1
|
Malik MZ, Dashti M, Jangid A, Channanath A, Elsa John S, Singh RKB, Al-Mulla F, Alphonse Thanaraj T. Complex p53 dynamics regulated by miR-125b in cellular responses to reactive oxidative stress and DNA damage. Brief Bioinform 2024; 26:bbae706. [PMID: 39820247 PMCID: PMC11736902 DOI: 10.1093/bib/bbae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation. The interactions between miRNA-125b, p53, and reactive oxygen species (ROS) are significant in the context of cellular stress responses and apoptosis. However, the regulating mechanism of miR-125b with p53 is not fully studied. The dynamics of p53 and its response to the miR-125b regulation are still open questions. In the present study, we try to answer some of these fundamental questions based on basic model built from available experimental reports. The miR-125b-p53 regulatory network is modeled using a set of 11 molecular species variables. The biochemical network of miR-125b-p53, described by 22 reaction channels, is represented by coupled ordinary differential equations (ODEs) using the mass action law of chemical kinetics. These ODEs are solved numerically using the standard fourth-order Runge-Kutta method to analyze the dynamical behavior of the system. The biochemical network model we designed is based on both experimental and theoretical reported data. The p53 dynamics driven by miR-125b exhibit five distinct dynamical states: first and second stable states, first and second dynamical states, and a sustained oscillation state. These different p53 dynamical states may correspond to various cellular conditions. If the stress induced by miR-125b is weak, the system will be weakly activated, favoring a return to normal functioning. However, if the stress is significantly strong, the system will move to an active state. To sustain this active state, which is far from equilibrium with little scope for returning to normal conditions, the system may transition to an apoptotic state by crossing through other intermediate states, as it is unlikely to regain normal functioning. The p53 dynamical states show a multifractal nature, contributed by both short- and long-range correlations. The networks illustrated from these dynamical states follow hierarchical scale-free features, exhibiting an assortative nature with an absence of the centrality-lethality rule. Furthermore, the active dynamical state is generally closer to hierarchical characteristics and is self-organized. Our research study reveals that significant activity of miR-125b on the p53 regulatory network and its dynamics can only be observed when the system is slightly activated by ROS. However, this process does not necessarily require the direct study of ROS activity. These findings elucidate the mechanisms by which cells integrate signaling pathways with distinct temporal activity patterns to encode stress specificity and direct diverse cell fate decisions.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arshad Channanath
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | | |
Collapse
|
2
|
Huang H, Drici L, Lassen PS, Palmisano G, Larsen MR. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells. J Proteomics 2023; 273:104796. [PMID: 36538968 DOI: 10.1016/j.jprot.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in β-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated β-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Pernille S Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Departament of Parasitology, Institute of Biomedical Sciences - University of São Paulo, Avenida Prof. Lineu Prestes, 1374 - Edifício Biomédicas II, Cidade Universitária "Armando Salles Oliveira" - CEP, 05508-000 São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Hricik DE, Armstrong B, Alhamad T, Brennan DC, Bromberg JS, Bunnapradist S, Chandran S, Fairchild RL, Foley DP, Formica R, Gibson IW, Kesler K, Kim SJ, Mannon RB, Menon MC, Newell KA, Nickerson P, Odim J, Poggio ED, Sung R, Shapiro R, Tinckam K, Vincenti F, Heeger PS. Infliximab Induction Lacks Efficacy and Increases BK Virus Infection in Deceased Donor Kidney Transplant Recipients: Results of the CTOT-19 Trial. J Am Soc Nephrol 2023; 34:145-159. [PMID: 36195441 PMCID: PMC10101585 DOI: 10.1681/asn.2022040454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR) of a kidney transplant (KTx) upregulates TNF α production that amplifies allograft inflammation and may negatively affect transplant outcomes. METHODS We tested the effects of blocking TNF peri-KTx via a randomized, double-blind, placebo-controlled, 15-center, phase 2 clinical trial. A total of 225 primary transplant recipients of deceased-donor kidneys (KTx; 38.2% Black/African American, 44% White) were randomized to receive intravenous infliximab (IFX) 3 mg/kg or saline placebo (PLBO) initiated before kidney reperfusion. All patients received rabbit anti-thymocyte globulin induction and maintenance immunosuppression (IS) with tacrolimus, mycophenolate mofetil, and prednisone. The primary end point was the difference between groups in mean 24-month eGFR. RESULTS There was no difference in the primary end point of 24-month eGFR between IFX (52.45 ml/min per 1.73 m 2 ; 95% CI, 48.38 to 56.52) versus PLBO (57.35 ml/min per 1.73 m 2 ; 95% CI, 53.18 to 61.52; P =0.1). There were no significant differences between groups in rates of delayed graft function, biopsy-proven acute rejection (BPAR), development of de novo donor-specific antibodies, or graft loss/death. Immunosuppression did not differ, and day 7 post-KTx plasma analyses showed approximately ten-fold lower TNF ( P <0.001) in IFX versus PLBO. BK viremia requiring IS change occurred more frequently in IFX (28.9%) versus PLBO (13.4%; P =0.004), with a strong trend toward higher rates of BKV nephropathy in IFX (13.3%) versus PLBO (4.9%; P =0.06). CONCLUSIONS IFX induction therapy does not benefit recipients of kidney transplants from deceased donors on this IS regimen. Because the intervention unexpectedly increased rates of BK virus infections, our findings underscore the complexities of targeting peritransplant inflammation as a strategy to improve KTx outcomes.Clinical Trial registry name and registration number:clinicaltrials.gov (NCT02495077).
Collapse
Affiliation(s)
- Donald E Hricik
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Tarek Alhamad
- Department of Medicine, Washington University, Saint Louis, Missouri
| | | | | | | | - Sindhu Chandran
- Departments of Medicine and Surgery, University of California, San Francisco, California
| | - Robert L Fairchild
- Glickman Urological and Kidney Institute and the Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - David P Foley
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Richard Formica
- Departments of Medicine and Surgery, Yale University, New Haven, Connecticut
| | - Ian W Gibson
- Departments of Medicine and Pathology, University of Manitoba, Winnipeg, Canada
| | | | - S Joseph Kim
- Department of Medicine, University Health Network, Toronto, Canada
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Madhav C Menon
- Departments of Medicine and Surgery, Yale University, New Haven, Connecticut
| | | | - Peter Nickerson
- Departments of Medicine and Pathology, University of Manitoba, Winnipeg, Canada
| | - Jonah Odim
- Transplant Branch, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Emilio D Poggio
- Glickman Urological and Kidney Institute and the Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Randall Sung
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ron Shapiro
- Departments of Medicine, Icahn School of Medicine at Mount Sinai and Recanati Miller Transplant Institute, Mount Sinai Hospital, New York, New York
| | - Kathryn Tinckam
- Department of Medicine, University Health Network, Toronto, Canada
| | - Flavio Vincenti
- Departments of Medicine and Surgery, University of California, San Francisco, California
| | - Peter S Heeger
- Departments of Medicine, Icahn School of Medicine at Mount Sinai and Recanati Miller Transplant Institute, Mount Sinai Hospital, New York, New York
| |
Collapse
|
4
|
Elhabak M, Ibrahim S, Ibrahim RR. Intra-vaginal Gemcitabine-Hybrid Nanoparticles for effective cervical cancer treatment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Oyelere SF, Ajayi OH, Ayoade TE, Santana Pereira GB, Dayo Owoyemi BC, Ilesanmi AO, Akinyemi OA. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon 2022; 8:e09253. [PMID: 35434401 PMCID: PMC9010624 DOI: 10.1016/j.heliyon.2022.e09253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally, with an annual mortality of more than one million people. This high mortality rate highlights the need for in-depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mechanisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also, the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance, activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of Science.
Collapse
|
6
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Woznicki JA, Saini N, Flood P, Rajaram S, Lee CM, Stamou P, Skowyra A, Bustamante-Garrido M, Regazzoni K, Crawford N, McDade SS, Longley DB, Aza-Blanc P, Shanahan F, Zulquernain SA, McCarthy J, Melgar S, McRae BL, Nally K. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis 2021; 12:864. [PMID: 34556638 PMCID: PMC8459343 DOI: 10.1038/s41419-021-04151-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022]
Abstract
Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.
Collapse
Affiliation(s)
| | - Nisha Saini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Ciaran M Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | | | | | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Pedro Aza-Blanc
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - Syed A Zulquernain
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - Jane McCarthy
- Department of Gastroenterology, Mercy University Hospital, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bradford L McRae
- Immunology Discovery, Abbvie Bioresearch Center, Worcester, MA, 01605, USA
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
9
|
Chen B, Gurung C, Guo J, Kwon C, Guo YL. Pluripotent stem cells are insensitive to the cytotoxicity of TNFα and IFNγ. Reproduction 2021; 160:547-560. [PMID: 32698161 DOI: 10.1530/rep-20-0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Recent studies have demonstrated that embryonic stem cells (ESCs) have an underdeveloped innate immune system, but the biological implications of this finding are poorly understood. In this study, we compared the responses of mouse ESCs (mESCs) and mESC differentiated fibroblasts (mESC-FBs) to tumor necrosis factor α (TNFα) and interferons (IFNs). Our data revealed that TNFα, IFNα, IFNβ, or IFNγ alone do not cause apparent effects on mESCs and mESC-FBs, but the combination of TNFα and IFNγ (TNFα/IFNγ) showed toxicity to mESC-FBs as indicated by cell cycle inhibition and reduced cell viability, correlating with the expression of inducible nitric oxide synthase (iNOS). However, none of these effects were observed in mESCs that were treated with TNFα/IFNγ. Furthermore, mESC-FBs, but not mESCs, are vulnerable to cytotoxicity resulting from lipopolysaccharide (LPS)-activated macrophages. The insensitivity of mESCs to cytotoxicity in all cases is correlated with their lack of responses to TNFα and IFNγ. Similar to mESCs, human ESCs (hESCs) and iPSCs (hiPSCs) do not respond to TNFα and are not susceptible to the cytotoxicity of TNFα, IFNβ, or IFNγ alone or in combination that significantly affects human foreskin fibroblast (hFBs) and Hela cells. However, unlike mESCs, hESCs and hiPSCs can respond to IFNγ, but this does not cause significant cytotoxicity in hESCs and hiPSCs. Our findings in both mouse and human PSCs together support the hypothesis that attenuated innate immune responses could be a protective mechanism that limits immunologic cytotoxicity resulting from inflammatory and immune responses.
Collapse
Affiliation(s)
- Bohan Chen
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Chandan Gurung
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yan-Lin Guo
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
10
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
11
|
Zulfiqar Z, Shah FA, Shafique S, Alattar A, Ali T, Alvi AM, Rashid S, Li S. Repurposing FDA Approved Drugs as JNK3 Inhibitor for Prevention of Neuroinflammation Induced by MCAO in Rats. J Inflamm Res 2020; 13:1185-1205. [PMID: 33384558 PMCID: PMC7770337 DOI: 10.2147/jir.s284471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Stress-associated kinases are considered major pathological mediators in several incurable neurological disorders. Importantly, among these stress kinases, the c-Jun NH2-terminal kinase (JNK) has been linked to numerous neuropathological conditions, including oxidative stress, neuroinflammation, and brain degeneration associated with brain injuries such as ischemia/reperfusion injury. In this study, we adopted a drug repurposing/reprofiling approach to explore novel JNK3 inhibitors from FDA-approved medications to supplement existing therapeutic strategies. Materials and Methods We performed in silico docking analysis and molecular dynamics simulation to screen potential candidates from the FDA approved drug library using the standard JNK inhibitor SP600125 as a reference. After the virtual screening, dabigatran, estazolam, leucovorin, and pitavastatin were further examined in ischemic stroke using an animal rodent model of focal cerebral ischemia using transient middle cerebral artery occlusion (t-MCAO). The selected drugs were probed for neuroprotective effectiveness by measuring the infarct area (%) and neurological deficits using a 28-point composite score. Biochemical assays including ELISA and immunohistochemical experiments were performed. Results We obtained structural insights for dabigatran, estazolam, and pitavastatin binding to JNK3, revealing a significant contribution of the hydrophobic regions and significant residues of active site regions. To validate the docking results, the pharmacological effects of dabigatran, estazolam, leucovorin, and pitavastatin on MCAO were tested in parallel with the JNK inhibitor SP600125. After MCAO surgery, severe neurological deficits were detected in the MCAO group compared with the sham controls, which were significantly reversed by dabigatran, estazolam, and pitavastatin treatment. Aberrant morphological features and brain damage were observed in the ipsilateral cortex and striatum of the MCAO groups. The drugs restored the anti-oxidant enzyme activity and reduced the levels of oxidative stress-induced p-JNK and neuroinflammatory mediators such as NF-kB and TNF-ɑ in rats subjected to MCAO. Conclusion Our results demonstrated that the novel FDA-approved medications attenuate ischemic stroke-induced neuronal degeneration, possibly by inhibiting JNK3. Being FDA-approved safe medications, the use of these drugs can be clinically translated for ischemic stroke-associated brain degeneration and other neurodegenerative diseases associated with oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Zikra Zulfiqar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shagufta Shafique
- National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arooj Mohsin Alvi
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MTC, de Vos P, Smink AM. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydr Polym 2020; 249:116863. [PMID: 32933690 DOI: 10.1016/j.carbpol.2020.116863] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic β-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on β-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on β-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing β-cells less susceptible for stress.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
13
|
Dexmedetomidine Attenuates LPS-Induced Monocyte-Endothelial Adherence via Inhibiting Cx43/PKC- α/NOX2/ROS Signaling Pathway in Monocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930463. [PMID: 32774667 PMCID: PMC7395996 DOI: 10.1155/2020/2930463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine is widely used for sedating patients in operation rooms or intensive care units. Its protective functions against oxidative stress, inflammation reaction, and apoptosis have been widely reported. In present study, we explored the effects of dexmedetomidine on monocyte-endothelial adherence. We built lipopolysaccharide- (LPS-) induced monocyte-endothelial adherence models with U937 monocytes and human umbilical vein endothelial cells (HUVECs) and observed the effects of dexmedetomidine on U937-HUVEC adhesion. Specific siRNA was designed to knock-down Connexin43 (Cx43) expression in U937 monocytes. Gö6976, GSK2795039, and NAC were used to inhibit PKC-α, NOX2, and ROS, respectively. Then, we detected whether dexmedetomidine could downregulate Cx43 expression and its downstream PKC-α/NOX2/ROS signaling pathway activation and ultimately result in the decrease of U937-HUVEC adhesion. The results showed that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), could inhibit adhesion of molecule expression (VLA-4 and LFA-1) and U937-HUVEC adhesion. Simultaneously, it also attenuated Cx43 expression in U937 monocytes. With the downregulation of Cx43 expression, the activity of PKC-α and its related NOX2/ROS signaling pathway were reduced. Inhibiting PKC-α/NOX2/ROS signaling pathway with Gö6976, GSK2795039, and NAC, respectively, VLA-4, LFA-1 expression, and U937-HUVEC adhesion were all decreased. In summary, we concluded that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), decreased Cx43 expression in U937 monocytes and PKC-α associated with carboxyl-terminal domain of Cx43 protein. With the downregulation of PKC-α, the NOX2/ROS signaling pathway was inhibited, resulting in the decrease of VLA-4 and LFA-1 expression. Ultimately, U937-HUVEC adhesion was reduced.
Collapse
|
14
|
Ye DJ, Kwon YJ, Baek HS, Cho E, Kwon TU, Chun YJ. Combination treatment with auranofin and nutlin-3a induces synergistic cytotoxicity in breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:626-637. [PMID: 31258040 DOI: 10.1080/15287394.2019.1635934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Auranofin is a gold complex categorized as an anti-rheumatic agent. Recently, several investigators suggested that auranofin may act as a potent anti-cancer drug for breast tumors. Nutlin-3a is a cis-imidazoline analog which prevents interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The aim of this study was to examine cell growth inhibition mediated by auranofin or nutlin-3a individually as well as in combination with MCF-7 and MDA-MB-231 cells. To assess any potential synergistic effects between auranofin and nutlin-3a, low concentrations of auranofin and nutlin-3a were simultaneously incubated with MCF-7 and MDA-MB-231 cells. Cell viability assay, caspase-3/7 assay, and poly (ADP-ribose) polymerase cleavage revealed that auranofin and nutlin-3a exerted a synergistic effect on cancer cell apoptosis. Isobologram analysis of MCF-7 and MDA-MB-231 cells noted evident synergism between auranofin and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bcl-2 associated X protein and Bcl-2 homologous antagonist/killer. Further, combination treatment significantly enhanced reactive oxygen species (ROS) generation in MCF-7 and MDA-MB-231 cells. In conclusion, data demonstrated that combined treatment with auranofin and nutlin-3a exhibited a synergistic action on breast cancer cells and this combination may be considered for use as a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Dong-Jin Ye
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Yeo-Jung Kwon
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | | | - Eunah Cho
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Tae-Uk Kwon
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Young-Jin Chun
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| |
Collapse
|
15
|
Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol 2019; 486:96-104. [PMID: 30853600 DOI: 10.1016/j.mce.2019.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
Severe inflammation in the islets is observed in obese patients with type 2 diabetes. Inflammation in the islets is caused by obesity-induced serum free fatty acids. Asprosin is a fasting-induced adipokine, which contributes to hepatic glucose production. However, the effects of asprosin on inflammation and cellular dysfunction in pancreatic β-cells remain to be elucidated. Here, we demonstrated that treatment of mouse insulinoma MIN6 cells and human primary islets containing β-cells with palmitate increased asprosin expression and secretion. Treatment of MIN6 cells and human primary islets with palmitate increased phosphorylation of the inflammatory marker nuclear factor-kappa B (NFκB) and the release of pro-inflammatory cytokines including TNF and MCP-1 and decreased glucose-stimulated insulin secretion and cell viability. However, siRNA-mediated suppression of asprosin reversed these changes. Recombinant asprosin treatment of MIN6 cells and human primary islets augmented the inflammation response, cellular dysfunction, and apoptosis in a dose-dependent manner. Asprosin induced toll-like receptor (TLR) 4 expression and JNK phosphorylation. siRNA for TLR4 or JNK mitigated the effects of asprosin on inflammation and cellular dysfunction. These results suggest that palmitate-derived asprosin secretion from β-cells results in their inflammation and dysfunction through a TLR4/JNK-mediated pathway. This report suggests asprosin as a novel therapeutic target for the treatment of type 2 diabetes through preservation of β-cell function.
Collapse
Affiliation(s)
- Taeseung Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Subin Yun
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
16
|
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 2018; 9:64-79. [PMID: 29856726 DOI: 10.1515/bmc-2018-0007] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
A key player in driving cellular immunity, IFN-γ is capable of orchestrating numerous protective functions to heighten immune responses in infections and cancers. It can exhibit its immunomodulatory effects by enhancing antigen processing and presentation, increasing leukocyte trafficking, inducing an anti-viral state, boosting the anti-microbial functions and affecting cellular proliferation and apoptosis. A complex interplay between immune cell activity and IFN-γ through coordinated integration of signals from other pathways involving cytokines and Pattern Recognition Receptors (PRRs) such as Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), Type-I Interferons (IFNS) etc. leads to initiation of a cascade of pro-inflammatory responses. Microarray data has unraveled numerous genes whose transcriptional regulation is influenced by IFN-γ. Consequently, IFN-γ stimulated cells display altered expression of many such target genes which mediate its downstream effector functions. The importance of IFN-γ is further reinforced by the fact that mice possessing disruptions in the IFN-γ gene or its receptor develop extreme susceptibility to infectious diseases and rapidly succumb to them. In this review, we attempt to elucidate the biological functions and physiological importance of this versatile cytokine. The functional implications of its biological activity in several infectious diseases and autoimmune pathologies are also discussed. As a counter strategy, many virulent pathogenic species have devised ways to thwart IFN-γ endowed immune-protection. Thus, IFN-γ mediated host-pathogen interactions are critical for our understanding of disease mechanisms and these aspects also manifest enormous therapeutic importance for the annulment of various infections and autoimmune conditions.
Collapse
Affiliation(s)
- Gunjan Kak
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, 110021, India
| | - Brijendra K Tiwari
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| |
Collapse
|
17
|
Abstract
Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.
Collapse
|
18
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Parkes MD, Halloran PF, Hidalgo LG. Mechanistic Sharing Between NK Cells in ABMR and Effector T Cells in TCMR. Am J Transplant 2018; 18:63-73. [PMID: 28654216 DOI: 10.1111/ajt.14410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
Human organ allograft rejection depends on effector lymphocytes: NK cells in antibody-mediated rejection (ABMR) and effector T cells in T cell-mediated rejection (TCMR). We hypothesized that NK cell CD16a stimulation and CD8 T cell TCR/CD3 stimulation represent highly similar effector systems, and should lead to shared molecular changes between ABMR and TCMR. We studied similarity between soluble proteins and the transcripts induced in CD16a stimulated NK cells and TCR/CD3-stimulated T cells in vitro. Of 30 soluble mediators tested, CD16a-activated NK cells and CD3/TCR activated T cells produced the same limited set of five mediators-CCL3, CCL4, CSF2, IFNG, and TNF-and failed to produce 25 others. Many transcripts increased in stimulated NK cells were also increased in CD3-stimulated CD8 T cells (FDR < 0.05), including IFNG, CSF2, CCL3, CCL4, and XCL1. We hypothesized that shared transcripts not produced by other cell types should be expressed both in ABMR and TCMR kidney transplant biopsies. CD160, XCL1, TNFRSF9, and IFNG were selective for TCR/CD3-activated T cells and CD16a-NK cells and all were strongly increased in ABMR and TCMR. The molecules such as CD160 and XCL1 shared between NK cells in ABMR and effector T cells in TCMR may hold insights into important rejection mechanisms.
Collapse
Affiliation(s)
- M D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - P F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - L G Hidalgo
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Bansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, van der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA. Sex- and Dose-Specific Effects of Maternal Bisphenol A Exposure on Pancreatic Islets of First- and Second-Generation Adult Mice Offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097022. [PMID: 29161229 PMCID: PMC5915189 DOI: 10.1289/ehp1674] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to the environmental endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with the increased risk of diabetes and obesity. However, the underlying mechanisms remain unknown. We recently demonstrated that perinatal BPA exposure is associated with higher body fat, impaired glucose tolerance, and reduced insulin secretion in first- (F1) and second-generation (F2) C57BL/6J male mice offspring. OBJECTIVE We sought to determine the multigenerational effects of maternal bisphenol A exposure on mouse pancreatic islets. METHODS Cellular and molecular mechanisms underlying these persistent changes were determined in F1 and F2 adult offspring of F0 mothers exposed to two relevant human exposure levels of BPA (10μg/kg/d-LowerB and 10mg/kg/d-UpperB). RESULTS Both doses of BPA significantly impaired insulin secretion in male but not female F1 and F2 offspring. Surprisingly, LowerB and UpperB induced islet inflammation in male F1 offspring that persisted into the next generation. We also observed dose-specific effects of BPA on islets in males. UpperB exposure impaired mitochondrial function, whereas LowerB exposure significantly reduced β-cell mass and increased β-cell death that persisted in the F2 generation. Transcriptome analyses supported these physiologic findings and there were significant dose-specific changes in the expression of genes regulating inflammation and mitochondrial function. Previously we observed increased expression of the critically important β-cell gene, Igf2 in whole F1 embryos. Surprisingly, increased Igf2 expression persisted in the islets of male F1 and F2 offspring and was associated with altered DNA methylation. CONCLUSION These findings demonstrate that maternal BPA exposure has dose- and sex-specific effects on pancreatic islets of adult F1 and F2 mice offspring. The transmission of these changes across multiple generations may involve either mitochondrial dysfunction and/or epigenetic modifications. https://doi.org/10.1289/EHP1674.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cetewayo Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frances Xin
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anna Duemler
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tom van der Meer
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Martha Stefaniak
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sana Wajid
- Exposure Biology Informatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Xiong Y, Yepuri G, Necetin S, Montani JP, Ming XF, Yang Z. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging. Diabetes 2017; 66:1636-1649. [PMID: 28356309 DOI: 10.2337/db16-1190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022]
Abstract
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L-arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II-/-) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II-/-) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice.
Collapse
Affiliation(s)
- Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Gautham Yepuri
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Sevil Necetin
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| |
Collapse
|
22
|
Ginés C, Cuesta S, Kireev R, García C, Rancan L, Paredes SD, Vara E, Tresguerres JAF. Protective effect of resveratrol against inflammation, oxidative stress and apoptosis in pancreas of aged SAMP8 mice. Exp Gerontol 2017; 90:61-70. [PMID: 28130161 DOI: 10.1016/j.exger.2017.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/30/2016] [Accepted: 01/22/2017] [Indexed: 11/15/2022]
Abstract
Aging is a physiological state in which a progressive decline in organ functions is accompanied by the development of age-related diseases. Resveratrol supplementation has been shown to exert anti-inflammatory and antioxidant effects in various mammalian models of aging. Senescence-accelerated mice (SAM) are commonly used as animal models to investigate the aging process. In the present study, the effects of inflammation, oxidative stress and apoptosis in pancreas of two different types of SAM (SAMR1 or resistant to aging, and SAMP8 or prone to aging) have been analysed, as well as the effect of resveratrol administration (5mg/kg/day) on these parameters in the SAMP8 strain. mRNA expressions of sirtuin 1 and FoxO factors were found to be decreased with aging in SAMP8 mice. An increase in inflammatory status and nuclear-factor kappa B (NFκB) protein expression was also observed in old mice, together with a decrease of anti-apoptotic markers and antioxidant-enzyme activity. Resveratrol administration was able to increase sirtuin 1 mRNA expression, as well as decreasing NFκB expression and reducing the proinflammatory and prooxidant status associated with age. In conclusion, resveratrol was able to modulate the inflammatory, oxidative and apoptotic status related to aging, thereby exerting a protective effect on pancreas age-induced damage.
Collapse
Affiliation(s)
- Cristina Ginés
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Sara Cuesta
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Roman Kireev
- Instituto de Investigación Biomédica de Vigo (IBIV), Xerencia de Xestión Integrada de Vigo, SERGAS, Biomedical Research Unit, Hospital Rebullón (CHUVI), Vigo, Spain.
| | - Cruz García
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n. 28040 Madrid, Spain.
| |
Collapse
|
23
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
25
|
Kung CP, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. J Endocrinol 2016; 231:R61-R75. [PMID: 27613337 PMCID: PMC5148674 DOI: 10.1530/joe-16-0324] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
In the context of tumor suppression, p53 is an undisputedly critical protein. Functioning primarily as a transcription factor, p53 helps fend off the initiation and progression of tumors by inducing cell cycle arrest, senescence or programmed cell death (apoptosis) in cells at the earliest stages of precancerous development. Compelling evidence, however, suggests that p53 is involved in other aspects of human physiology, including metabolism. Indeed, recent studies suggest that p53 plays a significant role in the development of metabolic diseases, including diabetes, and further that p53's role in metabolism may also be consequential to tumor suppression. Here, we present a review of the literature on the role of p53 in metabolism, diabetes, pancreatic function, glucose homeostasis and insulin resistance. Additionally, we discuss the emerging role of genetic variation in the p53 pathway (single-nucleotide polymorphisms) on the impact of p53 in metabolic disease and diabetes. A better understanding of the relationship between p53, metabolism and diabetes may one day better inform the existing and prospective therapeutic strategies to combat this rapidly growing epidemic.
Collapse
Affiliation(s)
- Che-Pei Kung
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| | - Maureen E Murphy
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
26
|
Carrasco-Pozo C, Tan KN, Reyes-Farias M, De La Jara N, Ngo ST, Garcia-Diaz DF, Llanos P, Cires MJ, Borges K. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies. Redox Biol 2016; 9:229-243. [PMID: 27591402 PMCID: PMC5011185 DOI: 10.1016/j.redox.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Studying rats fed high cholesterol diet and a pancreatic β-cell line (Min6), we aimed to determine the mechanisms by which quercetin protects against cholesterol-induced pancreatic β-cell dysfunction and impairments in glycemic control. Quercetin prevented the increase in total plasma cholesterol, but only partially prevented the high cholesterol diet-induced alterations in lipid profile. Quercetin prevented cholesterol-induced decreases in pancreatic ATP levels and mitochondrial bioenergetic dysfunction in Min6 cells, including decreases in mitochondrial membrane potentials and coupling efficiency in the mitochondrial respiration (basal and maximal oxygen consumption rate (OCR), ATP-linked OCR and reserve capacity). Quercetin protected against cholesterol-induced apoptosis of Min6 cells by inhibiting caspase-3 and -9 activation and cytochrome c release. Quercetin prevented the cholesterol-induced decrease in antioxidant defence enzymes from pancreas (cytosolic and mitochondrial homogenates) and Min6 cells and the cholesterol-induced increase of cellular and mitochondrial oxidative status and lipid peroxidation. Quercetin counteracted the cholesterol-induced activation of the NFκB pathway in the pancreas and Min6 cells, normalizing the expression of pro-inflammatory cytokines. Quercetin inhibited the cholesterol-induced decrease in sirtuin 1 expression in the pancreas and pancreatic β-cells. Taken together, the anti-apoptotic, antioxidant and anti-inflammatory properties of quercetin, and its ability to protect and improve mitochondrial bioenergetic function are likely to contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction, thereby preserving glucose-stimulated insulin secretion (GSIS) and glycemic control. Specifically, the improvement of ATP-linked OCR and the reserve capacity are important mechanisms for protection of quercetin. In addition, the inhibition of the NFκB pathway is an important mechanism for the protection of quercetin against cytokine mediated cholesterol-induced glycemic control impairment. In summary, our data highlight cellular, molecular and bioenergetic mechanisms underlying quercetin's protective effects on β-cells in vitro and in vivo, and provide a scientifically tested foundation upon which quercetin can be developed as a nutraceutical to preserve β-cell function. Quercetin prevents the impairment in glycemic control induced by cholesterol. Quercetin prevents cholesterol-impaired insulin secretion in pancreatic β-cells. Quercetin improves mitochondrial bioenergetics impaired by cholesterol. Quercetin prevents the decrease in SIRT1 expression induced by cholesterol. Quercetin prevents NF-kB activation and prevents cholesterol-induced inflammation.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile; School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Kah Ni Tan
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marjorie Reyes-Farias
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Nicole De La Jara
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Shyuan Thieu Ngo
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia; The University of Queensland Centre for Clinical Research, Brisbane QLD 4006, Australia
| | | | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Maria Jose Cires
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
27
|
Pandey P, Ali Z, Mohammad G, Pasha MAQ. Elevated blood plasma levels of epinephrine, norepinephrine, tyrosine hydroxylase, TGFβ1, and TNFα associated with high-altitude pulmonary edema in an Indian population. Ther Clin Risk Manag 2016; 12:1207-21. [PMID: 27540296 PMCID: PMC4982497 DOI: 10.2147/tcrm.s111030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biomarkers are essential to unravel the locked pathophysiology of any disease. This study investigated the role of biomarkers and their interactions with each other and with the clinical parameters to study the physiology of high-altitude pulmonary edema (HAPE) in HAPE-patients (HAPE-p) against adapted highlanders (HLs) and healthy sojourners, HAPE-controls (HAPE-c). For this, seven circulatory biomarkers, namely, epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor beta 1, tumor necrosis factor alpha (TNFα), platelet-derived growth factor beta beta, and C-reactive protein (CRP), were measured in blood plasma of the three study groups. All the subjects were recruited at ~3,500 m, and clinical features such as arterial oxygen saturation (SaO2), body mass index, and mean arterial pressure were measured. Increased levels of epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor-beta 1, and TNFα were observed in HAPE-p against the healthy groups, HAPE-c, and HLs (P<0.0001). CRP levels were decreased in HAPE-p against HAPE-c and HLs (P<0.0001). There was no significant difference or very marginal difference in the levels of these biomarkers in HAPE-c and HLs (P>0.01). Correlation analysis revealed a negative correlation between epinephrine and norepinephrine (P=4.6E−06) in HAPE-p and positive correlation in HAPE-c (P=0.004) and HLs (P=9.78E−07). A positive correlation was observed between TNFα and CRP (P=0.004) in HAPE-p and a negative correlation in HAPE-c (P=4.6E−06). SaO2 correlated negatively with platelet-derived growth factor beta beta (HAPE-p; P=0.05), norepinephrine (P=0.01), and TNFα (P=0.005) and positively with CRP (HAPE-c; P=0.02) and norepinephrine (HLs; P=0.04). Body mass index correlated negatively with epinephrine (HAPE-p; P=0.001) and positively with norepinephrine and tyrosine hydroxylase in HAPE-c (P<0.05). Mean arterial pressure correlated positively with TNFα in HAPE-p and norepinephrine in HLs (P<0.05). Receiver operating characteristic curve analysis yielded a positive predictive value for these biomarkers with HAPE (area under the curve >0.70, P<0.05). The results clearly suggest that increased plasma levels of these circulatory biomarkers associated with HAPE.
Collapse
Affiliation(s)
- Priyanka Pandey
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| | - Zahara Ali
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| | - Ghulam Mohammad
- Department of Medicine, SNM Hospital, Ladakh, Jammu and Kashmir, India
| | - M A Qadar Pasha
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| |
Collapse
|
28
|
The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells. Nat Commun 2016; 7:11740. [PMID: 27265727 PMCID: PMC4897763 DOI: 10.1038/ncomms11740] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2-p53-PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes.
Collapse
|
29
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
30
|
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol 2016; 26:249-261. [PMID: 26791157 DOI: 10.1016/j.tcb.2015.12.002] [Citation(s) in RCA: 701] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF) is tremendously important for mammalian immunity and cellular homeostasis. The role of TNF as a master regulator in balancing cell survival, apoptosis and necroptosis has been extensively studied in various cell types and tissues. Although these findings have revealed much about the direct impact of TNF on the regulation of NF-κB and JNK, there is now rising interest in understanding the emerging function of TNF as a regulator of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review we summarize work aimed at defining the role of TNF in the control of ROS/RNS signaling that influences innate immune cells under both physiological and inflammatory conditions.
Collapse
Affiliation(s)
- Heiko Blaser
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Tak W Mak
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
31
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
32
|
Park CH, Lee JY, Kim MY, Shin SH, Roh SS, Choi JS, Chung HY, Song YO, Shin YS, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, protects the pancreas from apoptosis and proliferation via oxidative stress in streptozotocin-induced diabetic rats. Food Funct 2016; 7:3056-3063. [DOI: 10.1039/c6fo00088f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have identified the pancreato-protective effects of Lychee Fruit-Derived Polyphenol Mixture, Oligonol, on diabetes.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Joo Young Lee
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Min Yeong Kim
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Sung Ho Shin
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Seong-Soo Roh
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA)
- College of Pharmacy
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yeong-Ok Song
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| |
Collapse
|
33
|
Secchi C, Carta M, Crescio C, Spano A, Arras M, Caocci G, Galimi F, La Nasa G, Pippia P, Turrini F, Pantaleo A. T cell tyrosine phosphorylation response to transient redox stress. Cell Signal 2015; 27:777-88. [PMID: 25572700 DOI: 10.1016/j.cellsig.2014.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
Reactive Oxygen Species (ROS) are crucial to multiple biological processes involved in the pathophysiology of inflammation, and are also involved in redox signaling responses. Although previous reports have described an association between oxidative events and the modulation of innate immunity, a role for redox signaling in T cell mediated adaptive immunity has not been described yet. This work aims at assessing if T cells can sense redox stress through protein sulfhydryl oxidation and respond with tyrosine phosphorylation changes. Our data show that Jurkat T cells respond to -SH group oxidation with specific tyrosine phosphorylation events. The release of T cell cytokines TNF, IFNγ and IL2 as well as the expression of a number of receptors are affected by those changes. Additionally, experiments with spleen tyrosine kinase (Syk) inhibitors showed a major involvement of Syk in these responses. The experiments described herein show a link between cysteine oxidation and tyrosine phosphorylation changes in T cells, as well as a novel mechanism by which Syk inhibitors exert their anti-inflammatory activity through the inhibition of a response initiated by ROS.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Marissa Carta
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Claudia Crescio
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Alessandra Spano
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Marcella Arras
- Haematology, Hospital Binaghi, ASL 8 Cagliari, I-09126, Cagliari, Italy
| | - Giovanni Caocci
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Giorgio La Nasa
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Proto Pippia
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Francesco Turrini
- Department of Genetics, Biology and Biochemistry, University of Turin, I-10126 Turin, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy.
| |
Collapse
|
34
|
Rakshit S, Chandrasekar BS, Saha B, Victor ES, Majumdar S, Nandi D. Interferon-gamma induced cell death: Regulation and contributions of nitric oxide, cJun N-terminal kinase, reactive oxygen species and peroxynitrite. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2645-61. [DOI: 10.1016/j.bbamcr.2014.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
35
|
Protective effects of certain pharmaceutical compounds against abrin induced cell death in Jurkat cell line. Int Immunopharmacol 2014; 21:412-25. [DOI: 10.1016/j.intimp.2014.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 11/17/2022]
|
36
|
Wang L, Zhao Y, Liu Y, Akiyama K, Chen C, Qu C, Jin Y, Shi S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells 2014; 31:1383-95. [PMID: 23553791 DOI: 10.1002/stem.1388] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
Abstract
An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here, we show that the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)-mediated activation of mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice. More interestingly, a long-term elevated levels of IFN-γ and TNF-α result in significantly increased susceptibility to malignant transformation in MSCs through NFκB-mediated upregulation of the oncogenes c-Fos and c-Myc. Depletion of either IFN-γ or TNF-α in OVX mice abolishes MSC impairment and the tendency toward malignant transformation with no NFκB-mediated oncogene activation. Systemic administration of aspirin, which significantly reduces the levels of IFN-γ and TNF-α, results in blockage of MSC deficiency and tumorigenesis by inhibition of NFκB/SMAD7 and NFκB/c-FOS and c-MYC pathways in OVX mice. In summary, this study reveals that inflammation factors, such as IFN-γ and TNF-α, synergistically induce MSC deficiency via NFκB/SMAD7 signaling and tumorigenesis via NFκB-mediated oncogene activation.
Collapse
Affiliation(s)
- Lei Wang
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Guan FY, Gu J, Li W, Zhang M, Ji Y, Li J, Chen L, Hatch GM. Compound K protects pancreatic islet cells against apoptosis through inhibition of the AMPK/JNK pathway in type 2 diabetic mice and in MIN6 β-cells. Life Sci 2014; 107:42-9. [PMID: 24802125 DOI: 10.1016/j.lfs.2014.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 01/27/2023]
Abstract
AIMS Compound K (CK) is known to possess anti-diabetic activities but the mechanism for this action is unknown. The present study observed the protective effect of CK on islet cell apoptosis through the AMP-activated protein kinase (AMPK) mediated C-Jun N-terminal kinase (JNK) pathway. MAIN METHODS Treatment effect of CK on type 2 diabetic (T2D) mice and palmitate-induced MIN6 β-cells injury was observed. Fasting plasma glucose, triacylglycerol, total cholesterol, insulin levels and glucose tolerance test were evaluated. The expression of AMPK and JNK was detected in islet and MIN6 cells. KEY FINDINGS CK treatment (30 mg/kg) decreased fasting plasma glucose, triacylglycerol, total cholesterol, elevated plasma insulin levels and improved glucose tolerance in T2D mice. CK treatment attenuated islet cell apoptosis and caspase-3 activity accompanied by a decrease in AMPK and JNK activation. Meanwhile, CK treatment attenuated the palmitate-induced reduction in MIN6 β-cell viability, apoptosis and caspase-3 activity and activation of AMPK and JNK. The AMPK activator AICAR attenuated the CK-mediated inhibition of palmitate-induced apoptosis. SIGNIFICANCE These data suggest that CK treatment provides a beneficial anti-diabetic effect in mice with T2D and this protective effect may be mediated through prevention of β-cell apoptosis via inhibition of the AMPK-JNK pathway.
Collapse
Affiliation(s)
- Feng Ying Guan
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China
| | - Jian Gu
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130018, China
| | - Ming Zhang
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China
| | - Yingshi Ji
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, Key Laboratory of Pathobiology, Ministry of Education, Basic Medicine College, Jilin University, Changchun 130021, China.
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf) 2014; 210:717-32. [PMID: 24521359 DOI: 10.1111/apha.12256] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 02/03/2014] [Indexed: 12/14/2022]
Abstract
The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β-cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.
Collapse
Affiliation(s)
- J. B. Hansen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - I. W. Moen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Mandrup-Poulsen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
39
|
Bajgelman MC, Medrano RF, Carvalho ACP, Strauss BE. AAVPG: A vigilant vector where transgene expression is induced by p53. Virology 2013; 447:166-71. [DOI: 10.1016/j.virol.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
40
|
Huh KH, Cho Y, Kim BS, Do JH, Park YJ, Joo DJ, Kim MS, Kim YS. The role of thioredoxin 1 in the mycophenolic acid-induced apoptosis of insulin-producing cells. Cell Death Dis 2013; 4:e721. [PMID: 23846223 PMCID: PMC3730420 DOI: 10.1038/cddis.2013.247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Mycophenolic acid (MPA) is one of many effective immunosuppressive drugs. However, MPA can induce cellular toxicity and impair cellular function in β-cells. To explore the effects of MPA and the relation between MPA and Trx-1, we used various methods, including an Illumina microarray, to identify the genes regulated during pancreatic β-cell death following MPA treatment. INS-1E cells (a pancreatic β-cell line) and isolated rat islets were treated with MPA for 12, 24, or 36 h, and subsequent microarray analysis showed that (Trx1) gene expression was significantly reduced by MPA. Further, Trx1 overexpression increased the cell viability, decreased the activations of c-jun N-terminal kinase (JNK) and caspase-3 by MPA, and attenuated ROS upregulation by MPA. Furthermore, siRNA knockdown of Trx1 increased MPA-induced cell death and the activations of p-JNK and caspase-3, and MPA significantly provoked the apoptosis of insulin-secreting cells via Trx1 downregulation. Our findings suggest that the prevention of Trx1 downregulation in response to MPA is critical for successful islet transplantation.
Collapse
Affiliation(s)
- K H Huh
- Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lanuza-Masdeu J, Arévalo MI, Vila C, Barberà A, Gomis R, Caelles C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 2013; 62:2308-17. [PMID: 23349497 PMCID: PMC3712047 DOI: 10.2337/db12-1097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance is a key condition in the development of type 2 diabetes. It is well established that exacerbated Jun NH2-terminal kinase (JNK) activity is involved in promoting insulin resistance in peripheral insulin-target tissues; however, this involvement is less documented in pancreatic β-cells. Using a transgenic mouse model, here we show that JNK activation in β-cells led to glucose intolerance as a result of impaired capacity to increase insulinemia in response to hyperglycemia. Pancreatic islets from these mice showed no obvious morphostructural abnormalities or decreased insulin content. In contrast, these islets failed to secrete insulin in response to glucose or insulin but were competent in succinate-, ketoisocaproate-, 3-isobutyl-1-methylxanthine (IBMX-), KCl-, and tolbutamide-induced insulin secretion. At the molecular level, JNK activation in β-cells inhibited insulin-induced Akt phosphorylation, pancreatic and duodenal homeobox 1 nucleocytoplasmic shuttling, and transcription of insulin-target genes. Remarkably, rosiglitazone restored insulin secretion in response to hyperglycemia in mice and insulin-induced insulin secretion and signaling in isolated islets. In conclusion, the mere activation of JNK suffices to induce insulin resistance in pancreatic β-cells by inhibition of insulin signaling in these cells, but it is not sufficient to elicit β-cell death. In addition, we provide the first evidence that thiazolidinediones exert insulin-sensitizing action directly on pancreatic β-cells.
Collapse
Affiliation(s)
- Jordi Lanuza-Masdeu
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - M. Isabel Arévalo
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - Cristina Vila
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - Albert Barberà
- Diabetes and Obesity Laboratory, IDIBAPS-Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBERDEM, Spain
| | - Ramon Gomis
- Diabetes and Obesity Laboratory, IDIBAPS-Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBERDEM, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
- Corresponding author: Carme Caelles,
| |
Collapse
|
42
|
Wang CY, Chiang TH, Chen CL, Tseng PC, Chien SY, Chuang YJ, Yang TT, Hsieh CY, Choi PC, Lin CF. Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immun 2013; 20:200-13. [PMID: 23751820 DOI: 10.1177/1753425913488227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ICAM-1 can be induced by inflammatory cytokines such as IFN-γ and TNF-α. This study investigated whether autophagy regulates ICAM-1 given that autophagy facilitates signaling of these two cytokines. Exogenous IFN-γ induced ICAM-1 in human lung epithelial A549 cells carrying wild type p53, a transcription factor reported for ICAM-1, but not in PC14PE6/AS2 (AS2) cells carrying mutated p53. However, IFN-γ also induced ICAM-1 in A549 cells with short hairpin RNA-silenced p53. No changes in IFN-γ receptor expression were observed in AS2 cells, but IFN-γ-activated Jak2/STAT1/IFN regulatory factor 1 was markedly decreased. In AS2 cells, increased levels of reactive oxygen species induced the activation of Src homology domain-containing phosphatase 2 (SHP2), while SHP2 was essential for IFN-γ resistance. AS2 cells showed autophagy resistance, and the manipulation of the autophagy pathway altered IFN-γ resistance. Aberrant Bcl-2 expression and mammalian target of rapamycin activation contributed to both autophagy resistance and IFN-γ resistance. Autophagy, but not p53, also modulated TNF-α-induced NF-κB activation and ICAM-1 expression. Inhibiting autophagy decreased the adhesion of human monocytic U937 cells to IFN-γ-treated A549 cells. These results demonstrated that IFN-γ and TNF-α induced ICAM-1 expression through a common pathway that was regulated by autophagy, but not p53.
Collapse
Affiliation(s)
- Chi-Yun Wang
- 1Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Flores-López LA, Díaz-Flores M, García-Macedo R, Ávalos-Rodríguez A, Vergara-Onofre M, Cruz M, Contreras-Ramos A, Konigsberg M, Ortega-Camarillo C. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Mol Biol Rep 2013; 40:4947-58. [PMID: 23657598 DOI: 10.1007/s11033-013-2595-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cell death in type 2 diabetes has been related to p53 subcellular localisation and phosphorylation. However, the mechanisms by which p53 is phosphorylated and its activation in response to oxidative stress remain poorly understood. Therefore, the aim of this study was to investigate mitochondrial p53 phosphorylation, its subcellular localisation and its relationship with apoptotic induction in RINm5F cells cultured under high glucose conditions. Our results show that p53 phosphorylation in the mitochondrial fraction was greater at ser392 than at ser15. This increased phosphorylation correlated with an increase in reactive oxygen species, a decrease in the Bcl-2/Bax ratio, a release of cytochrome c and an increase in the rate of apoptosis. We also observed a decline in ERK 1/2 phosphorylation over time, which is an indicator of cell proliferation. To identify the kinase responsible for phosphorylating p53, p38 mitogen-activated protein kinase (MAPK) activation was analysed. We found that high glucose induced an increase in p38 MAPK phosphorylation in the mitochondria after 24-72 h. Moreover, the phosphorylation of p53 (ser392) by p38 MAPK in mitochondria was confirmed by colocalisation studies with confocal microscopy. The addition of a specific p38 MAPK inhibitor (SB203580) to the culture medium during high glucose treatment blocked p53 mobilisation to the mitochondria and phosphorylation; thus, the release of cytochrome c and the apoptosis rate in RINm5F cells decreased. These results suggest that mitochondrial p53 phosphorylation by p38 MAPK plays an important role in RINm5F cell death under high glucose conditions.
Collapse
Affiliation(s)
- Luis A Flores-López
- Unidad de Investigación Médica en Bioquímica, HE, Centro Médico Nacional Siglo XXI. IMSS., Av. Cuauhtémoc 330, Col Doctores, Del. Cuauhtémoc, México, DF, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu CW, Biggar KK, Storey KB. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. ACTA ACUST UNITED AC 2013; 46:1-13. [PMID: 23314346 PMCID: PMC3854349 DOI: 10.1590/1414-431x20122388] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 01/20/2023]
Abstract
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Collapse
Affiliation(s)
- C-W Wu
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | | | | |
Collapse
|
45
|
Ghelani HS, Rachchh MA, Gokani RH. MicroRNAs as newer therapeutic targets: A big hope from a tiny player. J Pharmacol Pharmacother 2012; 3:217-27. [PMID: 23129956 PMCID: PMC3487269 DOI: 10.4103/0976-500x.99416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a novel group of universally present small noncoding endogenous RNAs that regulate gene expression and protein coding by base pairing with the 3’ untranslated region (UTR) of target mRNAs. So they have been associated with several physiological processes and play an important role in the manifestation of diverse diseases. miRNAs expression is associated with the normal and diverse pathophysiological state including cardiac hypertrophy, neurodegenerative diseases, diabetes and its complication, and cancer because individual miRNAs are associated with the regulation of the expression of multiple target genes. Modulating the expression of a single miRNA can influence an entire gene network and thereby modify complex disease phenotypes. From recent studies, it has been confirmed that miRNA has a potential physiological role in various body systems. But in some specialized condition over expression of miRNA within the cytoplasm also leads to some pathological condition in the body. Here, we summarize the roles of miRNAs in various pathological conditions and consider the advantages and potential challenges of miRNA-based therapeutic approaches compared to conventional drug-based therapies.
Collapse
Affiliation(s)
- Hardik S Ghelani
- Department of Pharmacology, S.J. Thakkar Pharmacy College, Kalawad Road, Rajkot, Gujarat, India
| | | | | |
Collapse
|
46
|
Upregulation of phagocyte-like NADPH oxidase by cytokines in pancreatic beta-cells: attenuation of oxidative and nitrosative stress by 2-bromopalmitate. Biochem Pharmacol 2012; 85:109-14. [PMID: 23092759 DOI: 10.1016/j.bcp.2012.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
Phagocyte-like NADPH oxidase (Nox2) has been shown to play regulatory roles in the metabolic dysfunction of the islet β-cell under the duress of glucolipotoxic conditions and exposure to proinflammatory cytokines. However, the precise mechanisms underlying Nox2 activation by these stimuli remain less understood. To this end, we report a time-dependent phosphorylation of p47phox, a cytosolic subunit of Nox2, by cytomix (IL-1β+TNFα+IFNγ) in insulin-secreting INS-1 832/13 cells. Furthermore, cytomix induced the expression of gp91phox, a membrane component of Nox2. 2-Bromopalmitate (2-BP), a known inhibitor of protein palmitoylation, markedly attenuated cytokine-induced, Nox2-mediated reactive oxygen species (ROS) generation and inducible nitric oxide synthase (iNOS)-mediated nitric oxide (NO) generation. However, 2-BP failed to exert any significant effects on cytomix-induced CHOP expression, a marker for endoplasmic reticulum stress. Together, our findings identify palmitoyltransferase as a target for inhibition of cytomix-induced oxidative (ROS generation) and nitrosative (NO generation) stress in the pancreatic β-cell.
Collapse
|
47
|
Yi Z, Li L, Garland A, He Q, Wang H, Katz JD, Tisch R, Wang B. IFN-γ receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 2012. [PMID: 22865049 PMCID: PMC3883988 DOI: 10.1002/eji.201242374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IFN-γ is generally believed to be important in the autoimmune pathogenesis of type 1 diabetes (T1D). However, the development of spontaneous β-cell autoimmunity is unaffected in NOD mice lacking expression of IFN-γ or the IFN-γ receptor (IFNγR), bringing into question the role IFN-γ has in T1D. In the current study, an adoptive transfer model was employed to define the contribution of IFN-γ in CD4(+) versus CD8(+) T cell-mediated β-cell autoimmunity. NOD.scid mice lacking expression of the IFNγR β chain (NOD.scid.IFNγRB(null)) developed diabetes following transfer of β cell-specific CD8(+) T cells alone. In contrast, β cell-specific CD4(+) T cells alone failed to induce diabetes despite significant infiltration of the islets in NOD.scid.IFNγRB(null) recipients. The lack of pathogenicity of CD4(+) T-cell effectors was due to the resistance of IFNγR-deficient β cells to inflammatory cytokine-induced cell death. On the other hand, CD4(+) T cells indirectly promoted β-cell destruction by providing help to CD8(+) T cells in NOD.scid.IFNγRB(null) recipients. These results demonstrate that IFN-γR may play a key role in CD4(+) T cell-mediated β-cell destruction.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Li Li
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Qiuming He
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Haidong Wang
- Department of Endocrinology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jonathan D Katz
- Diabetes Research Center, Cincinnati Children’s Research Foundation, and Division of Endocrinology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
48
|
Yi Z, Li L, Garland A, He Q, Wang H, Katz JD, Tisch R, Wang B. IFN-γ receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 2012; 42:2010-8. [PMID: 22865049 PMCID: PMC3883988 DOI: 10.1002/eji.201142374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IFN-γ is generally believed to be important in the autoimmune pathogenesis of type 1 diabetes (T1D). However, the development of spontaneous β-cell autoimmunity is unaffected in NOD mice lacking expression of IFN-γ or the IFN-γ receptor (IFNγR), bringing into question the role IFN-γ has in T1D. In the current study, an adoptive transfer model was employed to define the contribution of IFN-γ in CD4(+) versus CD8(+) T cell-mediated β-cell autoimmunity. NOD.scid mice lacking expression of the IFNγR β chain (NOD.scid.IFNγRB(null)) developed diabetes following transfer of β cell-specific CD8(+) T cells alone. In contrast, β cell-specific CD4(+) T cells alone failed to induce diabetes despite significant infiltration of the islets in NOD.scid.IFNγRB(null) recipients. The lack of pathogenicity of CD4(+) T-cell effectors was due to the resistance of IFNγR-deficient β cells to inflammatory cytokine-induced cell death. On the other hand, CD4(+) T cells indirectly promoted β-cell destruction by providing help to CD8(+) T cells in NOD.scid.IFNγRB(null) recipients. These results demonstrate that IFN-γR may play a key role in CD4(+) T cell-mediated β-cell destruction.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Li Li
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Qiuming He
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Haidong Wang
- Department of Endocrinology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jonathan D Katz
- Diabetes Research Center, Cincinnati Children’s Research Foundation, and Division of Endocrinology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
49
|
Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012; 61:1742-51. [PMID: 22537941 PMCID: PMC3379668 DOI: 10.2337/db11-1086] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.
Collapse
Affiliation(s)
- Elodie Roggli
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sonia Gattesco
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Briet
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Boitard
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Romano Regazzi
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Romano Regazzi,
| |
Collapse
|
50
|
Lin CY, Ni CC, Yin MC, Lii CK. Flavonoids protect pancreatic beta-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine 2012; 59:65-71. [DOI: 10.1016/j.cyto.2012.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/10/2012] [Accepted: 04/11/2012] [Indexed: 12/31/2022]
|