1
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, Barakat K, El-Kadi AOS. Modulation of aryl hydrocarbon receptor activity by tyrosine kinase inhibitors (ponatinib and tofacitinib). Arch Biochem Biophys 2024; 759:110088. [PMID: 38992456 DOI: 10.1016/j.abb.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Moraru R, Valle-Argos B, Minton A, Buermann L, Pan S, Wales TE, Joseph RE, Andreotti AH, Strefford JC, Packham G, Baud MGJ. Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story. J Med Chem 2024; 67:13572-13593. [PMID: 39119945 PMCID: PMC11345841 DOI: 10.1021/acs.jmedchem.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Targeted covalent inhibitors (TCIs) directing cysteine have historically relied on a narrow set of electrophilic "warheads". While Michael acceptors remain at the forefront of TCI design strategies, they show variable stability and selectivity under physiological conditions. Here, we show that the 2-sulfonylpyrimidine motif is an effective replacement for the acrylamide warhead of Ibrutinib, for the inhibition of Bruton's tyrosine kinase. In a few iterations, we discovered new derivatives, which inhibit BTK both in vitro and in cellulo at low nanomolar concentrations, on par with Ibrutinib. Several derivatives also displayed good plasma stability and reduced off-target binding in vitro across 135 tyrosine kinases. This proof-of-concept study on a well-studied kinase/TCI system highlights the 2-sulfonylpyrimidine group as a useful acrylamide replacement. In the future, it will be interesting to investigate its wider potential for developing TCIs with improved pharmacologies and selectivity profiles across structurally related protein families.
Collapse
Affiliation(s)
- Ruxandra Moraru
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Beatriz Valle-Argos
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Annabel Minton
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Lara Buermann
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Suyin Pan
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas E. Wales
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Raji E. Joseph
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy H. Andreotti
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C. Strefford
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Graham Packham
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Matthias G. J. Baud
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
3
|
Sládeková L, Mani S, Dvořák Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem Pharmacol 2023; 213:115626. [PMID: 37247746 DOI: 10.1016/j.bcp.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
4
|
Ondrová K, Zůvalová I, Vyhlídalová B, Krasulová K, Miková E, Vrzal R, Nádvorník P, Nepal B, Kortagere S, Kopečná M, Kopečný D, Šebela M, Rastinejad F, Pu H, Soural M, Rolfes KM, Haarmann-Stemmann T, Li H, Mani S, Dvořák Z. Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice. Nat Commun 2023; 14:2728. [PMID: 37169746 PMCID: PMC10174618 DOI: 10.1038/s41467-023-38478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
Collapse
Affiliation(s)
- Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eva Miková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Binod Nepal
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Fraydoon Rastinejad
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Hua Pu
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | - Hao Li
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sridhar Mani
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
5
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
6
|
Singleman C, Holtzman NG. PCB and TCDD derived embryonic cardiac defects result from a novel AhR pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105794. [PMID: 33662880 DOI: 10.1016/j.aquatox.2021.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are environmental contaminants known to impact cardiac development, a key step in the embryonic development of most animals. To date, little is understood of the molecular mechanism driving the observed cardiac defects in exposed fishes. The literature shows PCB & TCDD derived cardiac defects are concurrent with, but not caused by, expression of cyp1A, due to activation of the aryl hydrocarbon receptor (AhR) gene activation pathway. However, in this study, detailed visualization of fish hearts exposed to PCBs and TCDD show that, in addition to a failure of cardiac looping in early heart development, the inner endocardial lining of the heart fails to maintain proper cell adhesion and tissue integrity. The resulting gap between the endocardium and myocardium in both zebrafish and Atlantic sturgeon suggested functional faults in endothelial adherens junction formation. Thus, we explored the molecular mechanism triggering cardiac defects using immunohistochemistry to identify the location and phosphorylation state of key regulatory and adhesion molecules. We hypothesized that PCB and TCDD activates AhR, phosphorylating Src, which then phosphorylates the endothelial adherens junction protein, VEcadherin. When phosphorylated, VEcadherin dimers, found in the endocardium and vasculature, separate, reducing tissue integrity. In zebrafish, treatment with PCB and TCDD contaminants leads to higher phosphorylation of VEcadherin in cardiac tissue suggesting that these cells have reduced connectivity. Small molecule inhibition of Src phosphorylation prevents contaminant stimulated phosphorylation of VEcadherin and rescues both cardiac function and gross morphology. Atlantic sturgeon hearts show parallels to contaminant exposed zebrafish cardiac phenotype at the tissue level. These data suggest that the mechanism for PCB and TCDD action in the heart is, in part, distinct from the canonical mechanism described in the literature and that cardiac defects are impacted by this nongenomic mechanism.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
7
|
Gaber M, Sequely AA, Monem NA, Balbaa M. Effect of polyaromatic hydrocarbons on cellular cytochrome P450 1A induction. OCEAN AND COASTAL RESEARCH 2021. [DOI: 10.1590/2675-2824069.21026mg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Li Y, Zhou C, Lei W, Wang K, Zheng J. Roles of aryl hydrocarbon receptor in endothelial angiogenic responses†. Biol Reprod 2020; 103:927-937. [PMID: 32716482 PMCID: PMC7731988 DOI: 10.1093/biolre/ioaa128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor, which can be activated by a plethora of structure-diverse ligands. Historically, AhR is known for its involvements in regulation of metabolism of xenobiotics. However, normal physiological roles of AhR have been defined in other essential biological processes, including vascular growth and function, reproduction, and immunoresponses. In contrast, aberrant expression and activation of the AhR signaling pathway occur in a variety of human diseases, many of which (e.g., preeclampsia, atherosclerosis, and hypertension) could be associated with endothelial dysfunction. Indeed, emerging evidence has shown that either exogenous or endogenous AhR ligands can induce endothelial dysfunction in either an AhR-dependent or AhR-independent manner, possibly reliant on the blood vessel origin (artery and vein) of endothelial cells. Given that the AhR signaling pathway has broad impacts on endothelial and cardiovascular function, AhR ligands, AhR, and their downstream genes could be considered novel therapeutic targets for those endothelial-related diseases. This review will discuss the current knowledge of AhR's mediation on endothelial function and potential mechanisms underlying these actions with a focus on placental endothelial cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Lei
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Miyajima A, Kuroda Y, Sakemi-Hoshikawa K, Usami M, Mitsunaga K, Irie T, Ohno Y, Sunouchi M. Inhibitory and inductive effects of 4- or 5-methyl-2-mercaptobenzimidazole, thyrotoxic and hepatotoxic rubber antioxidants, on several forms of cytochrome P450 in primary cultured rat and human hepatocytes. Toxicol Rep 2020; 7:979-985. [PMID: 32874920 PMCID: PMC7451710 DOI: 10.1016/j.toxrep.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 10/31/2022] Open
Abstract
Effects of 4-methyl-2-mercaptobenzimidazole (4-MeMBI) and 5-methyl-2- mercaptobenzimidazole (5-MeMBI) on cytochrome P450 (CYP) activity were examined in primary cultured rat hepatocytes. Hepatocytes from male Wistar rats were cultured in the presence of 4-MeMBI or 5-MeMBI (0-400 μM), and the activity of CYPs 3A2/4 (48 and 96 h) and 1A1/2 (48 h) was determined by measuring the activity of testosterone 6β-hydroxylation and 7-ethoxyresorufin O-deethylation, respectively. As a result, 4-MeMBI and 5-MeMBI (≥12.5 μM) inhibited CYP3A2 activity. On the other hand, 4-MeMBI (≥25 μM) and 5-MeMBI (≥100 μM) induced CYP1A1/2 activity, being consistent with the previous in vivo results. In a comparative metabolism study using primary cultured human hepatocytes from two Caucasian donors, 4-MeMBI and 5-MeMBI induced the activity of CYPs 3A4 and 1A1/2 with individual variability. It was concluded from these results that 4-MeMBI, 5-MeMBI and MBI caused inhibition of CYP3A2 activity in primary cultured rat hepatocytes, suggesting their potential for metabolic drug-drug interactions. Primary cultured rat and human hepatocytes were considered to be useful for the evaluation of effects of the benzimidazole compounds on their inducibility and inhibitory activities of cytochrome P450 forms.
Collapse
Key Words
- 3-MC, 3-methylcholanthrene
- 4(5)-MeMBI, 4(or 5)-methyl-2-mercaptobenzimidazole
- 4-MeMBI, 4-methyl-2-mercaptobenzimidazole
- 5-MeMBI, 5-methyl-2-mercaptobenzimidazole
- AhR, aryl hydrocarbon receptor
- Benzimidazole
- CYP, cytochrome P450
- Cytochrome P450
- DMSO, dimethyl sulfoxide
- Drug-metabolizing activity
- EROD, 7-ethoxyresorufin O-deethylation
- Hepatocyte
- MBI, 2-mercaptobenzimidazole
- PXR, pregnane X receptor
- Primary culture
- T6βH, testosterone 6β-hydroxylation
Collapse
Affiliation(s)
- Atsuko Miyajima
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yukie Kuroda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kazue Sakemi-Hoshikawa
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Veterinary Medicine, Azabu University, 1-17-1, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Katsuyoshi Mitsunaga
- School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasuo Ohno
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Kihara Memorial Yokohama Foundation for the Advancement of Life Sciences, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Momoko Sunouchi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
10
|
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019; 19:184-197. [PMID: 30718831 DOI: 10.1038/s41577-019-0125-8] [Citation(s) in RCA: 700] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environment, diet, microbiota and body's metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut-brain axis and the therapeutic potential of targeting AHR in neurological disorders.
Collapse
|
11
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
12
|
Viluksela M, Pohjanvirta R. Multigenerational and Transgenerational Effects of Dioxins. Int J Mol Sci 2019; 20:E2947. [PMID: 31212893 PMCID: PMC6627869 DOI: 10.3390/ijms20122947] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
Collapse
Affiliation(s)
- Matti Viluksela
- School of Pharmacy and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Environmental Health Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Alpha-naphthoflavone induces apoptosis through endoplasmic reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells. Neurotoxicology 2018; 71:39-51. [PMID: 30508555 DOI: 10.1016/j.neuro.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023]
Abstract
α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.
Collapse
|
14
|
Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells. Toxicol Lett 2018; 289:54-62. [DOI: 10.1016/j.toxlet.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/24/2018] [Accepted: 03/10/2018] [Indexed: 11/20/2022]
|
15
|
Ye M, Zhang Y, Gao H, Xu Y, Jing P, Wu J, Zhang X, Xiong J, Dong C, Yao L, Zhang J, Zhang J. Activation of the Aryl Hydrocarbon Receptor Leads to Resistance to EGFR TKIs in Non-Small Cell Lung Cancer by Activating Src-mediated Bypass Signaling. Clin Cancer Res 2017; 24:1227-1239. [PMID: 29229632 DOI: 10.1158/1078-0432.ccr-17-0396] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/08/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The aryl hydrocarbon receptor (AhR) has been generally recognized as a ligand-activated transcriptional factor that responds to xenobiotic chemicals. Recent studies have suggested that the expression of AhR varies widely across different cancer types and cancer cell lines, but its significance in cancer treatment has yet to be clarified.Experimental Design: AhR expression in non-small cell lung cancer (NSCLC) was determined by Western blotting and IHC staining. In vitro and in vivo functional experiments were performed to determine the effect of AhR on sensitivity to targeted therapeutics. A panel of biochemical assays was used to elucidate the underlying mechanisms.Results: A high AhR protein level indicated an unfavorable prognosis for lung adenocarcinoma. Inhibition of AhR signaling sensitized EGFR tyrosine kinase inhibitors (TKIs) in NSCLC cells that express high level of endogenous AhR protein. Notably, activation of AhR by pharmacologic and molecular approaches rendered EGFR-mutant cells resistant to TKIs by restoring PI3K/Akt and MEK/Erk signaling through activation of Src. In addition, we found that AhR acts as a protein adaptor to mediate Jak2-Src interaction, which does not require the canonical transcriptional activity of AhR.Conclusions: Our results reveal a transcription-independent function of AhR and indicate that AhR may act as a protein adaptor that recruits kinases bypassing EGFR and drives resistance to TKIs. Accordingly, targeting Src would be a strategy to overcome resistance to EGFR TKIs in AhR-activated NSCLC. Clin Cancer Res; 24(5); 1227-39. ©2017 AACR.
Collapse
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Hongjun Gao
- Department of Pulmonary Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yan Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianxiong Wu
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Jie Xiong
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.
| |
Collapse
|
16
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Effects of the soya isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: Thyroid, estrogenic and metabolic biomarkers. Gen Comp Endocrinol 2017; 250:136-151. [PMID: 28634083 DOI: 10.1016/j.ygcen.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Maria Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
17
|
Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 2017; 39:14. [PMID: 28405246 PMCID: PMC5385587 DOI: 10.1186/s41021-017-0076-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Benzo[a]pyrene (BaP) is a well-studied pro-carcinogen that is metabolically activated by cytochrome P450 enzymes. Cytochrome P4501A1 (CYP1A1) has been considered to play a central role in the activation step, which is essential for the formation of DNA adducts. This enzyme is strongly induced by many different chemical agents, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which binds to the aryl hydrocarbon receptor (AhR). Therefore, AhR activators are suspected to have the potential to aggravate the toxicity of BaP through the induction of CYP1A1. Besides, CYP1A1 inhibitors, including its substrates, are estimated to have preventive effects against BaP toxicity. However, strangely, increased hepatic BaP–DNA adduct levels have been reported in Cyp1a1 knockout mice. Moreover, numerous reports describe that concomitant treatment of AhR activators reduced BaP–DNA adduct formation. In an experiment using several human cell lines, TCDD had diverse modulatory effects on BaP–DNA adducts, both enhancing and inhibiting their formation. In this review, we focus on the factors that could influence the BaP–DNA adduct formation. To interpret these complicated outcomes, we propose a hypothesis that CYP1A1 is a key enzyme for both generation and reduction of (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), the major carcinogenic intermediate of BaP. Conversely, CYP1B1 is thought to contribute only to the metabolic activation of BaP related to carcinogenesis.
Collapse
|
18
|
Patel A, Zhang S, Shrestha AK, Maturu P, Moorthy B, Shivanna B. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway. Toxicol Appl Pharmacol 2016; 311:26-33. [PMID: 27725188 PMCID: PMC5089963 DOI: 10.1016/j.taap.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/24/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H2O2) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H2O2 levels. Furthermore, H2O2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H2O2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H2O2-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H2O2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role.
Collapse
Affiliation(s)
- Ananddeep Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Shaojie Zhang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Amrit Kumar Shrestha
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paramahamsa Maturu
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
19
|
Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1130-1140. [PMID: 26877237 DOI: 10.1016/j.bbagrm.2016.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
20
|
Froyen EB, Steinberg FM. Genistein decreases basal hepatic cytochrome P450 1A1 protein expression and activity in Swiss Webster mice. Nutr Res 2016; 36:430-9. [PMID: 27101761 DOI: 10.1016/j.nutres.2016.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 01/20/2023]
Abstract
Soy consumption has been associated with risk reduction for chronic diseases such as cancer. One proposed mechanism for cancer prevention by soy is through decreasing cytochrome P450 1A1 (Cyp1a1) activity. However, it is not known with certainty which soy components modulate Cyp1a1, or the characteristics or mechanisms involved in the responses after short-term (<20 days) dietary treatment without concomitant carcinogen-mediated induction. Therefore, the objective was to test the hypothesis that physiologic concentrations of dietary genistein and/or daidzein will decrease basal hepatic Cyp1a1 protein expression and activity in male and female Swiss Webster mice via inhibiting the bindings of aryl hydrocarbon receptor (AhR)-AhR nuclear translocator (ARNT) and estrogen receptor-α to the Cyp1a1 promoter region xenobiotic response element. The mice were fed the AIN-93G diet supplemented with 1500 mg/kg of genistein or daidzein for up to 1 week. Genistein, but not daidzein, significantly decreased basal hepatic microsomal Cyp1a1 protein expression and activity. AhR protein expression was not altered. Molecular mechanisms were investigated in Hepa-1c1c7 cells treated with 5 μmol/L purified aglycones genistein, daidzein, or equol. Cells treated with genistein exhibited inhibitions in ARNT and estrogen receptor-α bindings to the Cyp1a1 promoter region. This study demonstrated that genistein consumption reduced constitutive hepatic Cyp1a1 protein expression and activity, thereby contributing to the understanding of how soy isoflavone aglycones modulate cytochrome P450 biotransformation enzymes.
Collapse
Affiliation(s)
- Erik B Froyen
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francene M Steinberg
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Wirthgen E, Hoeflich A. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. JOURNAL OF AMINO ACIDS 2015; 2015:973548. [PMID: 26881062 PMCID: PMC4736209 DOI: 10.1155/2015/973548] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
Abstract
The degradation of tryptophan (TRP) along the kynurenine pathway plays a crucial role as a neuro- and immunomodulatory mechanism in response to inflammatory stimuli, such as lipopolysaccharides (LPS). In endotoxemia or sepsis, an enhanced activation of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) is associated with a higher mortality risk. It is assumed that IDO induced immunosuppressive effects provoke the development of a protracted compensatory hypoinflammatory phase up to a complete paralysis of the immune system, which is characterized by an endotoxin tolerance. However, the role of IDO activation in the development of life-threatening immunoparalysis is still poorly understood. Recent reports described the impact of inflammatory IDO activation and aryl hydrocarbon receptor- (AhR-) mediated pathways on the development of LPS tolerance and immune escape of cancer cells. These immunosuppressive mechanisms offer new insights for a better understanding of the development of cellular dysfunctions in immunoparalysis. This review provides a comprehensive update of significant biological functions of TRP metabolites along the kynurenine pathway and the complex regulation of LPS-induced IDO activation. In addition, the review focuses on the role of IDO-AhR-mediated immunosuppressive pathways in endotoxin tolerance and carcinogenesis revealing the significance of enhanced IDO activity for the establishment of life-threatening immunoparalysis in sepsis.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Germany
| |
Collapse
|
22
|
Dittmann KH, Rothmund MC, Paasch A, Mayer C, Fehrenbacher B, Schaller M, Frauenstein K, Fritsche E, Haarmann-Stemmann T, Braeuning A, Rodemann HP. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation. Toxicol Lett 2015; 240:122-9. [PMID: 26520184 DOI: 10.1016/j.toxlet.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
Abstract
In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair.
Collapse
Affiliation(s)
- K H Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany.
| | - M C Rothmund
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - A Paasch
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - C Mayer
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - B Fehrenbacher
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - M Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - K Frauenstein
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - E Fritsche
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - T Haarmann-Stemmann
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - A Braeuning
- Federal Institute for Risk Assessment, Deptartment of Food Safety, Berlin, Germany
| | - H P Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| |
Collapse
|
23
|
Zhang S, Patel A, Moorthy B, Shivanna B. Omeprazole induces NAD(P)H quinone oxidoreductase 1 via aryl hydrocarbon receptor-independent mechanisms: Role of the transcription factor nuclear factor erythroid 2-related factor 2. Biochem Biophys Res Commun 2015; 467:282-7. [PMID: 26441083 DOI: 10.1016/j.bbrc.2015.09.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms.
Collapse
Affiliation(s)
- Shaojie Zhang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ananddeep Patel
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Patel A, Zhang S, Moorthy B, Shivanna B. Omeprazole does not Potentiate Acute Oxygen Toxicity in Fetal Human Pulmonary Microvascular Endothelial Cells Exposed to Hyperoxia. ACTA ACUST UNITED AC 2015; 6. [PMID: 26779382 PMCID: PMC4712726 DOI: 10.4172/2153-2435.1000424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hyperoxia contributes to the pathogenesis of broncho-pulmonary dysplasia (BPD), which is a developmental lung disease of premature infants that is characterized by an interruption of lung alveolar and pulmonary vascular development. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Earlier we observed that OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury in adult mice and oxygen toxicity in adult human lung cells. However, our later studies in newborn mice demonstrated that OM potentiates hyperoxia-induced developmental lung injury. Whether OM exerts a similar toxicity in primary human fetal lung cells is unknown. Hence, we tested the hypothesis that OM potentiates hyperoxia-induced cytotoxicity and ROS generation in the human fetal lung derived primary human pulmonary microvascular endothelial cells (HPMEC). OM activated AhR as evident by a dose-dependent increase in cytochrome P450 (CYP) 1A1 mRNA levels in OM-treated cells. Furthermore, OM at a concentration of 100 μM (OM 100) increased NADP(H) quinone oxidoreductase 1 (NQO1) expression. Surprisingly, hyperoxia decreased rather than increase the NQO1 protein levels in OM 100-treated cells. Exposure to hyperoxia increased cytotoxicity and hydrogen peroxide (H2O2) levels. Interestingly, OM 100-treated cells exposed to air had increased H2O2 levels. However, hyperoxia did not further augment H2O2 levels in OM 100-treated cells. Additionally, hyperoxia-mediated oxygen toxicity was similar in both vehicle- and OM-treated cells. These findings contradict our hypothesis and support the hypothesis that OM does not potentiate acute hyperoxic injury in HPMEC in vitro.
Collapse
Affiliation(s)
- Ananddeep Patel
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Shaojie Zhang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Jackson DP, Joshi AD, Elferink CJ. Ah Receptor Pathway Intricacies; Signaling Through Diverse Protein Partners and DNA-Motifs. Toxicol Res (Camb) 2015; 4:1143-1158. [PMID: 26783425 PMCID: PMC4714567 DOI: 10.1039/c4tx00236a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Ah receptor is a transcription factor that modulates gene expression via interactions with multiple protein partners; these are reviewed, including the novel NC-XRE pathway involving KLF6.
Collapse
|
26
|
Yamaori S, Kinugasa Y, Jiang R, Takeda S, Yamamoto I, Watanabe K. Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Sci 2015; 136:87-93. [PMID: 26187180 DOI: 10.1016/j.lfs.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
AIMS We herein investigated the inducibility of cytochrome P450 1A1 (CYP1A1) by Δ(9)-tetrahydrocannabinol, cannabidiol (CBD), and cannabinol, three major phytocannabinoids, using human hepatoma HepG2 cells. MAIN METHODS The expression of CYP1A1 and the aryl hydrocarbon receptor (AhR) was measured by a quantitative real-time polymerase chain reaction and/or Western blotting. KEY FINDINGS Δ(9)-Tetrahydrocannabinol and CBD concentration-dependently induced the expression of CYP1A1 mRNA, whereas cannabinol showed little or no induction. Among the phytocannabinoids tested, CBD was the most potent inducer of CYP1A1 expression. The induction of CYP1A1 expression by CBD was significantly attenuated by the knockdown of AhR expression with AhR small interfering RNAs. The role of protein tyrosine kinases (PTKs) in the CBD-mediated induction of CYP1A1 was then examined using herbimycin A, a PTK inhibitor. The upregulation of CYP1A1 by CBD was significantly suppressed by herbimycin A as was the induction by omeprazole but not 3-methylcholanthrene. The inducibility of CYP1A1 by CBD-related compounds was examined to clarify the structural requirements for CBD-mediated CYP1A1 induction. Olivetol, which corresponds to the pentylresorcinol moiety of CBD, significantly induced the expression of CYP1A1, whereas d-limonene, CBD-2'-monomethyl ether, and CBD-2',6'-dimethyl ether did not. SIGNIFICANCE These results showed that CBD may have induced human CYP1A1 expression through the activation of PTK-dependent AhR signaling, in which two phenolic hydroxyl groups in the pentylresorcinol moiety of CBD may play structurally important roles.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yuka Kinugasa
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Rongrong Jiang
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Shuso Takeda
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Ikuo Yamamoto
- Department of Hygienic Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan
| | - Kazuhito Watanabe
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan; Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|
27
|
The effects of drugs with immunosuppressive or immunomodulatory activities on xenobiotics-metabolizing enzymes expression in primary human hepatocytes. Toxicol In Vitro 2015; 29:1088-99. [PMID: 25929522 DOI: 10.1016/j.tiv.2015.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022]
Abstract
In this paper we investigated the effects of several drugs used in transplant medicine, i.e. cyclosporine A, tacrolimus, rapamycin, everolimus, mycophenolate mofetil, fluvastatin and rosuvastatin, on the expression of major drug-metabolizing enzymes in human hepatocytes. Moreover, we tested the ability of these drugs to affect transcriptional activity of glucocorticoid (GR) and aryl hydrocarbon receptor (AhR). We found that most of tested compounds did not induce expression of CYP1A1/1A2/3A4/2A6/2B6/2C9 mRNAs in human hepatocytes. Slight induction was observed for CYP2A6/2C9 mRNAs and CYP2A6 protein in the rapamycin-treated hepatocytes. Decrease of CYP2A6 and CYP2B6 proteins was observed in rosuvastatin-treated cells. Mycophenolate mofetil antagonized the effects of dexamethasone on GR but it potentiated the action of dioxin on AhR. Induction of CYP1A1 mRNA in HepG2 cells by dioxin was modestly antagonized by mycophenolate mofetil, while the induction by benzo[a]pyren or S-omeprazole was significantly potentiated by this drug. In general, tested compounds can be considered safe in the terms of possible drug-drug interaction caused by induction of drug-metabolizing cytochromes P450. Nevertheless, mycophenolate mofetil is of possible concern and its combination with drugs, environmental pollutants or food constituents, which activate AhR, may represent a significant toxicological risk.
Collapse
|
28
|
Takahashi S, Morita K, Kinoshita M, Fujimori S, Ishikawa T. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells. J Toxicol Sci 2015; 40:777-86. [DOI: 10.2131/jts.40.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Satoshi Takahashi
- Department of Internal Medicine, Teikyo University School of Medicine
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine
| | - Makoto Kinoshita
- Department of Internal Medicine, Teikyo University School of Medicine
| | - Shin Fujimori
- Department of Internal Medicine, Teikyo University School of Medicine
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine
| |
Collapse
|
29
|
Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EMC, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 2014; 511:184-90. [PMID: 24930766 DOI: 10.1038/nature13323] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/10/2014] [Indexed: 01/17/2023]
Abstract
Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.
Collapse
Affiliation(s)
- Alban Bessede
- 1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2] IMS Laboratory, University of Bordeaux, 33607 Pessac, France [3]
| | - Marco Gargaro
- 1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2]
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Cinzia Brunacci
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emilia M C Mazza
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonio Macchiarulo
- Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Rossana Iannitti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Luciana Tissi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Tobias V Lanz
- 1] Experimental Neuroimmunology Unit, German Cancer Research Center, 69120 Heidelberg, Germany [2] Department of Neurooncology, University Hospital, 69120 Heidelberg, Germany
| | - Michael Platten
- 1] Experimental Neuroimmunology Unit, German Cancer Research Center, 69120 Heidelberg, Germany [2] Department of Neurooncology, University Hospital, 69120 Heidelberg, Germany
| | - Maria A Della Fazia
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Hiroshi Funakoshi
- Center for Advanced Research and Education, Asahikawa Medical University, 078-8510 Asahikawa, Japan
| | - Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 565-0871 Osaka, Japan
| | - David Gilot
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, Université de Rennes 1, 35043 Rennes, France
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, 95616 California, USA
| | - Gilles J Guillemin
- Australian School of Advanced Medicine (ASAM), Macquarie University, 2109 New South Wales, Australia
| | - James B DuHadaway
- Lankenau Institute for Medical Research, Wynnewood, 19096 Pennsylvania, USA
| | | | - Richard Metz
- New Link Genetics Corporation, Ames, 50010 Iowa, USA
| | - Michel Geffard
- IMS Laboratory, University of Bordeaux, 33607 Pessac, France
| | | | - Matteo Pirro
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Alfonso Iorio
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Ontario L8S 4K1, Canada
| | - Bernard Veyret
- IMS Laboratory, University of Bordeaux, 33607 Pessac, France
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
30
|
Shiizaki K, Kawanishi M, Yagi T. Microbial metabolites of omeprazole activate murine aryl hydrocarbon receptor in vitro and in vivo. Drug Metab Dispos 2014; 42:1690-7. [PMID: 25061160 DOI: 10.1124/dmd.114.058966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omeprazole (OME), a proton pump inhibitor used to treat gastritis, is also an aryl hydrocarbon receptor (AhR) activator. OME activates AhR in human hepatocytes and hepatoma cells, but not in mice in vivo or in vitro. We recently discovered that this species-specific difference results from a difference in a few amino acids in the ligand-binding domain of AhR. However, OME activates both mouse and human AhRs in the yeast reporter assay system. Nevertheless, the cause of this discrepancy in OME responses remains unknown. Here, we report that CYP1A1 mRNA expression in mouse cecum was elevated after OME administration, although the mouse is regarded as an OME-unresponsive animal. Using the yeast reporter assay system with human and murine AhRs, we found AhR agonist-like activity in the cecal extracts of OME-treated mice. We speculated that OME metabolites produced by cecal bacteria might activate murine AhRs in vivo. In high-performance liquid chromatography (HPLC) analysis, AhR agonist-like activity of cecal bacterial culture and cecal extracts were detected at the same retention time. AhR agonist-like activity was also detected in the HPLC fractions of yeast culture media containing OME. This unknown substance could induce reporter gene expression via mouse and human AhRs. The agonist-like activity of the OME metabolite was reduced by concomitant α-naphthoflavone exposure. These results indicate that a yeast-generated OME metabolite elicited the response of mouse AhR to OME in the yeast system, and that bacterial OME metabolites may act as AhR ligands in human and mouse intestines.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| | - Masanobu Kawanishi
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| | - Takashi Yagi
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.); and Department of Life Science, Dongguk University, Seoul, South Korea (T.Y.)
| |
Collapse
|
31
|
Qu Q, Qu J, Han L, Zhan M, Wu LX, Zhang YW, Zhang W, Zhou HH. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6(*)1 and CYP2D6(*)10 using cell-based models in vitro. Acta Pharmacol Sin 2014; 35:685-96. [PMID: 24786236 DOI: 10.1038/aps.2013.202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 11/09/2022] Open
Abstract
AIM Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6(*)1 and CYP2D6(*)10 in vitro. METHODS HepG2 cells were stably transfected with CYP2D6(*)1 and CYP2D6(*)10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. RESULTS HepG2-CYP2D6(*)1 and HepG2-CYP2D6(*)10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6(*)1- and CYP2D6(*)10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6(*)1 and CYP2D6(*)10. However, their Ki values for CYP2D6(*)1 and CYP2D6(*)10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. CONCLUSION Six phytochemicals inhibit CYP2D6(*)1 and CYP2D6(*)10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6.
Collapse
|
32
|
Shiizaki K, Ohsako S, Kawanishi M, Yagi T. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands. Mol Pharmacol 2013; 85:279-89. [PMID: 24265133 DOI: 10.1124/mol.113.088856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (S.O.); Department of Life Science, Dongguk University, Seoul, Korea (T.Y.); and Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.)
| | | | | | | |
Collapse
|
33
|
Simic D, Euler C, Haines E, He A, Peden WM, Bunch RT, Sanderson T, Van Vleet T. MicroRNA changes associated with atypical CYP1A1 inducer BMS-764459. Toxicology 2013; 311:169-77. [PMID: 23831372 DOI: 10.1016/j.tox.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023]
Abstract
The corticotrophin releasing factor (CRF) receptor I antagonist, BMS-764459 (evaluated as a potential treatment of affective disorders), was orally dosed to female Sprague-Dawley rats once daily for 2 weeks (vehicle control or 175mg/kg/day). To investigate the mechanism of BMS-764459-related liver weight increases, total liver RNA was isolated and evaluated for mRNA gene expression by microarray analysis (assessing the expression of approximately 24,000 genes) from snap-frozen tissue. Subsequently, mRNA and miRNA (microRNA) were also analyzed 5 years later from FFPE (Formalin Fixed Paraffin Embedded) samples via RT-PCR (about 800 miRNA evaluated). Genomic analyses showed that BMS-764459 induces AhR target genes with additional inductions of CYP2B, CYP3A, and Abcc3 consistent with the gene expression pattern of atypical CYP1A1 inducers. Analysis of miRNA expression identified a number of significantly affected miRNAs. To further evaluate their role in atypical CYP1A1 induction, an in silico evaluation of differentially expressed miRNA was performed and their putative mRNA 3'-UTR (untranslated region) binding sequences were evaluated. MiR-680 and miR-29a were identified as potential regulators and biomarkers of atypical CYP1A1 induction by regulating Abcc3, CYP3A and CYP2B as well as a number of AhR targeted genes.
Collapse
Affiliation(s)
- Damir Simic
- Drug Safety Evaluation, Bristol-Myers Squibb, Mt. Vernon, IN 47620, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Feng S, Cao Z, Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:197-210. [PMID: 23711559 DOI: 10.1016/j.bbcan.2013.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, belongs to the member of bHLH/PAS family of heterodimeric transcriptional regulators and is widely expressed in a variety of animal species and humans. Recent animal and human data suggested that AHR is involved in various signaling pathways critical to cell normal homeostasis, which covers multiple aspects of physiology, such as cell proliferation and differentiation, gene regulation, cell motility and migration, inflammation and others. Dysregulation of these physiological processes is known to contribute to events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental animal data provided substantial support for an association between abnormal AHR function and cancer, implicating AHR may be a novel drug-interfering target for cancers. The proposed underlying mechanisms of its actions in cancer involved multiple aspects, (a) inhibiting the functional expression of the key anti-oncogenes (such as p53 and BRCA1), (b) promoting stem cells transforming and angiogenesis, (c) altering cell survival, proliferation and differentiation by influencing the physiologic processes of cell-cycle, apoptosis, cell contact-inhibition, metabolism and remodel of extracellular matrix, and cell-matrix interaction, (d) cross-talking with the signaling pathways of estrogen receptor and inflammation. This review aims to provide a brief overview of recent investigations into the role of AHR and the underlying mechanisms of its actions in cancer, which were explored by the new technologies emerging in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | | | | |
Collapse
|
35
|
Hur D, Jeon JK, Hong S. Analysis of immune gene expression modulated by benzo[a]pyrene in head kidney of olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:49-57. [DOI: 10.1016/j.cbpb.2013.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 11/16/2022]
|
36
|
Hur D, Hong S. Cloning and characterization of a fish specific gelsolin family gene, ScinL, in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:89-98. [PMID: 23159325 DOI: 10.1016/j.cbpb.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51-72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca(2+) coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca(2+). Putative binding sites for NFAT and AP-1 were found in 5' flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression.
Collapse
Affiliation(s)
- Deokhwe Hur
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung 210-702, South Korea
| | | |
Collapse
|
37
|
Ishikawa T, Okinaga H, Takahashi S, Numakura M, Mashimo Y, Yoshimura N, Maeda T, Inoue D, Okazaki R, Kinoshita M, Jameson JL, Teramoto T. Serum from methimazole-treated patients induces activation of aryl hydrocarbon receptor, a transcription factor that binds to dioxin-response elements. Thyroid 2012; 22:769-77. [PMID: 22784254 DOI: 10.1089/thy.2012.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by xenobiotic substances such as dioxin. After activation, it binds to dioxin response elements of DNA, thereby inducing transcription of a variety of xenobiotic metabolizing enzymes. To investigate whether AhR-activating substances accumulate in patients with endocrine disorders, we tested serum samples for AhR-stimulating activity. METHODS Serum AhR-stimulating activity was evaluated by exposing the HepG2 cells transiently transfected with an AhR-responsive reporter plasmid to serum samples. On the basis of preliminary findings that implicated methimazole (MMI), wild-type and AhR-null mice were treated with MMI, and their plasma AhR-stimulating activities and thyroxine levels were quantified. RESULTS In 28 randomly chosen patients, 7 out of 10 Graves' disease patients exhibited increased serum AhR-stimulating activity. The increased activity did not correlate with thyroid hormone status. However, we hypothesized that it might be caused by MMI. Subsequent analyses revealed that in 25 of 26 MMI-treated Graves' patients, serum samples collected after the MMI treatment had significantly higher AhR-stimulating activity compared to samples obtained when the same patients were not on MMI. By contrast, serum AhR-stimulating activity was unchanged in samples from the seven patients on propylthiouracil (PTU) compared to serum taken before the PTU treatment. In vitro experiments demonstrated that an MMI metabolite 3-methyl-2-thiohydantoin, but not MMI, activated AhR. MMI increased plasma AhR-stimulating activities and reduced plasma thyroxine concentrations, in both wild-type and AhR-deficient mice. CONCLUSIONS Graves' patients taking MMI have increased serum AhR-stimulating activity, which is unrelated to thyroid hormone status, but correlates with MMI treatment. The AhR activation is likely caused by 3-methyl-2-thiohydantoin. Further studies are required to determine the potency of 3-methyl-2-thiohydantoin as an AhR activator and the significance of the differences between MMI and PTU observed in this study.
Collapse
Affiliation(s)
- Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene 2012; 32:1811-20. [PMID: 22665056 DOI: 10.1038/onc.2012.197] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is commonly described as a transcription factor, which regulates xenobiotic-metabolizing enzymes. Recent studies have suggested that the binding of ligands to the AhR also activates the Src kinase. In this manuscript, we show that the AhR, through the activation of Src, activates focal adhesion kinase (FAK) and promotes integrin clustering. These effects contribute to cell migration. Further, we show that the activation of the AhR increases the interaction of FAK with the metastatic marker, HEF1/NEDD9/CAS-L, and the expression of several integrins. Xenobiotic exposure, thus, may contribute to novel cell-migratory programs.
Collapse
|
39
|
Shivanna B, Chu C, Welty SE, Jiang W, Wang L, Couroucli XI, Moorthy B. Omeprazole attenuates hyperoxic injury in H441 cells via the aryl hydrocarbon receptor. Free Radic Biol Med 2011; 51:1910-7. [PMID: 21906671 PMCID: PMC3901644 DOI: 10.1016/j.freeradbiomed.2011.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia in premature infants. Earlier we observed that aryl hydrocarbon receptor (AhR)-deficient mice are more susceptible to hyperoxic lung injury than AhR-sufficient mice, and this phenomenon was associated with a lack of expression of cytochrome P450 1A enzymes. Omeprazole, a proton pump inhibitor used in humans with gastric acid-related disorders, activates AhR in hepatocytes in vitro. However, the effects of omeprazole on AhR activation in the lungs and its impact on hyperoxia-induced reactive oxygen species (ROS) generation and inflammation are unknown. In this study, we tested the hypothesis that omeprazole attenuates hyperoxia-induced cytotoxicity, ROS generation, and expression of monocyte chemoattractant protein-1 (MCP-1) in human lung-derived H441 cells via AhR activation. Experimental groups included cells transfected with AhR small interfering RNA (siRNA). Hyperoxia resulted in significant increases in cytotoxicity, ROS generation, and MCP-1 production, which were significantly attenuated with the functional activation of AhR by omeprazole. The protective effects of omeprazole on cytotoxicity, ROS production, and MCP-1 production were lost in H441 cells whose AhR gene was silenced by AhR siRNA. These findings support the hypothesis that omeprazole protects against hyperoxic injury in vitro via AhR activation that is associated with decreased ROS generation and expression of MCP-1.
Collapse
Affiliation(s)
- Binoy Shivanna
- Division of Neonatal–Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Froyen EB, Steinberg FM. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element. J Nutr Biochem 2011; 22:843-8. [PMID: 21167702 DOI: 10.1016/j.jnutbio.2010.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/26/2009] [Accepted: 07/08/2010] [Indexed: 01/17/2023]
Abstract
Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE.
Collapse
Affiliation(s)
- Erik B Froyen
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Powis M, Celius T, Matthews J. Differential ligand-dependent activation and a role for Y322 in aryl hydrocarbon receptor-mediated regulation of gene expression. Biochem Biophys Res Commun 2011; 410:859-65. [PMID: 21703235 DOI: 10.1016/j.bbrc.2011.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 01/23/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF). Non-traditional activators, including omeprazole (Omp), are thought to regulate AHR action through phosphorylation rather than binding to the receptor. In this study, we examined the ability of these compounds to induce AHR-dependent regulation of cytochrome P450 1A1 (CYP1A1) and CYP1B1 in T-47D human breast cancer cells. The role of Y322, a residue implicated in Omp-dependent activation of AHR was also investigated. All four compounds induced CYP1A1 and CYP1B1 mRNA expression, with Omp differing from the HAHs. Chromatin immunoprecipitation assays revealed ligand- and gene-selectivity in the recruitment patterns of AHR coactivators. We also found that residue Y322 of human AHR was important for maximum activation of AHR by 2,3,7,8-TCDD and 2,3,4,7,8-PeCDF, but required for 2,3,7,8-TCDF and Omp in an AHR-deficient MCF-7 human breast cancer cell line. In summary, this study provides evidence for context- and ligand-selective differences in coactivator recruitment in AHR-regulated gene expression and reveal an important role of Y322 in AHR activation.
Collapse
Affiliation(s)
- Melanie Powis
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
42
|
Bothe H, Gassmann K, Götz C, Fritsche E, Abel J, Haarmann-Stemmann T. Epigallocatechin-3-gallate does not affect the activity of enzymes involved in metabolic activation and cellular excretion of benzo[a]pyrene in human colon carcinoma cells. Toxicol Lett 2011; 203:258-64. [DOI: 10.1016/j.toxlet.2011.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/24/2022]
|
43
|
FRET analysis of protein tyrosine kinase c-Src activation mediated via aryl hydrocarbon receptor. Biochim Biophys Acta Gen Subj 2010; 1810:427-31. [PMID: 21145940 DOI: 10.1016/j.bbagen.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/04/2010] [Accepted: 11/25/2010] [Indexed: 01/25/2023]
Abstract
BACKGROUND Activation of the protein tyrosine kinase c-Src (c-Src kinase) induced by the exposure to the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown in various cell types. Most previous works used Western blot analysis to detect the phosphorylation on the Tyr416 residue, which activates c-Src kinase. METHODS Here we compared the results of c-Src tyrosine phosphorylation via aryl hydrocarbon receptor (AhR)-dependent mechanisms from Western blot analysis with fluorescent resonance energy transfer (FRET) assay detecting c-Src activation after treatment with TCDD to activate AhR in two different human cell types. RESULTS Western blot analyses show time-dependent phosphorylation of c-Src by TCDD in HepG2 and MCF-10A cells. Data from FRET assay visualized and quantified the activation of c-Src kinase induced by TCDD in living cells of both cell types. The FRET efficiency decreased by 20%, 5 min after TCDD treatment and continued decreasing until the end of the experiment, 25 min after TCDD treatment. PP2, a c-Src specific inhibitor, suppressed both TCDD- and epidermal growth factor- (EGF) induced c-Src activation. In contrast, the AhR antagonist 3'-methoxy-4'nitroflavone (MNF) blocked only TCDD- but not EGF-induced activation of c-Src. CONCLUSIONS The current study shows that the early activation of c-Src via EGF and AhR signaling pathways can be visualized in living cells using the FRET assay which is in line with Western blot analysis. GENERAL SIGNIFICANCE The FRET assay provides a useful tool to visualize and quantify c-Src kinase activation via AhR in living cells.
Collapse
|
44
|
Sauzeau V, Carvajal-González JM, Riolobos AS, Sevilla MA, Menacho-Márquez M, Román AC, Abad A, Montero MJ, Fernández-Salguero P, Bustelo XR. Transcriptional factor aryl hydrocarbon receptor (Ahr) controls cardiovascular and respiratory functions by regulating the expression of the Vav3 proto-oncogene. J Biol Chem 2010; 286:2896-909. [PMID: 21115475 DOI: 10.1074/jbc.m110.187534] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aryl hydrocarbon receptor (Ahr) is a transcriptional factor involved in detoxification responses to pollutants and in intrinsic biological processes of multicellular organisms. We recently described that Vav3, an activator of Rho/Rac GTPases, is an Ahr transcriptional target in embryonic fibroblasts. These results prompted us to compare the Ahr(-/-) and Vav3(-/-) mouse phenotypes to investigate the implications of this functional interaction in vivo. Here, we show that Ahr is important for Vav3 expression in kidney, lung, heart, liver, and brainstem regions. This process is not affected by the administration of potent Ahr ligands such as benzo[a]pyrene. We also report that Ahr- and Vav3-deficient mice display hypertension, tachypnea, and sympathoexcitation. The Ahr gene deficiency also induces the GABAergic transmission defects present in the Vav3(-/-) ventrolateral medulla, a main cardiorespiratory brainstem center. However, Ahr(-/-) mice, unlike Vav3-deficient animals, display additional defects in fertility, perinatal growth, liver size and function, closure, spleen size, and peripheral lymphocytes. These results demonstrate that Vav3 is a bona fide Ahr target that is in charge of a limited subset of the developmental and physiological functions controlled by this transcriptional factor. Our data also reveal the presence of sympathoexcitation and new cardiorespiratory defects in Ahr(-/-) mice.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Salamanca University, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
46
|
The inhibitory mechanisms of the tyrosine kinase inhibitors herbimycin a, genistein, and tyrphostin B48 with regard to the function of the aryl hydrocarbon receptor in Caco-2 cells. Biosci Biotechnol Biochem 2010; 74:36-43. [PMID: 20057149 DOI: 10.1271/bbb.90438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by dioxin and related xenobiotics. Although the activation of AhR is inhibited by tyrosine kinase inhibitors, the molecular mechanism has not been clarified. In the current study, the inhibitory mechanisms of several inhibitors of tyrosine kinase, herbimycin A, genistein, and tyrphostin B48, on AhR activation was analyzed in human Caco-2 cells. All the inhibitors suppressed the transcriptional activation of AhR induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Herbimycin A induced down-regulation of the AhR protein by inhibiting its molecular chaperone heat shock protein 90 (HSP90). In contrast, genistein and tyrphostin B48 inhibited the nuclear localization of AhR induced by TCDD, although the amount of AhR protein was not altered. The inhibitory effects of genistein and tyrphostin B48 on endogenous tyrosine kinase activity were evaluated by detection of alterations in the tyrosine phosphorylation states of cellular proteins.
Collapse
|
47
|
Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:40-53. [PMID: 20075607 PMCID: PMC3417568 DOI: 10.2183/pjab.86.40] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) was originally identified as a ligand-activated transcription factor that is involved in the induction of xenobiotic-metabolizing Cytochrome P4501A1 (CYP1A1). For several decades, AhR has been studied in relation to toxicology and pharmacology. With recent discoveries on novel AhR functions, AhR research has expanded into multiple aspects of physiology, such as reproduction, innate immunity and tumor suppression. In this review, we summarize and discuss recent progress in mechanistic and functional studies on AhR with particular emphasis on physiological processes.
Collapse
Affiliation(s)
- Yoshiaki Fujii-Kuriyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 5-18-7 Honkomagame, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
48
|
Rudzok S, Schmücking E, Graebsch C, Herbarth O, Bauer M. The inducibility of human cytochrome P450 1A by environmental-relevant xenobiotics in the human hepatoma derived cell line HepG2. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:370-378. [PMID: 21784029 DOI: 10.1016/j.etap.2009.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/02/2009] [Accepted: 06/13/2009] [Indexed: 05/31/2023]
Abstract
Overexpression of the CYP1 family, independent of gender, is focal to the evaluation of the risk of human cancer. We have analysed the ability of 17 anthropogenic environmental xenobiotics widely used in Europe within households and agriculture to induce the human cytochrome P450 1A (CYP1A) in the human hepatoma derived cell line HepG2. The xenobiotics were potent to concomitantly induce both CYP1A mRNA and CYP1A activity in a dose-response relationship. Exceptions were shown by the organophosphate insecticide chlorpyrifos and the imidazole fungicide prochloraz in high concentrations which were capable of both inhibiting the basal or abolishing the initially induced CYP1A activity, respectively. A CYP1A induction has been shown for the first time by the aromatic xenobiotics irgasan, permethrin and azoxystrobin, the nonaromatic tributyltinoxide and for humans by the piperonylbutoxide. The xenobiotics additionally differed by their induced CYP1A isoenzyme pattern. A pronounced CYP1A1 and CYP1A2 mRNA induction was given by the phenyl urea herbicide diuron and benzodiazole insecticide piperonylbutoxide, respectively. In conclusion, out of the environmental xenobiotics, we described new members of human CYP1A inducers which extend chemical structures of biotransformation activators.
Collapse
Affiliation(s)
- Susanne Rudzok
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
49
|
Murray IA, Flaveny CA, DiNatale BC, Chairo CR, Schroeder JC, Kusnadi A, Perdew GH. Antagonism of aryl hydrocarbon receptor signaling by 6,2',4'-trimethoxyflavone. J Pharmacol Exp Ther 2009; 332:135-44. [PMID: 19828881 DOI: 10.1124/jpet.109.158261] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is regarded as an important homeostatic transcriptional regulator within physiological and pathophysiological processes, including xenobiotic metabolism, endocrine function, immunity, and cancer. Agonist activation of the AHR is considered deleterious based on toxicological evidence obtained with environmental pollutants, which mediate toxic effects through AHR. However, a multitude of plant-derived constituents, e.g., polyphenols that exhibit beneficial properties, have also been described as ligands for the AHR. It is conceivable that some of the positive aspects of such compounds can be attributed to suppression of AHR activity through antagonism. Therefore, we conducted a dioxin response element reporter-based screen to assess the AHR activity associated with a range of flavonoid compounds. Our screen identified two flavonoids (5-methoxyflavone and 7,4'-dimethoxyisoflavone) with previously unidentified AHR agonist potential. In addition, we have identified and characterized 6,2',4'-trimethoxyflavone (TMF) as an AHR ligand that possesses the characteristics of an antagonist having the capacity to compete with agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene, thus effectively inhibiting AHR-mediated transactivation of a heterologous reporter and endogenous targets, e.g., CYP1A1, independent of cell lineage or species. Furthermore, TMF displays superior action by virtue of having no partial agonist activity, in contrast to other documented antagonists, e.g., alpha-napthoflavone, which are partial weak agonists. TMF also exhibits no species or promoter dependence with regard to AHR antagonism. TMF therefore represents an improved tool allowing for more precise dissection of AHR function in the absence of any conflicting agonist activity.
Collapse
Affiliation(s)
- Iain A Murray
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary Sciences, The Pennsylvania State University, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Guo SW, Simsa P, Kyama CM, Mihalyi A, Fulop V, Othman EER, D'Hooghe TM. Reassessing the evidence for the link between dioxin and endometriosis: from molecular biology to clinical epidemiology. Mol Hum Reprod 2009; 15:609-24. [DOI: 10.1093/molehr/gap075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|