1
|
Zhu BY, Liu ZC, Zhao ZX, Huang HP, Zhang N, Xia J, Chen WW. Pharmacological Mechanism of Chinese Medicine in Systemic Lupus Erythematosus: A Narrative Review. Chin J Integr Med 2024:10.1007/s11655-024-3762-0. [PMID: 39240290 DOI: 10.1007/s11655-024-3762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 09/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.
Collapse
Affiliation(s)
- Bo-Yu Zhu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhi-Chao Liu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhen-Xi Zhao
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hui-Ping Huang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Na Zhang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Xia
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wei-Wei Chen
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Sakkas LI, Chikanza IC. Sex bias in immune response: it is time to include the sex variable in studies of autoimmune rheumatic diseases. Rheumatol Int 2024; 44:203-209. [PMID: 37716925 DOI: 10.1007/s00296-023-05446-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Healthy females and males differ in their immune cell composition and function and females generally mount stronger immune response than males and are much more susceptible to autoimmune rheumatic diseases. Females differ from males in sex hormones, and X-chromosome genes. Sex hormones affect immune cells and responses, and may induce epigenetic DNA changes. The importance of X-chromosome genes is exemplified in men with the Klinefelter syndrome (47,XXY) who have an additional X-chromosome and develop systemic lupus erythematosus(SLE) as frequently as women. X-chromosome contains genes critical for the immune response, such as FOXP3, toll-like receptor(TLR)7, TLR8, CD40 Ligand, IL2RG, IL9R, BTK, and others. Whereas one X-chromosome in females is randomly inactivated early in embryonic development, around 25% of X-linked genes escape inactivation and result in more X-linked gene dosage in females. We use two key female-biased autoimmune rheumatic diseases, SLE and systemic sclerosis, to review differences in immune response, and clinical manifestations between females and males. The inclusion of sex variable in research will facilitate precision medicine and optimal patient outcome.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
- Division of Rheumatology, IASO Thessalias General Hospital, Larissa, Greece.
| | - Ian C Chikanza
- Professor in Rheumatology and Immunology, Paediatrics Department, Catholic University, University of Zimbabwe, Harare, Zimbabwe
- International Arthritis and Hypermobility Centre, Harley Street Clinic, London, UK
| |
Collapse
|
3
|
Zhao M, Yu Y, Roy NS, Ying GS, Asbell P, Bunya VY. Sex-related differences and hormonal effects in the Dry Eye Assessment and Management (DREAM) study. Br J Ophthalmol 2023; 108:23-29. [PMID: 36575626 PMCID: PMC10285651 DOI: 10.1136/bjo-2022-322238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS To compare dry eye disease (DED) signs and symptoms between men and women, as well as between premenopausal and postmenopausal women, in the Dry Eye Assessment and Management (DREAM) study. METHODS 434 women and 101 men self-reported prior medical history and underwent a standardised DED assessment using the Ocular Surface Disease Index, Brief Pain Inventory, Tear Break-Up Time (TBUT)(s), Schirmer's test 2 (mm/5 min), National Eye Institute-graded lissamine conjunctival staining, corneal staining, meibomian gland dysfunction evaluation and tear osmolarity (mOsms/L) at baseline, 6 months and 12 months. Multivariable linear regression models were used to compare these scores. RESULTS Women experienced significantly worse DED signs than men with lower Schirmer's test scores (9.27 vs 12.16; p<0.001), higher corneal staining scores (3.59 vs 2.70; p=0.006) and worse composite DED sign scores (0.52 vs 0.40; p<0.001). Postmenopausal women experienced significantly worse DED signs than premenopausal women with higher corneal staining scores (3.74 vs 2.58, p<0.001), higher conjunctival staining scores (2.80 vs 2.22, p<0.001), higher tear osmolarity (304 vs 299, p=0.004), lower TBUT (3.37 vs 3.93, p=0.047), worse meibomian gland dysfunction (3.05 vs 2.62, p=0.04) and worse composite DED sign scores (0.54 vs 0.42, p<0.001). There were no significant differences in DED symptoms between sex and between premenopausal and postmenopausal women (all p≥0.08). CONCLUSION In the DREAM study, women experienced more severe DED signs than men. Further, postmenopausal women presented with more severe DED signs than premenopausal women. Elucidating these differences may improve DED diagnosis and provide future direction in understanding sex-related differences in DED. TRIAL REGISTRATION NUMBER NCT02128763.
Collapse
Affiliation(s)
- Megan Zhao
- Penn Medicine, Philadelphia, Pennsylvania, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yinxi Yu
- Penn Medicine, Philadelphia, Pennsylvania, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Preventive Ophthalmology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Neeta S Roy
- Ophthalmology, Weill Cornell Medicine, New York, New York, USA
| | - Gui-Shuang Ying
- Penn Medicine, Philadelphia, Pennsylvania, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Preventive Ophthalmology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Penny Asbell
- Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vatinee Y Bunya
- Penn Medicine, Philadelphia, Pennsylvania, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multisystem autoimmune disease that can cause injury in almost every body system. While considered a classic example of autoimmunity, it is still relatively poorly understood. Treatment with immunosuppressive agents is challenging, as many agents are relatively non-specific, and the underlying disease is characterized by unpredictable flares and remissions. This State of The Art Review provides a comprehensive current summary of systemic lupus erythematosus based on recent literature. In basic and translational science, this summary includes the current state of genetics, epigenetics, differences by ancestry, and updates about the molecular and immunological pathogenesis of systemic lupus erythematosus. In clinical science, the summary includes updates in diagnosis and classification, clinical features and subphenotypes, and current guidelines and strategies for treatment. The paper also provides a comprehensive review of the large number of recent clinical trials in systemic lupus erythematosus. Current knowns and unknowns are presented, and potential directions for the future are suggested. Improved knowledge of immunological pathogenesis and the molecular differences that exist between patients should help to personalize treatment, minimize side effects, and achieve better outcomes in this difficult disease.
Collapse
Affiliation(s)
- Eric F Morand
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Rheumatology, Monash Health, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
5
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
7
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
8
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
9
|
Vadakedath S, Kandi V, Mohapatra RK, Pinnelli VBK, Yegurla RR, Shahapur PR, Godishala V, Natesan S, Vora KS, Sharun K, Tiwari R, Bilal M, Dhama K. Immunological aspects and gender bias during respiratory viral infections including novel Coronavirus disease-19 (COVID-19): A scoping review. J Med Virol 2021; 93:5295-5309. [PMID: 33990972 PMCID: PMC8242919 DOI: 10.1002/jmv.27081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS‐CoV‐2 infection. From the experiences of Novel Coronavirus Disease‐19 to date, male patients are likely to suffer from high‐intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS‐CoV‐2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus‐derived T lymphocytes) and humoral immunity (antibodies). Hormones are considered as significant pillars of sex differences and influence both the innate as well as adaptive immune responses. Sex hormones and their potential role in the immune responses has not been completely understood. Females are more shielded from disease severity probably owing to their unique hormonal constitution. In females, the immunological cells have been noted to restrict the spread of infections as compared to males. Males suffer from increased severity of respiratory infections and are less prone to autoimmune disorders as compared to the female counterparts. Estrogen and other sex hormones play a key role both in restricting the inflammatory responses and in effective clearance of pathogens including the novel Coronairus.
Collapse
Affiliation(s)
- Sabitha Vadakedath
- Department of Biochemistry, Prathima Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Venkata B K Pinnelli
- Department of Biochemistry, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Richa R Yegurla
- Prathima Institute of Medical Sciences, Karimnagar, Telangana, India
| | | | - Vikram Godishala
- Department of Biotechnology, Ganapthi Degree College, Parakal, Telangana, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Ganghinagar, Gujarat, India
| | - Kranti S Vora
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Ganghinagar, Gujarat, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Ramanujan SA, Cravens EN, Krishfield SM, Kyttaris VC, Moulton VR. Estrogen-induced hsa-miR-10b-5p is elevated in T cells from patients with systemic lupus erythematosus and downregulates splicing factor SRSF1. Arthritis Rheumatol 2021; 73:2052-2058. [PMID: 33982889 PMCID: PMC8568617 DOI: 10.1002/art.41787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
Objective Autoimmune diseases affect women disproportionately more than men. Estrogen is implicated in immune cell dysfunction, yet its precise molecular roles are not fully known. We recently identified new roles for serine/arginine‐rich splicing factor 1 (SRSF1) in T cell function and autoimmunity. SRSF1 levels are decreased in T cells from patients with systemic lupus erythematosus (SLE) and are associated with active disease and comorbidity. However, the molecular mechanisms that control SRSF1 expression are unknown. Srsf1 messenger RNA (mRNA) has a long 3′‐untranslated region (3′‐UTR), suggesting posttranscriptional control. This study was undertaken to investigate the role of estrogen and posttranscriptional mechanisms of SRSF1 regulation in T cells and SLE. Methods In silico bioinformatics analysis of Srsf1–3′‐UTR revealed multiple microRNA (miRNA; miR)–binding sites. Additional screening and literature searches narrowed down hsa‐miR‐10b‐5p for further study. Peripheral blood T cells from healthy individuals and SLE patients were evaluated for mRNA and miRNA expression by quantitative reverse transcription–polymerase chain reaction, and SRSF1 protein levels were assessed by immunoblotting. T cells were cultured with β‐estradiol, and transient transfections were used to overexpress miRNAs. Luciferase assays were used to measure 3′‐UTR activity. Results We demonstrated that estrogen increased hsa‐miR‐10b‐5p expression in human T cells, and hsa‐miR‐10b‐5p down‐regulated SRSF1 protein expression. Mechanistically, hsa‐mir‐10b‐5p regulated SRSF1 posttranscriptionally via control of its 3′‐UTR activity. Importantly, hsa‐miR‐10b‐5p expression levels were elevated in T cells from healthy women compared to healthy men and also elevated in T cells from SLE patients. Conclusion We identified a previously unrecognized molecular link between estrogen and gene regulation in immune cells, with potential relevance to systemic autoimmune disease.
Collapse
Affiliation(s)
- Suruchi A. Ramanujan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, and Harvard CollegeCambridgeMassachusetts
| | - Elena N. Cravens
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | | | | | - Vaishali R. Moulton
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
11
|
Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol 2021; 12:619268. [PMID: 33746959 PMCID: PMC7966510 DOI: 10.3389/fimmu.2021.619268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells have been implicated in the regulation and maintenance of immune homeostasis. Whether gender and sex hormones differentially influence the expression and function of regulatory T cell phenotype and their influence on FoxP3 expression remains obscure. We provide evidence in this study that the number and percent of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3 mRNA expression compared to healthy females. Female SLE patients, compared to healthy women, have elevated plasma levels of estradiol and decreased levels of testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression in females with SLE. These data suggest that females may be more susceptible than males to SLE and other autoimmune diseases in part because they have fewer Tregs and reduced FoxP3 expression within those cells due to normal E2 levels which suppress FoxP3 expression. In addition, low levels of plasma testosterone in women may further reduce the ability of the Tregs to express FoxP3. These data suggest that gender and sex hormones can influence susceptibility to SLE via effects on regulatory T cells and FoxP3 expression.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Jokkel Z, Piroska M, Szalontai L, Hernyes A, Tarnoki DL, Tarnoki AD. Twin and family studies on epigenetics of autoimmune diseases. TWIN AND FAMILY STUDIES OF EPIGENETICS 2021:169-191. [DOI: 10.1016/b978-0-12-820951-6.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat Rev Rheumatol 2020; 16:628-644. [PMID: 33009519 DOI: 10.1038/s41584-020-0503-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
In autoimmune rheumatic diseases, oestrogens can stimulate certain immune responses (including effects on B cells and innate immunity), but can also have dose-related anti-inflammatory effects on T cells, macrophages and other immune cells. By contrast, androgens and progesterone have predominantly immunosuppressive and anti-inflammatory effects. Hormone replacement therapies and oral contraception (and also pregnancy) enhance or decrease the severity of autoimmune rheumatic diseases at a genetic or epigenetic level. Serum androgen concentrations are often low in men and in women with autoimmune rheumatic diseases, suggesting that androgen-like compounds might be a promising therapeutic approach. However, androgen-to-oestrogen conversion (known as intracrinology) is enhanced in inflamed tissues, such as those present in patients with autoimmune rheumatic diseases. In addition, it is becoming evident that the gut microbiota differs between the sexes (known as the microgenderome) and leads to sex-dependent genetic and epigenetic changes in gastrointestinal inflammation, systemic immunity and, potentially, susceptibility to autoimmune or inflammatory rheumatic diseases. Future clinical research needs to focus on the therapeutic use of androgens and progestins or their downstream signalling cascades and on new oestrogenic compounds such as tissue-selective oestrogen complex to modulate altered immune responses.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine DIMI, University of Genova, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Liu L, Jia J, Jiang M, Liu X, Dai C, Wise BL, Lane NE, Yao W. High susceptibility to collagen-induced arthritis in mice with progesterone receptors selectively inhibited in osteoprogenitor cells. Arthritis Res Ther 2020; 22:165. [PMID: 32616012 PMCID: PMC7331177 DOI: 10.1186/s13075-020-02242-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background Progesterone receptor (PR) affects immunomodulation, and lack of PR in osteoprogenitor cells primarily affects pathways associated with immunomodulation, especially in males. In this study, we selectively deleted PR from osteoprogenitor cells using Prx1-Cre to evaluate the tissue-specific effects of PR on the pathegenesis of inflammatary arthritis (IA). Methods Collagen-induced arthritis (CIA) was used as an IA animal model. Both male and female PRΔPrx1 mice and their wild-type (WT) littermates were immunized with collagen II (CII) emulsified complete Freund’s adjuvant (CFA). Joint erosion, inflammation, and cartilage damage were assessed using a semiquantitative histologic scoring system. Bone volume and erosions in knee and ankle joints were quantitated using microCT and histology. Results Bone erosions developed in both paw joints in 37.5% and 41.7% of the WT and PRΔPrx1 female mice and in 45.4 and 83.3% of the WT and PRΔPrx1 male mice, respectively. Also, both joint damage and subchondral bone erosions were significantly more severe in male PRcKO-CIA mice than in male WT-CIA mice. Female PRΔPrx1 mice also developed higher bone loss in the knee joints than the KO-normal or WT-CIA females although with less severity compared to the male mice. Conclusions The presence of PR in osteoprogenitor cells decreased the development of collagen-induced arthritis and might help to explain the sex differences observed in human inflammatory arthritis.
Collapse
Affiliation(s)
- Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Junjing Jia
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China
| | - Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Xueping Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Chenling Dai
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Barton L Wise
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
16
|
Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019; 20:ijms20205183. [PMID: 31635056 PMCID: PMC6829370 DOI: 10.3390/ijms20205183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Hui-Ting Lee
- Section of Allergy, Immunology & Rheumatology, Mackay Memorial Hospital, #92 Sec. 2, Chung-Shan North Road, Taipei 10449, Taiwan.
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
17
|
Guo S, Zhou Y, Zeng P, Xu G, Wang G, Cui Q. Identification and analysis of the human sex-biased genes. Brief Bioinform 2019; 19:188-198. [PMID: 28028006 DOI: 10.1093/bib/bbw125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Tremendous differences between human sexes are universally observed. Therefore, identifying and analyzing the sex-biased genes are becoming basically important for uncovering the mystery of sex differences and personalized medicine. Here, we presented a computational method to identify sex-biased genes from public gene expression databases. We obtained 1407 female-biased genes (FGs) and 1096 male-biased genes (MGs) across 14 different tissues. Bioinformatics analysis revealed that compared with MGs, FGs have higher evolutionary rate, higher single-nucleotide polymorphism density, less homologous gene numbers and smaller phyletic age. FGs have lower expression level, higher tissue specificity and later expressed stage in body development. Moreover, FGs are highly involved in immune-related functions, whereas MGs are more enriched in metabolic process. In addition, cellular network analysis revealed that MGs have higher degree, more cellular activating signaling and tend to be located in cellular inner space, whereas FGs have lower degree, more cellular repressing signaling and tend to be located in cellular outer space. Finally, the identified sex-biased genes and the discovered biological insights together can be a valuable resource helpful for investigating sex-biased physiology and medicine, for example sex-biased disease diagnosis and therapy, which represents one important aspect of personalized and precision medicine.
Collapse
Affiliation(s)
- Sisi Guo
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Pan Zeng
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoheng Xu
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To give an overview of recently published articles addressing the mechanisms underlying sex bias in autoimmune disease. RECENT FINDINGS Recent studies investigating the origins of sex bias in autoimmune disease have revealed an extensive and interconnected network of genetic, hormonal, microbial, and environmental influences. Investigation of sex hormones has moved beyond profiling the effects of hormones on activity and prevalence of immune cell types to defining the specific immunity-related genes driving these changes. Deeper examination of the genetic content of the X and Y chromosomes and genetic escapees of X chromosome inactivation has revealed some key drivers of female-biased autoimmunity. Animal studies are offering further insights into the connections among microbiota, particularly that of the gut, and the immune system. SUMMARY Sex bias in autoimmune disease is the manifestation of a complex interplay of the sex chromosomes, sex hormones, the microbiota, and additional environmental and sociological factors.
Collapse
|
19
|
Abstract
Systemic lupus erythematosus (SLE) is characterized by aberrant production of
auto-antibodies and a sexual dimorphism both in the phenotypic expression and
frequency of the disease between males and females. The striking female
predominance was initially attributed primarily to sex hormones. However, recent
data challenge this simplistic view and point more towards genetic and
epigenetic factors accounting for this difference. More specifically, several
SLE-associated single-nucleotide polymorphisms (SNPs) have been found to play an
important role in the gender predilection in SLE. Their effect is mediated
through their involvement in sex-hormone and immune system signalling and
dysregulation of the expression of genes and miRNAs pertinent to the immune
system. Additionally, the genetic factors are interchangeably associated with
epigenetic modifications such as DNA methylation and histone modification, thus
revealing a highly complex network of responsible mechanisms. Of importance,
disturbance in the epigenetic process of X chromosome inactivation in females as
well as in rare X chromosome abnormalities leads to increased expression of
X-linked immune-related genes and miRNAs, which might predispose females to SLE.
Microbiota dysbiosis has also been implicated in the sexual dimorphism by the
production of oestrogens within the gut and the regulation of
oestrogen-responsive immune-related genes. Sexual dimorphism in SLE is an area
of active research, and elucidation of its molecular basis may facilitate
ongoing efforts towards personalized care.
Collapse
Affiliation(s)
- E A A Christou
- 1 Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A Banos
- 1 Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - D Kosmara
- 2 Department of Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Greece.,3 Laboratory of Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology - Hellas (FORTH), Heraklion, Greece
| | - G K Bertsias
- 2 Department of Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Greece.,3 Laboratory of Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology - Hellas (FORTH), Heraklion, Greece
| | - D T Boumpas
- 1 Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,4 Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,5 Rheumatology-Clinical immunology Unit, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
20
|
Burke KE, Ananthakrishnan AN, Lochhead P, Liu SPH, Olen O, Ludvigsson JF, Richter JM, Tworoger SS, Chan AT, Khalili H. Identification of Menopausal and Reproductive Risk Factors for Microscopic Colitis-Results From the Nurses' Health Study. Gastroenterology 2018; 155:1764-1775.e2. [PMID: 30144433 PMCID: PMC6279488 DOI: 10.1053/j.gastro.2018.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Microscopic colitis is a chronic inflammatory disorder of the colon primarily affecting postmenopausal women. However, the relation between hormonal determinants, including reproductive and menopausal factors, and risk of microscopic colitis has yet to be characterized. METHODS We collected data from 227,766 women who participated in the Nurses' Health Study (NHS) and the NHSII without a baseline history of microscopic colitis. Reproductive and menopausal factors were assessed in 1988 in the NHS and 1989 in the NHSII and updated biennially. Cases of microscopic colitis were confirmed through review of pathology records. We used Cox proportional hazards modeling to estimate hazard ratios and 95% confidence intervals. RESULTS Through 2014 in the NHS and 2015 in the NHSII, we confirmed 275 incident cases of microscopic colitis over 5,147,282 person-years. Compared with never use, current use of menopausal hormone therapy was associated with increased risk of microscopic colitis (multivariable-adjusted hazard ratio 2.64; 95% confidence interval 1.78-3.90). The risk increased with longer duration of use (P for trend < .0001) and decreased after discontinuation (P for trend = .002). The association did not differ according to disease subtype (P for heterogeneity = .34). Similarly, ever use of oral contraceptives was associated with increased risk of microscopic colitis (multivariable-adjusted hazard ratio 1.57; 95% confidence interval 1.16-2.13). There were no associations between age at menarche, parity, age at first birth, age at menopause, or menopause type and incident microscopic colitis. CONCLUSIONS In 2 large prospective cohort studies, we observed an association between exogenous hormone use and incident microscopic colitis. Further studies are needed to determine the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Kristin E. Burke
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Lochhead
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart Po-Hong Liu
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Ola Olen
- Pediatric Gastroenterology and Nutrition Unit, Sachs’ Children’s Hospital, Stockholm, Sweden,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Pediatrics, Örebro University Hospital, Örebro University, Örebro, Sweden
| | - James M. Richter
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA
| | - Shelley S Tworoger
- Moffit Cancer Center, Tampa, Florida,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA,Broad Institute, Cambridge, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Hamed Khalili
- Gastroenterology Unit, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Karolinska Clinical Epidemiology Unit, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
21
|
Xie L, Xu J. Role of MiR-98 and Its Underlying Mechanisms in Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1397-1405. [DOI: 10.3899/jrheum.171290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Objective.T-lymphocyte apoptosis plays a critical role in the pathogenesis of systemic lupus erythematosus (SLE). However, the underlying regulatory mechanisms of apoptosis in SLE remain unclear. The aim of this study was to explore the role of miR-98 in SLE and its underlying mechanisms.Methods.Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to analyze miR-98 and Fas expression. Luciferase reporter assays were performed to identify miR-98 targets. To modify miRNA levels, miR-98 mimics and inhibitor were transfected into cells. A lentiviral construct was used to overexpress the level of Fas in SLE CD4+ T cells. Gene and protein expression were determined by qRT-PCR and Western blotting. Apoptosis levels were evaluated by annexin V staining and flow cytometry.Results.Compared to those of healthy donors, miR-98 was downregulated in SLE CD4+ T cells, whereas Fas mRNA and protein expression were upregulated. Upregulation of miR-98 by mimic transfection protected Jurkat cells against Fas-mediated apoptosis at both mRNA and protein levels, while miR-98 inhibitor induced the completely opposite effect. Luciferase reporter assays demonstrated that miR-98 directly targeted Fas mRNA. Further, miR-98 inhibitor induced apoptosis in primary healthy CD4+ T cells through the Fas-caspase axis, while upregulation of miR-98 in SLE CD4+ T cells led to the opposite effect.Conclusion.The current study revealed that downregulation of miR-98 induces apoptosis by modulating the Fas-mediated apoptotic signaling pathway in SLE CD4+ T cells. These results suggest that miR-98 might serve as a potential target for SLE treatment.
Collapse
|
22
|
Santamaría-Alza Y, Motta JZN, Fajardo-Rivero JE, Pineda CLF. Systemic lupus erythematosus, gender differences in Colombian patients. Clin Rheumatol 2018; 37:2423-2428. [PMID: 29860566 DOI: 10.1007/s10067-018-4161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
The objective of this study was to compare the clinical and immunological presentation of SLE between males and females in a Colombian SLE population. A cross-sectional, retrospective study was performed that evaluated patients with SLE over 6 years. The dependent variables were systemic complications, duration of hospitalization, readmission, and death. Descriptive, group comparison, bivariate, and multivariate analysis were performed using Stata 12.0 software 200 patients were included in this study, 84.5% were females and 15.5% males. Longer hospitalizations, readmissions, respiratory compromise, higher activity disease (ECLAM score), smoking, and use of cyclophosphamide in the past 3 months were more prevalent in males. In the bivariate and multivariate analysis, we found an increased risk in males of respiratory symptoms (OR 3.35), anti-DNA antibody (OR 2.46), smoking (OR 4.2), cyclophosphamide use (OR 3.23), chronic pulmonary alterations (OR 2.51), readmission (OR 2.88), long hospitalization (OR 3.12), and death (OR: 3.31). This is the first study that shows the differences related to gender in Colombian SLE patients. Males with SLE have more disease activity compare with females. Also, we found that males have more risk of pulmonary impairment, longer hospitalizations, hospital readmissions, and deaths.
Collapse
Affiliation(s)
- Yeison Santamaría-Alza
- Internal Medicine Department, Universidad Industrial de Santander, Street 7ª No. 42 - 44, Bucaramanga, Colombia.
| | | | | | | |
Collapse
|
23
|
Harry O, Yasin S, Brunner H. Childhood-Onset Systemic Lupus Erythematosus: A Review and Update. J Pediatr 2018; 196:22-30.e2. [PMID: 29703361 DOI: 10.1016/j.jpeds.2018.01.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Onengiya Harry
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Shima Yasin
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Hermine Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
24
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
25
|
|
26
|
Krasselt M, Baerwald C. Sex, Symptom Severity, and Quality of Life in Rheumatology. Clin Rev Allergy Immunol 2017; 56:346-361. [DOI: 10.1007/s12016-017-8631-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Link JC, Hasin-Brumshtein Y, Cantor RM, Chen X, Arnold AP, Lusis AJ, Reue K. Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics 2017; 18:89. [PMID: 28095800 PMCID: PMC5240420 DOI: 10.1186/s12864-017-3484-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by targeting specific mRNA species for degradation or interfering with translation. Specific miRNAs are key regulators of adipogenesis, and are expressed at different levels in adipose tissue from lean and obese mice. The degree of lipid accumulation and distribution of white adipose tissue differs between males and females, and it is unknown whether sex differences in adipose tissue-specific miRNA expression may contribute to this dimorphism. Typically, sex differences are attributed to hormones secreted from ovaries or testes. However, the sex chromosome complement (XX versus XY) is also a determinant of sex differences and may regulate miRNA expression in adipocytes. RESULTS To identify sex differences in adipose tissue miRNA expression and to understand the underlying mechanisms, we performed high-throughput miRNA sequencing in gonadal fat depots of the Four Core Genotypes mouse model. This model, which consists of XX female, XX male, XY female, and XY male mice, allowed us to assess independent effects of gonadal type (male vs. female) and sex chromosome complement (XX vs. XY) on miRNA expression profiles. We have also assessed the effects of a high fat diet on sex differences in adipose tissue miRNA profiles. We identified a male-female effect on the overall miRNA expression profile in mice fed a chow diet, with a bias toward higher expression in male compared to female gonadal adipose tissue. This sex bias disappeared after gonadectomy, suggesting that circulating levels of gonadal secretions modulate the miRNA expression profile. After 16 weeks of high fat diet, the miRNA expression distribution was shifted toward higher expression in XY vs. XX adipose tissue. Principal component analysis revealed that high fat diet has a substantial effect on miRNA profile variance, while gonadal secretions and sex chromosome complement each have milder effects. CONCLUSIONS Our results demonstrate that the overall miRNA expression profile in adipose tissue is influenced by gonadal hormones and the sex chromosome complement, and that expression profiles change in response to gonadectomy and high fat diet. Differential miRNA expression profiles may contribute to sex differences in adipose tissue gene expression, adipose tissue development, and diet-induced obesity.
Collapse
Affiliation(s)
- Jenny C Link
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yehudit Hasin-Brumshtein
- Department of Medicine, David Geffen School of Medicine, University of California, 90095, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xuqi Chen
- Department of Integrative Biology and Physiology, University of California, 90095, Los Angeles, CA, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 90095, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, 90095, Los Angeles, CA, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 90095, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, 90095, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, 90095, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Rao YS, Pak TR. microRNAs and the adolescent brain: Filling the knowledge gap. Neurosci Biobehav Rev 2016; 70:313-322. [PMID: 27328787 PMCID: PMC5074866 DOI: 10.1016/j.neubiorev.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Over two decades ago the discovery of microRNAs (miRNA) broadened our understanding of the diverse molecular pathways mediating post-transcriptional control over gene expression. These small non-coding RNAs dynamically fluctuate, temporally and spatially, throughout the lifespan of all organisms. The fundamental role that miRNAs have in shaping embryonic neurodevelopment provides strong evidence that adolescent brain remodeling could be rooted in the changing miRNA landscape of the cell. Few studies have directly measured miRNA gene expression changes in the brain across pubertal development, and even less is known about the functional impact of those miRNAs on the maturational processes that occur in the developing adolescent brain. This review summarizes miRNA biogenesis and function in the brain in the context of normal (i.e. not diseased) physiology. These landmark studies can guide predictions about the role of miRNAs in facilitating maturation of the adolescent brain. However, there are clear indicators that adolescence/puberty is a unique life stage, suggesting miRNA function during adolescence is distinct from those in any other previously described system.
Collapse
Affiliation(s)
- Yathindar S Rao
- Loyola University Chicago, Stritch School of Medicine, Department of Cell and Molecular Physiology, United States
| | - Toni R Pak
- Loyola University Chicago, Stritch School of Medicine, Department of Cell and Molecular Physiology, United States.
| |
Collapse
|
30
|
Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:327-42. [DOI: 10.5507/bp.2016.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
|
31
|
Khan D, Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front Immunol 2016; 6:635. [PMID: 26779182 PMCID: PMC4701921 DOI: 10.3389/fimmu.2015.00635] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
32
|
Hsu CY, Chen HJ, Hsu CY, Kao CH. Splenectomy increases the subsequent risk of systemic lupus erythematosus. Rheumatol Int 2015; 36:271-6. [DOI: 10.1007/s00296-015-3388-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/27/2015] [Indexed: 01/24/2023]
|
33
|
Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015; 6:236. [PMID: 26236331 PMCID: PMC4500956 DOI: 10.3389/fgene.2015.00236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
34
|
Khan D, Ahmed SA. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Front Endocrinol (Lausanne) 2015; 6:91. [PMID: 26097467 PMCID: PMC4456948 DOI: 10.3389/fendo.2015.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Present address: Deena Khan, Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- *Correspondence: S. Ansar Ahmed, Department of Biomedical Sciences and Pathobiology, VMCVM, Virginia Tech, Phase II, Duck Pond Drive, Blacksburg, VA 24060, USA,
| |
Collapse
|