may help to increase the efficacy of γδ T cells applied as cancer immunotherapy in adoptive cell transfer.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
17
|
Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and Antimicrobial Effects of Vitamin C. Eur J Microbiol Immunol (Bp) 2019; 9:73-79. [PMID: 31662885 PMCID: PMC6798581 DOI: 10.1556/1886.2019.00016] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Humans have lost their vitamin C-synthesizing capacities during evolution. Therefore, the uptake of this essential compound from external sources is mandatory in order to prevent vitamin C-deficient conditions resulting in severe morbidities such as scurvy. The potent antioxidant, immunomodulatory, and antiinfectious effects of vitamin C are known since the 1930s. We here (i) review the impact of vitamin C on innate and adaptive immune functions, (ii) provide an overview of its antimicrobial, antibacterial, antiviral, antiparasitic, and antifungal properties, and finally, (iii) discuss vitamin C as an adjunct treatment option for the combat of human infections by bacteria, particularly by emerging multidrug-resistant species.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Boukhaled GM, Corrado M, Guak H, Krawczyk CM. Chromatin Architecture as an Essential Determinant of Dendritic Cell Function. Front Immunol 2019; 10:1119. [PMID: 31214161 PMCID: PMC6557980 DOI: 10.3389/fimmu.2019.01119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics has widespread implications in a variety of cellular processes ranging from cell identity and specification, to cellular adaptation to environmental stimuli. While typically associated with heritable changes in gene expression, epigenetic mechanisms are now appreciated to regulate dynamic changes in gene expression—even in post-mitotic cells. Cells of the innate immune system, including dendritic cells (DC), rapidly integrate signals from their microenvironment and respond accordingly, undergoing massive changes in transcriptional programming. This dynamic transcriptional reprogramming relies on epigenetic changes mediated by numerous enzymes and their substrates. This review highlights our current understanding of epigenetic regulation of DC function. Epigenetic mechanisms contribute to the maintenance of the steady state and are important for precise responses to proinflammatory stimuli. Interdependence between epigenetic modifications and the delicate balance of metabolites present another layer of complexity. In addition, dynamic regulation of the expression of proteins that modify chromatin architecture in DCs significantly impacts DC function. Environmental factors, including inflammation, aging, chemicals, nutrients, and lipid mediators, are increasingly appreciated to affect the epigenome in DCs, and, in doing so, regulate host immunity. Our understanding of how epigenetic mechanisms regulate DC function is in its infancy, and it must be expanded in order to discern the mechanisms underlying the balance between health and disease states.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Mario Corrado
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Hannah Guak
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Connie M Krawczyk
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
19
|
Qin X, Liu J, Du Y, Li Y, Zheng L, Chen G, Cao Y. Different doses of vitamin C supplementation enhances the Th1 immune response to early Plasmodium yoelii 17XL infection in BALB/c mice. Int Immunopharmacol 2019; 70:387-395. [PMID: 30852294 DOI: 10.1016/j.intimp.2019.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Here, we evaluated the effect of vitamin C supplementation on the immune response to Plasmodium yoelii 17XL (P. yoelii 17XL) infection in BALB/c mice. Two orally administered doses (25 mg/kg/day and 250 mg/kg/day) of vitamin C significantly reduced levels of parasitemia during the early stages of P. yoelii 17XL infection. The numbers of activated Th1 cells and macrophages in the groups receiving vitamin C supplementation were both higher than those in the untreated group. Meanwhile, vitamin C administration reduced the levels of tumor necrosis factor α secreted by splenocytes. Vitamin C also regulated the protective anti-malarial immune response by increasing the number of plasmacytoid dendritic cells, as well as the expression of dendritic cell maturation markers, such as major histocompatibility complex class II and cluster of differentiation 86. In conclusion, the doses of vitamin C (25 mg/kg/day, 250 mg/kg/day) during the early stages of malaria infection may better enhance host protective immunity, but have no dose dependence.
Collapse
Affiliation(s)
- Xiaosong Qin
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunting Du
- Clinical Lab, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Ying Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Medical School, No 1139 Shifu Road, Jiaojiang District, Taizhou 317700, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China.
| |
Collapse
|
20
|
Elmadfa I, Meyer AL. The Role of the Status of Selected Micronutrients in Shaping the Immune Function. Endocr Metab Immune Disord Drug Targets 2019; 19:1100-1115. [PMID: 31142256 PMCID: PMC7360912 DOI: 10.2174/1871530319666190529101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This narrative review gives an overview on the essential role of adequate nutrition to an optimally functioning immune defence. Micronutrients act as regulators of the immune response, with the focus of this review on the immunomodulatory effects of the trace elements iron, zinc and selenium, and the vitamins A, D, E, C, B6 and B12 and folic acid. RESULTS Iron deficiency especially impairs the Th1 cell-borne cellular immunity. T lymphocytes are also most affected by a deficiency of zinc, needed for their maturation and the balance between the different T cell subpopulations and acting as a redox signal in the regulation of many enzymes. Selenium is also involved in redox reactions as the glutathione peroxidases and other redox enzymes are selenoproteins. Selenium status has shown special effects on cellular immunity and resistance to viral infections. Vitamin A in the form of retinoic acid induces a humoral Th2 cell response via antigen-presenting cells and is involved in maintaining intestinal immune defence and tolerance through its nuclear receptor RAR and via kinase signalling cascades. Immune tolerance is particularly promoted by vitamin D acting through dendritic cells to stimulate the differentiation of regulatory T cells. Vitamin E has antiinflammatory effects and stimulates naïve T cells especially in the elderly. Besides its antioxidative properties, vitamin C has effects on cell signalling and epigenetic regulation. The B vitamins are required for cytotoxic cellular immunity and modulate T cell responses. CONCLUSION A diverse diet and regular exposure to sunlight are the best sources for a balanced nutrient supply to maintain an optimal immune defence.
Collapse
Affiliation(s)
- Ibrahim Elmadfa
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alexa L. Meyer
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans 2018; 46:1147-1159. [PMID: 30301842 PMCID: PMC6195639 DOI: 10.1042/bst20180169] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.
Collapse
|
22
|
Adenosine binds predominantly to adenosine receptor A1 subtype in astrocytes and mediates an immunosuppressive effect. Brain Res 2018; 1700:47-55. [PMID: 29935155 DOI: 10.1016/j.brainres.2018.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 01/21/2023]
Abstract
The four kinds of adenosine receptor subtypes (ARs), named as ARA1, ARA2A, ARA2B and ARA3, have multiple biological functions. ARs are differently distributed across the body and have distinguished ability of binding adenosine. We try to figure out how these ARs were expressed in astrocytes and which one has the first priority of utilizing adenosine. Firstly, mRNA expressions and membrane localization of all ARs were evaluated by qPCR and western blot. After the membrane localization of all ARs in astrocytes was being confirmed their individual adenosine binding ability was determined by radio-active ligand binding assay respectively. It was revealed that ARA1 had much superior adenosine binding ability than other AR subtypes. Functional study demonstrated that ARA1 potentially mediated an immune suppressive effect in astrocytes. The activation of ARA1 signaling lead to decreased IL-12 and IL-23 production, and decreased chemokine production, including CCL2, CXCL8 and IP-10. When interacted with CD4 cells ARA1 agonist pre-treated astrocytes showed hindered ability of stimulating CD4 cells to secret IL-17 and IFN-γ and inducing CD4 cells' chemo taxi. Finally, in vivo experiment confirmed that local administration of ARA1agonist ameliorated EAE in wild type B6 recipients, but not Ara1-/- recipients. As a conclusion, this paper suggested that adenosine receptor A1 subtype predominantly binds adenosine in astrocytes and mediates an immunosuppressive effect.
Collapse
|
23
|
Abstract
Vitamin C or ascorbic acid (AA) is implicated in many biological processes and has been proposed as a supplement for various conditions, including cancer. In this review, we discuss the effects of AA on the development and function of lymphocytes. This is important in the light of cancer treatment, as the immune system needs to regenerate following chemotherapy or stem cell transplantation, while cancer patients are often AA-deficient. We focus on lymphocytes, as these white blood cells are the slowest to restore, rendering patients susceptible to often lethal infections. T lymphocytes mediate cellular immunity and have been most extensively studied in the context of AA biology. In vitro studies demonstrate that T cell development requires AA, while AA also enhances T cell proliferation and may influence T cell function. There are limited and opposing data on the effects of AA on B lymphocytes that mediate humoral immunity. However, AA enhances the proliferation of NK cells, a group of cytotoxic innate lymphocytes. The influence of AA on natural killer (NK) cell function is less clear. In summary, an increasing body of evidence indicates that AA positively influences lymphocyte development and function. Since AA is a safe and cheap nutritional supplement, it is worthwhile to further explore its potential benefits for immune reconstitution of cancer patients treated with immunotoxic drugs.
Collapse
|
24
|
Oyarce K, Campos-Mora M, Gajardo-Carrasco T, Pino-Lagos K. Vitamin C Fosters the In Vivo Differentiation of Peripheral CD4 + Foxp3 - T Cells into CD4 + Foxp3 + Regulatory T Cells but Impairs Their Ability to Prolong Skin Allograft Survival. Front Immunol 2018; 9:112. [PMID: 29479348 PMCID: PMC5811461 DOI: 10.3389/fimmu.2018.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are critical players of immunological tolerance due to their ability to suppress effector T cell function thereby preventing transplant rejection and autoimmune diseases. During allograft transplantation, increases of both Treg expansion and generation, as well as their stable function, are needed to ensure allograft acceptance; thus, efforts have been made to discover new molecules that enhance Treg-mediated tolerance and to uncover their mechanisms. Recently, vitamin C (VitC), known to regulate T cell maturation and dendritic cell-mediated T cell polarization, has gained attention as a relevant epigenetic remodeler able to enhance and stabilize the expression of the Treg master regulator gene Foxp3, positively affecting the generation of induced Tregs (iTregs). In this study, we measured VitC transporter (SVCT2) expression in different immune cell populations, finding Tregs as one of the cell subset with the highest levels of SVCT2 expression. Unexpectedly, we found that VitC treatment reduces the ability of natural Tregs to suppress effector T cell proliferation in vitro, while having an enhancer effect on TGFβ-induced Foxp3+ Tregs. On the other hand, VitC increases iTregs generation in vitro and in vivo, however, no allograft tolerance was achieved in animals orally treated with VitC. Lastly, Tregs isolated from the draining lymph nodes of VitC-treated and transplanted mice also showed impaired suppression capacity ex vivo. Our results indicate that VitC promotes the generation and expansion of Tregs, without exhibiting CD4+ T cell-mediated allograft tolerance. These observations highlight the relevance of the nutritional status of patients when immune regulation is needed.
Collapse
Affiliation(s)
- Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo-Carrasco
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
25
|
Wu M, He M, Kang Y. Vitamin C supplementation improved the efficacy of foot-and-mouth disease vaccine. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1406459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Minsheng Wu
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People’s Republic of China
| | - Meina He
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People’s Republic of China
| | - Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Leal E, Zarza C, Tafalla C. Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes. FISH & SHELLFISH IMMUNOLOGY 2017; 67:179-188. [PMID: 28602736 DOI: 10.1016/j.fsi.2017.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Vitamin C, also known as ascorbic acid, is an essential micronutrient that influences a wide variety of physiological processes, including immunological functions. Although the positive effects of vitamin C supplementation on the immunological status of fish has been established in different species, the bases for these positive effects are still unknown. Hence, the aim of our study was to evaluate the in vitro effect of vitamin C on several innate immune functions of rainbow trout (Oncorhynchus mykiss) leukocyte populations. For this, we assessed the effects exerted on the established rainbow trout monocyte-macrophage cell line RTS11, and compared them to those observed in trout head kidney leukocytes. Our results demonstrate that vitamin C increases the production of reactive oxygen species and the percentage of phagocytic cells in both cell populations. On the other hand, vitamin C had no effect on the surface MHC II levels and only in the case of RTS11 cells increased the capacity of these cells to migrate towards the CK9 chemokine. Finally, vitamin C also increased the transcription of several pro-inflammatory and antimicrobial genes elicited by Escherichia coli, with some differences depending on the cell population studied. Our results contribute to further understand how vitamin C supplementation regulates the fish immune system.
Collapse
Affiliation(s)
- Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carlos Zarza
- Skretting Aquaculture Research Centre, PO Box 48, Stavanger 4001, Norway
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
27
|
Batra SD, Nandi M, Sikri K, Tyagi JS. Genome-wide expression profiling establishes novel modulatory roles of vitamin C in THP-1 human monocytic cell line. BMC Genomics 2017; 18:252. [PMID: 28335738 PMCID: PMC5364625 DOI: 10.1186/s12864-017-3635-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Vitamin C (vit C) is an essential dietary nutrient, which is a potent antioxidant, a free radical scavenger and functions as a cofactor in many enzymatic reactions. Vit C is also considered to enhance the immune effector function of macrophages, which are regarded to be the first line of defence in response to any pathogen. The THP-1 cell line is widely used for studying macrophage functions and for analyzing host cell-pathogen interactions. Results We performed a genome-wide temporal gene expression and functional enrichment analysis of THP-1 cells treated with 100 μM of vit C, a physiologically relevant concentration of the vitamin. Modulatory effects of vitamin C on THP-1 cells were revealed by differential expression of genes starting from 8 h onwards. The number of differentially expressed genes peaked at the earliest time-point i.e. 8 h followed by temporal decline till 96 h. Further, functional enrichment analysis based on statistically stringent criteria revealed a gamut of functional responses, namely, ‘Regulation of gene expression’, ‘Signal transduction’, ‘Cell cycle’, ‘Immune system process’, ‘cAMP metabolic process’, ‘Cholesterol transport’ and ‘Ion homeostasis’. A comparative analysis of vit C-mediated modulation of gene expression data in THP-1cells and human skin fibroblasts disclosed an overlap in certain functional processes such as ‘Regulation of transcription’, ‘Cell cycle’ and ‘Extracellular matrix organization’, and THP-1 specific responses, namely, ‘Regulation of gene expression’ and ‘Ion homeostasis’. It was noteworthy that vit C modulated the ‘Immune system’ process throughout the time-course. Conclusions This study reveals the genome-wide effects of physiological levels of vit C on THP-1 gene expression. The multitude of effects impacted by vit C in macrophages highlights its role in maintaining homeostasis of several cellular functions. This study provides a rational basis for the use of the Vitamin C- THP-1 cell model, to study biochemical and cellular responses to stresses, including infection with M. tuberculosis and other intracellular pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3635-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sakshi Dhingra Batra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
28
|
Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation. J Nutr Biochem 2016; 41:65-72. [PMID: 28040582 DOI: 10.1016/j.jnutbio.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 02/02/2023]
Abstract
Insufficient folate status may be related to the increasing prevalence of immune- or inflammation-related chronic diseases. To investigate the effects of folate on immune regulation, we examined the impact of folate deficiency (FD) on dendritic cell (DC) maturation and function and, thus, T helper (Th) cells differentiation. First, bone marrow-derived DCs (BMDCs) were generated from BALB/c mice bone marrow cells cultured in folate-containing (F-BMDCs) or folate-deficient (FD-BMDCs) medium. FD-BMDC displayed more immature phenotype including reduced levels of major histocompatibility complex class II (MHC II), co-stimulatory molecules and characteristic of higher endocytic activity. FD-BMDC produced less IL-12p70 and proinflammatory cytokines in response to lipopolysaccharide. This aberrant DC maturation due to FD resulted in reduced BMDC-induced Th cell activity and lower IL-2, IFNγ, IL-13 and IL-10 productions. Further in vivo study confirmed significantly lower IFNγ and IL-10 productions by T cells and showed higher splenic naïve Th and lower memory T, effector T and regulatory T cell (Treg) percentages in mice fed with the FD diet for 13 weeks. To investigate the role of DCs on T cell activity, splenic DCs (spDC) from FD mice were cocultured with Th cells. The FD spDC had lower MHC II and CD80 expressions and subsequently impaired DC-induced Th differentiation, shown as decreased cytokine productions. This study demonstrated that folate deficiency impaired DC functions and, thus, Th differentiation and responses, suggesting that folate plays a crucial role in maintaining Th cells homeostasis.
Collapse
|
29
|
Hong JM, Kim JH, Kang JS, Lee WJ, Hwang YI. Vitamin C is taken up by human T cells via sodium-dependent vitamin C transporter 2 (SVCT2) and exerts inhibitory effects on the activation of these cells in vitro. Anat Cell Biol 2016; 49:88-98. [PMID: 27382510 PMCID: PMC4927435 DOI: 10.5115/acb.2016.49.2.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 01/11/2023] Open
Abstract
Vitamin C is an essential micronutrient that affects immune responses. T cells are one of the main players in acquired immunity and have been reported to be influenced by in vivo vitamin C supplementation. Yet, the way by which T cells uptake vitamin C and what direct effects vitamin C exerts on the cells are not known. To elucidate, we isolated human peripheral blood T cells and analyzed the expression of sodium-dependent vitamin C transporters (SVCT). T cells were activated in vitro in the absence or presence of vitamin C, before or after activation. As results, human T cells expressed SVCT2, but not SVCT1, and the expression level increased following activation. Vitamin C added in the culture media generally did not affect T-cell behaviors following activation, such as proliferation, apoptosis, expression of CD25 and CD69, and interleukin 2 secretion, regardless whether it was added before or after activation. However, exceptionally, high concentration vitamin C, when it was added before activation, but not after activation, did exert toxic effects on cell activation with respect to the above-mentioned parameters. In conclusion, we showed the expression of SVCT2 in human T cells for the first time. Vitamin C exerted toxic effects, at least in vitro, when the concentration was high and when it was given before activation. These toxic effects are not thought to be via anti-oxidant effects of vitamin C.
Collapse
Affiliation(s)
- Jun-Man Hong
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Wang Jae Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Il Hwang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Kim JH, Hong JM, Jeong EM, Lee WJ, Kim HR, Kang JS, Kim IG, Hwang YI. Lack of transglutaminase 2 diminished T-cell responses in mice. Immunology 2014; 142:506-16. [PMID: 24628083 DOI: 10.1111/imm.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Transglutaminase 2 (TG2) has been reported to play a role in dendritic cell activation and B-cell differentiation after immunization. Its presence and role in T cells, however, has not been explored. In the present study, we determined the expression of TG2 on mouse T cells, and evaluated its role by comparing the behaviours of wild-type and TG2(-/-) T cells after activation. In our results, naive T cells minimally expressed TG2, expression of which was increased after activation. T-cell proliferation, expression of activation markers such as CD69 and CD25, and secretions of interleukin-2 and interferon-γ were suppressed in the absence of TG2, presumably due, in part, to diminished nuclear factor-κB activation. These effects on T cells seemed to be reflected in the in vivo immune response, the contact hypersensitivity reaction elicited by 2,4-dinitro-1-fluorobenzene, with lowered peak responses in the TG2(-/-) mice. When splenic T cells from mice immunized with tumour lysate-loaded wild-type dendritic cells were re-challenged ex vivo with the same antigen, the profile of surface markers including CD44, CD62L, and CD127 strongly indicated lesser generation of memory CD8(+) T cells in TG2(-/-) mice. In the TG2(-/-) CD8(+) T cells, moreover, Eomes expression was markedly decreased. These results indicate possible roles of TG2 in CD8(+) T-cell activation and CD8(+) memory T-cell generation.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Transglutaminase 2 on the surface of dendritic cells is proposed to be involved in dendritic cell-T cell interaction. Cell Immunol 2014; 289:55-62. [PMID: 24727157 DOI: 10.1016/j.cellimm.2014.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 11/20/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitous enzyme involved in diverse biological processes. Recently, its function in adaptive immune responses has begun to emerge. Its presence and functions in B cells and T cells, for example, have been reported. However, those in dendritic cells (DCs), the principal antigen-presenting cells, are as yet unexplored in murine system. In this study, we first investigated the expression of TG2 in murine bone marrow-derived DCs, and then compared the functioning of these cells in the presence or absence of this enzyme using wild-type (WT) and TG2(-/-) mice. We found that the WT DCs expressed TG2 both in the cytoplasm and on the cell surface, both of which were elevated after LPS stimulation. Unexpectedly, between WT and TG2(-/-) DCs, there were no remarkable differences in cytokine secretion, IL-10 and IL-12, and neither in the expression of surface molecules CD80, CD86, and MHC II, excepting a moderate decrease of CD40 expression on the TG2(-/-) DCs. However, when T cells were stimulated with TG2(-/-) DCs, they showed decreased levels of proliferation, CD69 and CD25 expression, and IFN-γ secretion. The addition of anti-TG2 antibody to the WT DC-T cell co-culture resulted in decreased T cell activation. By immunofluorescence staining, TG2 was observed at DC-T cell interface (contact point). Taken together, we propose that TG2 on the surface of DCs modulates the DC-T cell interaction.
Collapse
|
32
|
Jeong YJ, Kim JH, Hong JM, Kang JS, Kim HR, Lee WJ, Hwang YI. Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology 2014; 219:554-64. [PMID: 24698552 DOI: 10.1016/j.imbio.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
Vitamin C has been found to stimulate dendritic cells (DCs) to secrete more IL-12 and thereby drive naïve CD4(+) T cells to differentiate into Th1 cells. In the present study, we evaluated the effect of these vitamin C-treated DCs on CD8(+) T cell differentiation both in vitro and in vivo. Mouse bone marrow-derived DCs were prepared in the presence of GM-CSF and IL-15. With vitamin C treatment, these DCs, when LPS-stimulated, secreted more IL-12p70 and IL-15 than did untreated DCs. And when co-cultured with T cells, they yielded a higher frequency of IFN-γ(+) CD8(+) T cells. Moreover, we found that administering vitamin C-treated and tumor lysate-loaded DCs into mice yielded a higher frequency of CD44(high) CD62L(low) CD8(+) effector and effector memory T cells, which showed an increased ex vivo killing effect of the tumor cells. These DCs also elicited enhanced protective effects against inoculated tumor cells, most probably by way of the increased cytotoxic T cells, as was revealed by the decreased growth of the inoculated tumor cells in these mice. This ex vivo vitamin C treatment effect on DCs can be considered as a strategy for boosting DC vaccination potency against tumors.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jun-Man Hong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Young-il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
33
|
Kim JH, Jeong YJ, Hong JM, Kim HR, Kang JS, Lee WJ, Hwang YI. Chronic vitamin C insufficiency aggravated thioacetamide-induced liver fibrosis in gulo-knockout mice. Free Radic Biol Med 2014; 67:81-90. [PMID: 24184603 DOI: 10.1016/j.freeradbiomed.2013.10.813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/06/2013] [Accepted: 10/17/2013] [Indexed: 01/01/2023]
Abstract
Given the involvement of oxidative stress in liver-disease- or hepato-toxicant-induced hepatic damage and fibrosis, antioxidants are an effective preventive and therapeutic tool. The beneficial results of vitamin C, one of the physiological antioxidants, have been observed both in experimental animals and in humans. However, most of these studies have been concerned with supplementary vitamin C; the effects of under vitamin C insufficiency, which humans sometimes confront, have not been substantially investigated. In the present study, we established a vitamin C-insufficient animal model (half-to-normal serum vitamin C concentration) with gulo(-/-) mice that cannot synthesize vitamin C, and induced hepatotoxicity by means of thioacetamide (TAA) injections twice a week for 18 weeks. Additionally, we explored the direct effects of vitamin C both on immortalized human hepatic stellate LX-2 cells and on rat primary hepatic stellate cells. Vitamin C insufficiency resulted in a decreased survival rate and increased serum markers for hepatocyte damage, such as alanine aminotransferase and aspartate aminotransferase. Concomitantly, the levels of reactive oxygen species (ROS) and lipid peroxides in the liver were increased. Histological examinations of the vitamin C-insufficient liver revealed increases in collagen fiber deposition and activated-hepatic-stellate-cell number. Vitamin C, when directly applied to the LX-2 cells as well as the rat primary hepatic stellate cells, suppressed not only proliferation but hydrogen peroxide-induced collagen expression as well. In conclusion, vitamin C insufficiency exacerbated TAA-induced hepatotoxicity. These effects seem to be mainly from insufficient scavenging of ROS in the liver, and possibly in part, by directly affecting hepatic stellate cells.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Young-Joo Jeong
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Jun-Man Hong
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Hang-Rae Kim
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Young-Il Hwang
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea.
| |
Collapse
|
34
|
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28:314-28. [PMID: 24426232 DOI: 10.1007/s12291-013-0375-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Collapse
Affiliation(s)
- Shailja Chambial
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Placheril J John
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| |
Collapse
|
35
|
Al-Huseini LMA, Aw Yeang HX, Sethu S, Alhumeed N, Hamdam JM, Tingle Y, Djouhri L, Kitteringham N, Park BK, Goldring CE, Sathish JG. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem 2013; 288:22281-8. [PMID: 23775080 PMCID: PMC3829319 DOI: 10.1074/jbc.m113.483420] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2−/− iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2−/− iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2−/− iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2−/− iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2−/− iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.
Collapse
Affiliation(s)
- Laith M A Al-Huseini
- Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2013; 18:1497-534. [PMID: 22938635 PMCID: PMC3603502 DOI: 10.1089/ars.2011.4073] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are thought to have effects on T-cell function and proliferation. Low concentrations of ROS in T cells are a prerequisite for cell survival, and increased ROS accumulation can lead to apoptosis/necrosis. The cellular redox state of a T cell can also affect T-cell receptor signaling, skewing the immune response. Various T-cell subsets have different redox statuses, and this differential ROS susceptibility could modulate the outcome of an immune response in various disease states. Recent advances in T-cell redox signaling reveal that ROS modulate signaling cascades such as the mitogen-activated protein kinase, phosphoinositide 3-kinase (PI3K)/AKT, and JAK/STAT pathways. Also, tumor microenvironments, chronic T-cell stimulation leading to replicative senescence, gender, and age affect T-cell susceptibility to ROS, thereby contributing to diverse immune outcomes. Antioxidants such as glutathione, thioredoxin, superoxide dismutase, and catalase balance cellular oxidative stress. T-cell redox states are also regulated by expression of various vitamins and dietary compounds. Changes in T-cell redox regulation may affect the pathogenesis of various human diseases. Many strategies to control oxidative stress have been employed for various diseases, including the use of active antioxidants from dietary products and pharmacologic or genetic engineering of antioxidant genes in T cells. Here, we discuss the existence of a complex web of molecules/factors that exogenously or endogenously affect oxidants, and we relate these molecules to potential therapeutics.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
37
|
Meng Y, Wang Q, Zhang Z, Wang E, Plotnikoff NP, Shan F. Synergistic effect of methionine encephalin (MENK) combined with pidotimod(PTD) on the maturation of murine dendritic cells (DCs). Hum Vaccin Immunother 2013; 9:773-83. [PMID: 23470544 PMCID: PMC3903895 DOI: 10.4161/hv.23137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/26/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022] Open
Abstract
To gain new insight into the functional interaction between dendritic cells and methionine encephalin (MENK) combined with pidotimod (PTD), we have analyzed the effect of MENK plus PTD on the morphology, phenotype and functions of murine bone-marrow derived dendritic cells (BMDCs) in vitro. The maturation of BMDCs cultured in the presence of either MENK or PTD alone, or MENK in combination with PTD, was detected. The cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt/phenazinemethosulphate (MTS/PMS). The changes of BMDCs morphology were confirmed with light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The BMDCs treated with MENK combined with PTD displayed a higher expression of typical maturation markers of CD40, CD80, CD83, CD86 and MHC-IIidentified by fluorescence activated cell sorting (FACS), and stronger ability to drive T cells. The decrease of the endocytic ability was assayed by DAB kit, FITC-dextran and cellular immunohistochemistry. Finally upregulation of cytokines production of IL-12 and TNF-α was determined by ELISA. These data indicate that MENK combined with PTD could exert synergistic action on BMDC maturation.
Collapse
Affiliation(s)
- Yiming Meng
- Department of immunology; School of Basic Medical Science; China Medical University; Shenyang, P.R. China
| | - Qiushi Wang
- Central Blood Bank; Shengjing Hospital; China Medical University; Shenyang, P.R. China
| | - Zhenjie Zhang
- Department of immunology; School of Basic Medical Science; China Medical University; Shenyang, P.R. China
| | - Enhua Wang
- Institute of pathology and pathophysiology; School of Basic Medical Science; China Medical University; Shenyang, P.R. China
| | | | - Fengping Shan
- Department of immunology; School of Basic Medical Science; China Medical University; Shenyang, P.R. China
| |
Collapse
|
38
|
Kim ME, Kim HK, Kim DH, Yoon JH, Lee JS. 18β-Glycyrrhetinic acid fromlicorice rootimpairs dendritic cells maturation and Th1 immune responses. Immunopharmacol Immunotoxicol 2013; 35:329-35. [DOI: 10.3109/08923973.2013.768636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Kim JE, Cho HS, Yang HS, Jung DJ, Hong SW, Hung CF, Lee WJ, Kim D. Depletion of ascorbic acid impairs NK cell activity against ovarian cancer in a mouse model. Immunobiology 2012; 217:873-81. [PMID: 22306178 DOI: 10.1016/j.imbio.2011.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/27/2011] [Indexed: 01/28/2023]
Abstract
Ascorbic acid (Vitamin C) administration has been used to prevent infectious diseases in public or as a therapeutic agent by the physicians in treatment of several diseases. Ascorbic acid is also involved in immune cell functions and immune responses, although the mechanisms by which it exerts effects on immune cells against cancer cells are not fully understood at the normal plasma level. In this study, we used the mice lacking l-gulono-γ-lactone oxidase (Gulo), the enzyme required for the biosynthesis of ascorbic acid, to characterize the effects of ascorbic acid on NK cell cytotoxicity against ovarian cancer cells, MOSECs (murine ovarian surface epithelial cells). Gulo(-/-) mice depleted of ascorbic acid survived for a shorter time than the normal control or Gulo(-/-) mice supplemented with ascorbic acid after tumor challenge regardless of treatment with IL-2. CD69 and NKG2D expression was clearly reduced in NK cells isolated from mice depleted of ascorbic acid as compared to that in the normal control and the mice supplemented with ascorbic acid. We also observed that IFN-γ secretion by NK cells isolated from Gulo(-/-) mice depleted of ascorbic acid was decreased after NK cells were co-cultured with MOSECs. Furthermore, the mRNA expression of perforin and granzyme B genes was also significantly decreased in NK cells isolated from mice depleted of ascorbic acid. Taken together, our results suggest that ascorbic acid at the normal plasma concentration has an essential role in maintaining the NK cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Jee-Eun Kim
- Department of Anatomy, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu Y, Bae S, Kim H, Kim Y, Chu NB, Chu NK, Kang JS, Lee WJ. The Anti-tumor Activity of Vitamin C via the Increase of Fas (CD95) and MHC I Expression on Human Stomach Cancer Cell Line, SNU1. Immune Netw 2011; 11:210-5. [PMID: 22039369 PMCID: PMC3202620 DOI: 10.4110/in.2011.11.4.210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 01/06/2023] Open
Abstract
Background It is already known that high concentration of vitamin C induces apoptosis on tumor cells. However, there is no report regarding the function of vitamin C on the modulation of immune susceptibility of cancer. Therefore, we investigated whether vitamin C can modulate immune susceptibility of tumor cells, especially on the induction of Fas-mediated apoptosis. Methods First, the optimal concentration of vitamin C, which cannot induce damages on tumor cells for 36 hrs. We found that 2 mM of vitamin C did not show harmful effect. In addition, the optimal concentration of agonistic anti-Fas Abs for 18 hrs was examined. Results As a result, 400 ng/ml of agonistic anti-Fas Abs did not induce apoptosis on tumor cells. Next, we tried to find the effect of 2 mM of vitamin C on the modulation of the susceptibility to agonistic anti-Fas Abs. When tumor cells were cultured with 400 ng/ml of agonistic anti-Fas Abs for 18 hrs, after pre-treatment with 2 mM of vitamin C for 24 hrs, viability of cells was decreased. Interestingly, we found that the expression of Fas (CD95) and MHC class I was increased by the treatment of vitamin C. Conclusion Taken together, vitamin C increases the susceptibility of tumor cells to anti-Fas Abs and the expression of Fas (CD95) and MHC class I on tumor cells.
Collapse
Affiliation(s)
- Yeonsil Yu
- Department of Anatomy and Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|