1
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Sluter M, Bhuniya R, Yuan X, Ramaraju A, Chen Y, Yu Y, Parmar KR, Temrikar ZH, Srivastava A, Meibohm B, Jiang J, Yang CY. Novel, Brain-Permeable, Cross-Species Benzothiazole Inhibitors of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Dampen Neuroinflammation In Vitro and In Vivo. ACS Pharmacol Transl Sci 2023; 6:587-599. [PMID: 37082746 PMCID: PMC10111624 DOI: 10.1021/acsptsci.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 04/22/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme of the cyclooxygenase (COX) cascade that generates prostaglandin E2 (PGE2) during inflammatory conditions. PGE2 is known to be a potent immune signaling molecule that mediates both peripheral and central inflammations. Inhibition of mPGES-1, rather than COX, may overcome the cardiovascular side effects associated with long-term COX inhibition by providing a more specific strategy to target inflammation. However, mPGES-1 inhibitor development is hampered by the large differences in cross-species activity due to the structural differences between the human and murine mPGES-1. Here, we report that our thiazole-based mPGES-1 inhibitors, compounds 11 (UT-11) and 19 derived from two novel scaffolds, were able to suppress PGE2 production in human (SK-N-AS) and murine (BV2) cells. The IC50 values of inhibiting PGE2 production in human and murine cells were 0.10 and 2.00 μM for UT-11 and 0.43 and 1.55 μM for compound 19, respectively. Based on in vitro and in vivo pharmacokinetic data, we selected UT-11 for evaluation in a lipopolysaccharide (LPS)-induced inflammation model. We found that our compound significantly suppressed proinflammatory cytokines and chemokines in the hippocampus but not in the kidney. Taken together, we demonstrated the potential of UT-11 in treating neuroinflammatory conditions, including epilepsy and stroke, and warrant further optimization.
Collapse
Affiliation(s)
- Madison
N. Sluter
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- College
of Graduate Health Sciences, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rajib Bhuniya
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Andhavaram Ramaraju
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yu Chen
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur R. Parmar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zaid H. Temrikar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ashish Srivastava
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Neuschäfer-Rube F, Schön T, Kahnt I, Püschel GP. LDL-Dependent Regulation of TNFα/PGE 2 Induced COX-2/mPGES-1 Expression in Human Macrophage Cell Lines. Inflammation 2023; 46:893-911. [PMID: 36598592 DOI: 10.1007/s10753-022-01778-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1β). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.
Collapse
Affiliation(s)
- Frank Neuschäfer-Rube
- Institut Für Ernährungswissenschaft, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Theresa Schön
- Institut Für Ernährungswissenschaft, Universität Giessen, Wilhelmstr. 20, 35392, Gießen, Germany
| | - Ines Kahnt
- Institut Für Ernährungswissenschaft, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Gerhard Paul Püschel
- Institut Für Ernährungswissenschaft, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| |
Collapse
|
4
|
Ciccone V, Piragine E, Gorica E, Citi V, Testai L, Pagnotta E, Matteo R, Pecchioni N, Montanaro R, Di Cesare Mannelli L, Ghelardini C, Brancaleone V, Morbidelli L, Calderone V, Martelli A. Anti-Inflammatory Effect of the Natural H 2S-Donor Erucin in Vascular Endothelium. Int J Mol Sci 2022; 23:ijms232415593. [PMID: 36555238 PMCID: PMC9778978 DOI: 10.3390/ijms232415593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, Via di Corticella 133, 40134 Bologna, Italy
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, Via di Corticella 133, 40134 Bologna, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA Council for Agricultural Research and Economics, S.S. 673 Km 25,200, 71122 Foggia, Italy
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
- Correspondence: (V.C.); (A.M.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
- Correspondence: (V.C.); (A.M.)
| |
Collapse
|
5
|
Cacheiro-Llaguno C, Hernández-Subirá E, Díaz-Muñoz MD, Fresno M, Serrador JM, Íñiguez MA. Regulation of Cyclooxygenase-2 Expression in Human T Cells by Glucocorticoid Receptor-Mediated Transrepression of Nuclear Factor of Activated T Cells. Int J Mol Sci 2022; 23:13275. [PMID: 36362060 PMCID: PMC9653600 DOI: 10.3390/ijms232113275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Cyclooxygenase (COX) is the key enzyme in prostanoid synthesis from arachidonic acid (AA). Two isoforms, named COX-1 and COX-2, are expressed in mammalian tissues. The expression of COX-2 isoform is induced by several stimuli including cytokines and mitogens, and this induction is inhibited by glucocorticoids (GCs). We have previously shown that the transcriptional induction of COX-2 occurs early after T cell receptor (TCR) triggering, suggesting functional implications of this enzyme in T cell activation. Here, we show that dexamethasone (Dex) inhibits nuclear factor of activated T cells (NFAT)-mediated COX-2 transcriptional induction upon T cell activation. This effect is dependent on the presence of the GC receptor (GR), but independent of a functional DNA binding domain, as the activation-deficient GRLS7 mutant was as effective as the wild-type GR in the repression of NFAT-dependent transcription. Dex treatment did not disturb NFAT dephosphorylation, but interfered with activation mediated by the N-terminal transactivation domain (TAD) of NFAT, thus pointing to a negative cross-talk between GR and NFAT at the nuclear level. These results unveil the ability of GCs to interfere with NFAT activation and the induction of pro-inflammatory genes such as COX-2, and explain some of their immunomodulatory properties in activated human T cells.
Collapse
|
6
|
Zhang YY, Yao YD, Chen F, Guo X, Kang JL, Huang YF, He F, Dong Y, Xie Y, Wu P, Zhou H. (9S,13R)-12-oxo-phytodienoic acid attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via NF-κB and Nrf2/HO-1 pathways. Pharmacol Res 2022; 182:106310. [PMID: 35714824 DOI: 10.1016/j.phrs.2022.106310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) relieve inflammation by suppressing prostaglandin E2/cyclooxygenase 2 (PGE2/COX-2) with cardiovascular and gastrointestinal bleeding risk. Theoretically, suppressing PGE2 through inhibiting the terminal synthase microsomal prostaglandin E2 synthase-1 (mPGES-1) instead of upstream COX-2 is ideal for inflammation. Here, (9S,13R)-12-oxo-phytodienoic acid (AA-24) extracted from Artemisia anomala was first screened as an anti-inflammatory candidate and decreased inducible nitric oxide synthase (iNOS), nitric oxide (NO), mPGES-1, and PGE2 without affecting COX-1/2, thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). Besides, AA-24 suppressed the differentiation of M0 macrophages to M1 phenotype but enhanced it to M2 phenotype, blocked the activation of NF-κB pathway, and increased the activation of Nrf2 and heme oxygenase-1 (HO-1). Moreover, AA-24 selectively inhibited mPGES-1 and reduced inflamed paw edema in carrageenan-induced mice. In conclusion, AA-24 attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via the NF-κB and Nrf2/HO-1 pathways and could be a promising candidate for developing anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fang Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fan He
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Ying Xie
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
7
|
Sasamoto N, Zeleznik OA, Vitonis AF, Missmer SA, Laufer MR, Avila-Pacheco J, Clish CB, Terry KL. Presurgical blood metabolites and risk of postsurgical pelvic pain in young patients with endometriosis. Fertil Steril 2022; 117:1235-1245. [PMID: 35367064 PMCID: PMC9149031 DOI: 10.1016/j.fertnstert.2022.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To identify metabolites in presurgical blood associated with risk of persistent postsurgical pelvic pain 1 year after endometriosis surgery in adolescent and young adult patients. DESIGN Prospective observational study within the Women's Health Study: From Adolescence to Adulthood, a US-based longitudinal cohort of adolescents and women enrolled from 2012-2018. SETTING Two tertiary care hospitals. PATIENT(S) Laparoscopically confirmed endometriosis patients (n = 180) with blood collected before their endometriosis surgery. Of these, 77 patients additionally provided blood samples 5 weeks to 6 months after their surgery. We measured plasma metabolites using liquid chromatography tandem mass spectrometry, and a total of 390 known metabolites were included in our analysis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Persistent postsurgical pelvic pain, defined as severe, life-impacting pelvic pain 1 year after endometriosis surgery. RESULT(S) Most patients (>95%) were at stage I/II of the revised American Society for Reproductive Medicine classification. Their average age at diagnosis was 18.7 years, with 36% reporting persistent postsurgical pelvic pain. Of the 21 metabolites in presurgical blood that were associated with risk of persistent postsurgical pelvic pain, 19 metabolites, which were mainly lipid metabolites, were associated with increased risk. Only 2 metabolites-pregnenolone sulfate (odds ratio = 0.64, 95% confidence interval = 0.44-0.92) and fucose (odds ratio = 0.69, 95% confidence interval = 0.47-0.97)-were associated with decreased risk. Metabolite set enrichment analysis revealed that higher levels of lysophosphatidylethanolamines (false discovery rate = 0.01) and lysophosphatidylcholines (false discovery rate = 0.01) in presurgical blood were associated with increased risk of persistent postsurgical pelvic pain. CONCLUSION(S) Our results suggest that dysregulation of multiple groups of lipid metabolites may play a role in the persistence of pelvic pain postsurgery among young endometriosis patients.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Allison F Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts
| | - Stacey A Missmer
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Marc R Laufer
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts; Division of Gynecology, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kathryn L Terry
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Li Y, Zhang J, Yan C, Chen Q, Xiang C, Zhang Q, Wang X, Jiang K. Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro. J Microbiol Biotechnol 2022; 32:141-148. [PMID: 35001005 PMCID: PMC9628836 DOI: 10.4014/jmb.2109.09033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.
Collapse
Affiliation(s)
- Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Caiping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qian Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qingyan Zhang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Xingkuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China,Corresponding author Phone: +86-18382917277 E-mail:
| |
Collapse
|
9
|
Hedbrant A, Persson I, Erlandsson A, Wijkander J. Green, Black and Rooibos Tea Inhibit Prostaglandin E2 Formation in Human Monocytes by Inhibiting Expression of Enzymes in the Prostaglandin E2 Pathway. Molecules 2022; 27:397. [PMID: 35056712 PMCID: PMC8778366 DOI: 10.3390/molecules27020397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts and the polyphenols epigallocatechin gallate (EGCG) and quercetin on PGE2 formation, determined by immunoassay, and protein expression, determined by immunoblotting, of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in human monocytes. Green and black tea extracts, and with a lower potency, Rooibos tea extract, inhibited lipopolysaccharide (LPS) and calcium ionophore-induced PGE2 formation. In addition, all tea extracts inhibited the LPS-induced expression of mPGES-1, and the green and black tea extracts also inhibited, to a lesser extent, COX-2 expression. The tea extracts only marginally reduced cPLA2 expression and had no effect on COX-1 expression. EGCG, present in green and black tea, and quercetin, present in all three teas, also inhibited PGE2 formation and expression of mPGES-1, COX-2 and cPLA2. Cell-based and cell-free assays were also performed to evaluate direct effects on the enzymatic activity of COX and PGE synthases. Mainly, the cell-free assay demonstrated partial inhibition by the tea extracts and polyphenols. However, the inhibition required higher doses compared to the effects demonstrated on protein expression. In conclusion, green and black tea, and to a lesser extent Rooibos tea, are potent inhibitors of PGE2 formation in human monocytes, and mediate their effects by inhibiting the expression of the enzymes responsible for PGE2 formation, especially mPGES-1.
Collapse
Affiliation(s)
- Alexander Hedbrant
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden; (A.H.); (I.P.); (A.E.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Ingrid Persson
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden; (A.H.); (I.P.); (A.E.)
| | - Ann Erlandsson
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden; (A.H.); (I.P.); (A.E.)
- Department of Environmental and Life Sciences/Biology, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden; (A.H.); (I.P.); (A.E.)
| |
Collapse
|
10
|
Upmacis RK, Becker WL, Rattendi DM, Bell RS, Jordan KD, Saniei S, Mejia E. Analysis of Sex-Specific Prostanoid Production Using a Mouse Model of Selective Cyclooxygenase-2 Inhibition. Biomark Insights 2022; 17:11772719221142151. [DOI: 10.1177/11772719221142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Prostanoids are a family of lipid mediators formed from arachidonic acid by cyclooxygenase enzymes and serve as biomarkers of vascular function. Prostanoid production may be different in males and females indicating that different therapeutic approaches may be required during disease. Objectives: We examined sex-dependent differences in COX-related metabolites in genetically modified mice that produce a cyclooxygenase-2 (COX2) enzyme containing a tyrosine 385 to phenylalanine (Y385F) mutation. This mutation renders the COX2 enzyme unable to form a key intermediate radical required for complete arachidonic acid metabolism and provides a model of selective COX2 inhibition. Design and Methods: Mice heterozygous for the Y385F mutation in COX2 were mated to produce cohorts of wild-type, heterozygous, and COX2 mutant mice. We investigated whether the genotype distribution followed Mendelian genetics and studied whether sex-specific differences could be found in certain prostanoid levels measured in peritoneal macrophages and in urinary samples. Results: The inheritance of the COX2 mutation displayed a significant deviation with respect to Mendel’s laws of genetics, with a lower-than-expected progeny of weaned COX2 mutant pups. In macrophages, prostaglandin E2 (PGE2) production following lipopolysaccharide (LPS) and interferon gamma (IFNγ) stimulation was COX2-dependent in both males and females, and data indicated that crosstalk between the nitric oxide (NO) and COX2 pathways may be sex specific. We observed significant differences in urinary PGE2 production by male and female COX2 mutant mice, with the loss of COX2 activity in male mice decreasing their ability to produce urinary PGE2. Finally, female mice across all 3 genotypes produced similar levels of urinary thromboxane (measured as 11-dehydro TxB2) at significantly higher levels than males, indicating a sex-related difference that is likely COX1-derived. Conclusions: Our findings clearly demonstrate that sex-related differences in COX-derived metabolites can be observed, and that other pathways (such as the NO pathway) are affected.
Collapse
Affiliation(s)
- Rita K Upmacis
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Wendy L Becker
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Donna M Rattendi
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Raven S Bell
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Kelsey D Jordan
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Shayan Saniei
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Elena Mejia
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| |
Collapse
|
11
|
Verma U, Gautam M, Parmar B, Khaire K, Wishart DS, Balakrishnan S. New insights into the obligatory nature of cyclooxygenase-2 and PGE 2 during early chick embryogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158889. [PMID: 33454433 DOI: 10.1016/j.bbalip.2021.158889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Temporal expression patterns and activity of two cyclooxygenase (COX-1 and COX-2) isoforms were analysed during early chick embryogenesis to evaluate their roles in development. COX-2 inhibition with etoricoxib resulted in significant structural anomalies such as anophthalmia (born without one or both eyes), phocomelia (underdeveloped or truncated limbs), and gastroschisis (an opening in the abdominal wall), indicating its significance in embryogenesis. Furthermore, the levels of PGE2, PGD2, PGF2α, and TXB2 were assessed using quantitative LC-MS/MS to identify which effector prostanoid (s) had their synthesis initiated by COX-2. COX-2 inhibition was only shown to reduce the level of PGE2 significantly, and hence it could be inferred that the later could be largely under the regulation of activated COX-2 in chick embryos. The compensatory increase in the activity of COX-1 observed in the etoricoxib-treated group helped to maintain the levels of PGD2, PGF2α, and TXB2. Though the roles of these three prostanoids in embryogenesis need to be further clarified, it appears that their contribution to the observed developmental anomalies is minimal. This study has shown that COX-2 is functionally active during chick embryogenesis, and it plays a central role in the structural configuration of several organs and tissues through its downstream effector molecule PGE2.
Collapse
Affiliation(s)
- Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390 002, India
| | - Maheswor Gautam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Bhaval Parmar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390 002, India
| | - Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390 002, India
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390 002, India.
| |
Collapse
|
12
|
Dos Santos LD, Froes TQ, Contin de Melo MC, Petto de Souza GE, Soares DDM, Castilho MS. Triazol-phenyl antipyretic derivatives inhibit mPGES-1 mRNA levels in LPS-Induced RAW 264.7 macrophage cells. Antiinflamm Antiallergy Agents Med Chem 2020; 20:271-281. [PMID: 33292158 DOI: 10.2174/1871523019999201208202831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the terminal step of prostaglandin E2 (PGE2) production, which plays an important role in the regulation of febrile response. In our previous work, ligand-based pharmacophore models, built with mPGES-1 inhibitors, were employed to identify a novel series of compounds that reduce the febrile response in rats. OBJECTIVES Evaluate the mechanism of action of the most active compound (1). METHODS For in vivo assays, rats were pretreated with the antipyretic compounds 1-8, 30 min before LPS injection. For in vitro assays, RAW 264.7 macrophage cells were incubated with the antipyretic compounds 1-8 for 1 hour before LPS stimu-lus. After 16 h, quantitative real-time PCR was carried out. Additionally, the PGE2 concentration in hypothalamus was quantified by ELISA and the inhibitory effect of N-cyclopentyl-N'-[3-(3-cyclopropyl-1H-1,2,4-triazol-5-yl)phenyl]ethanediamide (1) over human COX-2 enzymatic activity was determined with a COX Colorimetric Inhibitor Screening Assay Kit. RESULTS Compound 1 and CAY10526 have comparable efficacy to reduce the febrile response when injected i.v. (com-pound 1: 63.10%, CAY10526: 70.20%). Moreover, compound 1 significantly reduces the mPGES-1 mRNA levels, in RAW264.7 cells, under inflammatory conditions. A chemically-similar compound (8- ) also significantly reduces the mRNA levels of the gene target. On the other hand, compounds 6 and 7, which are also somewhat similar to compound 1, do not, significantly, impact mPGES-1 mRNA levels. CONCLUSIONS PGE2 concentration reduction in hypothalamus, due to compound 1 central injection, is related to decreased mPGES-1 mRNA levels but not to COX-2 inhibition (IC50> 50 μM). Therefore, compound 1 is a promising lead for inno-vative antipyretic drug development.
Collapse
Affiliation(s)
- Lenisa Dandara Dos Santos
- Laboratory of Pharmacology of inflammation and fever, Faculty of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n, Salvador, BA,. Brazil
| | - Thamires Quadros Froes
- Laboratory of Pharmacology of inflammation and fever, Faculty of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n, Salvador, BA,. Brazil
| | - Miriam Cristina Contin de Melo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP,. Brazil
| | - Gloria Emília Petto de Souza
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP,. Brazil
| | - Denis de Melo Soares
- Laboratory of Pharmacology of inflammation and fever, Faculty of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n, Salvador, BA,. Brazil
| | - Marcelo Santos Castilho
- Laboratory of Bioinformatics and Molecular Modeling, Faculty of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n, Salvador, BA,. Brazil
| |
Collapse
|
13
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
14
|
Bueno-Silva B, Rosalen PL, Alencar SM, Mayer MPA. Vestitol drives LPS-activated macrophages into M2 phenotype through modulation of NF-κB pathway. Int Immunopharmacol 2020; 82:106329. [PMID: 32114412 DOI: 10.1016/j.intimp.2020.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Previously, we demonstrated the anti-inflammatory properties of vestitol in a neutrophil model. Here, we show the effects of vestitol on macrophage activation and function. Vestitol was obtained from Brazilian red propolis after bioguided fractionation and tested at different concentrations in LPS-activated RAW 264.7 murine macrophages for nitric oxide (NO) production and cell viability. The levels of TNF-α, IL1-β, TGF-β, IL-4, IL-6, IL-10, IL-12, GM-CSF, IFN-ɣ and gene expression related to cytokines, NO, PI3K-AKT and signal transduction pathways were assayed by ELISA and RT-qPCR, respectively. Differences were determined by one-way ANOVA followed by Tukey-Kramer. Vestitol inhibited NO production by 83% at 0.55 μM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-β levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. The modulatory effects of vestitol are due to inhibition of NF-κB and Erk 1/2 signaling pathways, which are associated with the production of pro-inflammatory factors.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Pedro L Rosalen
- Piracicaba Dental School, University of Campinas - UNICAMP, Department of Physiological Sciences, P.O. Box 52, 13414-903, Piracicaba, SP, Brazil
| | - Severino M Alencar
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
15
|
Upregulation of Cytokines and Differentiation of Th17 and Treg by Dendritic Cells: Central Role of Prostaglandin E2 Induced by Mycobacterium bovis. Microorganisms 2020; 8:microorganisms8020195. [PMID: 32023904 PMCID: PMC7074778 DOI: 10.3390/microorganisms8020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a zoonotic pathogen that causes bovine and human tuberculosis. Dendritic cells play a critical role in initiating and regulating immune responses by promoting antigen-specific T-cell activation. Prostaglandin E2 (PGE2)-COX signaling is an important mediator of inflammation and immunity and might be involved in the pathogenesis of M. bovis infection. Therefore, this study aimed to reveal the character of PGE2 in the differentiation of naïve CD4+ T cells induced by infected dendritic cells (DCs). Murine bone marrow-derived DCs were pre-infected with M. bovis and its attenuated strain M. bovis bacillus Calmette-Guérin (BCG). Then, the infected DCs were co-cultured with naïve CD4+ T cells with or without the cyclooxygenase (COX) inhibitor indomethacin. Quantitative RT-PCR analysis and protein detection showed that PGE2/COX-2 signaling was activated, shown by the upregulation of PGE2 production as well as COX-2 and microsomal PGE2 synthase (mPGES1) transcription in DCs specifically induced by M. bovis and BCG infection. The further co-culture of infected DCs with naïve CD4+ T cells enhanced the generation of inflammatory cytokines IL-17 and IL-23, while indomethacin suppressed their production. Following this, the differentiation of regulatory T cells (Treg) and Th17 cell subsets was significantly induced by the infected DCs rather than uninfected DCs. Meanwhile, M. bovis infection stimulated significantly higher levels of IL-17 and IL-23 and the differentiation of Treg and Th17 cell subsets, while BCG infection led to higher levels of TNF-α and IL-12, but lower proportions of Treg and Th17 cells. In mice, M. bovis infection generated more bacterial load and severe abnormalities in spleens and lungs, as well as higher levels of COX-2, mPGE2 expression, Treg and Th17 cell subsets than BCG infection. In conclusion, PGE2/COX-2 signaling was activated in DCs by M. bovis infection and regulated differentiation of Treg and Th17 cell subsets through the crosstalk between DCs and naive T cells under the cytokine atmosphere of IL-17 and IL-23, which might contribute to M. bovis pathogenesis in mice.
Collapse
|
16
|
Yukimatsu N, Gi M, Okuno T, Fujioka M, Suzuki S, Kakehashi A, Yanagiba Y, Suda M, Koda S, Nakatani T, Wanibuchi H. Promotion effects of acetoaceto-o-toluidide on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder carcinogenesis in rats. Arch Toxicol 2019; 93:3617-3631. [DOI: 10.1007/s00204-019-02605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023]
|
17
|
Hung YL, Wang SC, Suzuki K, Fang SH, Chen CS, Cheng WC, Su CC, Yeh HC, Tu HP, Liu PL, Huang MY, Li CY. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152785. [PMID: 31009850 DOI: 10.1016/j.phymed.2018.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bavachin is a natural product isolated from Psoralea corylifolia L. that has been applied as a traditional medicine in Asian countries. However, the anti-inflammatory effects of bavachin on LPS-induced inflammation and NLRP3 inflammasome activation by macrophages remain unclear. PURPOSE We investigated the anti-inflammatory effects of bavachin on LPS-activated murine macrophage cell line J774A.1 cells and murine peritoneal macrophages. METHODS J774A.1 cells and murine peritoneal macrophages were pre-treated with bavachin following LPS treatment. The concentrations of NO, PGE2, IL-6 and IL-12p40 in cell culture supernatant were analyzed. The expressions of iNOS, COX-2, mPGES-1 and MAPKs were analyzed using Western blotting, while NF-κB activity was detected using promoter reporter assay. To examine the activation of NLRP3 inflammasome, J774A.1 cells were incubated with LPS, and then treated with bavachin following treatment with ATP. The concentration of IL-1β in the cell culture supernatant was measured. The expressions of NLRP3, ASC, caspase-1 and IL-1β were analyzed using Western blotting. The formation of inflammasome complex was observed by immunofluorescence microscopy. RESULTS Bavachin suppressed LPS-induced NO and PGE2 production, and decreased iNOS and mPGES-1 expression. Bavachin also reduced LPS-induced IL-6 and IL-12p40 production and decreased the activation of MAPKs and NF-κB. Additionally, bavachin suppressed NLRP3 inflammasome-derived IL-1β secretion, decreased caspase-1 activation, repressed mature IL-1β expression, and inhibited inflammasome complex formation. Furthermore, bavachin also suppressed the production of NO, IL-6 and IL-12p40 by LPS-stimulated murine peritoneal macrophages. CONCLUSION Our experimental results indicated anti-inflammatory effects of bavachin exhibit attenuation of LPS-induced inflammation and inhibit activation of NLRP3 inflammasome in macrophages. These results suggest that bavachin might have potential in treating inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yung-Li Hung
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shih-Hua Fang
- Institute of Athletics, National Taiwan University of Sport, Taichung 40404, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan; Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
18
|
Saul MJ, Baumann I, Bruno A, Emmerich AC, Wellstein J, Ottinger SM, Contursi A, Dovizio M, Donnini S, Tacconelli S, Raouf J, Idborg H, Stein S, Korotkova M, Savai R, Terzuoli E, Sala G, Seeger W, Jakobsson PJ, Patrignani P, Suess B, Steinhilber D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction. FASEB J 2019; 33:6933-6947. [PMID: 30922080 DOI: 10.1096/fj.201802547r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRs) are important posttranscriptional regulators of gene expression. Besides their well-characterized inhibitory effects on mRNA stability and translation, miRs can also activate gene expression. In this study, we identified a novel noncanonical function of miR-574-5p. We found that miR-574-5p acts as an RNA decoy to CUG RNA-binding protein 1 (CUGBP1) and antagonizes its function. MiR-574-5p induces microsomal prostaglandin E synthase-1 (mPGES-1) expression by preventing CUGBP1 binding to its 3'UTR, leading to an enhanced alternative splicing and generation of an mPGES-1 3'UTR isoform, increased mPGES-1 protein expression, PGE2 formation, and tumor growth in vivo. miR-574-5p-induced tumor growth in mice could be completely inhibited with the mPGES-1 inhibitor CIII. Moreover, miR-574-5p is induced by IL-1β and is strongly overexpressed in human nonsmall cell lung cancer where high mPGES-1 expression correlates with a low survival rate. The discovered function of miR-574-5p as a CUGBP1 decoy opens up new therapeutic opportunities. It might serve as a stratification marker to select lung tumor patients who respond to the pharmacological inhibition of PGE2 formation.-Saul, M. J., Baumann, I., Bruno, A., Emmerich, A. C., Wellstein, J., Ottinger, S. M., Contursi, A., Dovizio, M., Donnini, S., Tacconelli, S., Raouf, J., Idborg, H., Stein, S., Korotkova, M., Savai, R., Terzuoli, E., Sala, G., Seeger, W., Jakobsson, P.-J., Patrignani, P., Suess, B., Steinhilber, D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction.
Collapse
Affiliation(s)
- Meike J Saul
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Isabell Baumann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annalisa Bruno
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Anne C Emmerich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Wellstein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sarah M Ottinger
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annalisa Contursi
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Joan Raouf
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Erika Terzuoli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gianluca Sala
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy.,Department of Medical and Oral Sciences and Biotechnologies, G. d'Annunzio University, Chieti, Italy; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine II, Marburg Lung Center (UGMLC), University of Giessen, Giessen, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paola Patrignani
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
20
|
Hirata N, Ichimaru R, Tominari T, Matsumoto C, Watanabe K, Taniguchi K, Hirata M, Ma S, Suzuki K, Grundler FMW, Miyaura C, Inada M. Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity. Nutrients 2019; 11:nu11020368. [PMID: 30744180 PMCID: PMC6412436 DOI: 10.3390/nu11020368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Narumi Hirata
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Ryota Ichimaru
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keita Taniguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Sihui Ma
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa-shi, Tokyo 359-1192, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa-shi, Tokyo 359-1192, Japan.
| | - Florian M W Grundler
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Chisato Miyaura
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
21
|
Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 2019; 176:337-354. [PMID: 30381825 PMCID: PMC6329627 DOI: 10.1111/bph.14530] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation underlies various debilitating disorders including autoimmune, neurodegenerative, vascular and metabolic diseases as well as cancer, where aberrant activation of the innate and acquired immune systems is frequently seen. Since non-steroidal anti-inflammatory drugs exert their effects by inhibiting COX and suppressing PG biosynthesis, PGs have been traditionally thought to function mostly as mediators of acute inflammation. However, an inducible COX isoform, COX-2, is often highly expressed in tissues of the chronic disorders, suggesting an as yet unidentified role of PGs in chronic inflammation. Recent studies have shown that in addition to their short-lived actions in acute inflammation, PGs crosstalk with cytokines and amplify the cytokine actions on various types of inflammatory cells and drive pathogenic conversion of these cells by critically regulating their gene expression. One mode of such PG-mediated amplification is to induce the expression of relevant cytokine receptors, which is typically observed in Th1 cell differentiation and Th17 cell expansion, events leading to chronic immune inflammation. Another mode of amplification is cooperation of PGs with cytokines at the transcription level. Typically, PGs and cytokines synergistically activate NF-κB to induce the expression of inflammation-related genes, one being COX-2 itself, which makes PG-mediated positive feedback loops. This signalling consequently enhances the expression of various NF-κB-induced genes including chemokines to macrophages and neutrophils, which enables sustained infiltration of these cells and further amplifies chronic inflammation. In addition, PGs are also involved in tissue remodelling such as fibrosis and angiogenesis. In this article, we review these findings and discuss their relevance to human diseases.
Collapse
Affiliation(s)
- Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
22
|
Li YQ, Chen JT, Yin SM, Nie DN, He ZY, Xie SF, Wang XJ, Wu YD, Xiao J, Liu HY, Wang JY, Yang WJ, Ma LP. Regulation of mPGES-1 composition and cell growth via the MAPK signaling pathway in jurkat cells. Exp Ther Med 2018; 16:3211-3219. [PMID: 30214544 DOI: 10.3892/etm.2018.6538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested that microsomal prostaglandin E synthase-1 (mPGES-1) is highly expressed and closely associated with mitogen-activated protein kinase (MAPK) signaling pathways in various types of malignant cells. However, their expression patterns and function with respect to T-cell acute lymphoblastic leukemia (T-ALL) remain largely unknown. The present study investigated whether mPGES-1 served a crucial role in T-ALL and aimed to identify interactions between mPGES-1 and the MAPK signaling pathway in T-ALL. The results indicated that mPGES-1 overexpression in T-ALL jurkat cells was significantly decreased by RNA silencing. Decreasing mPGES-1 on a consistent basis may inhibit cell proliferation, induce apoptosis and arrest the cell cycle in T-ALL jurkat cells. Microarray and western blot analyses revealed that c-Jun N-terminal kinase served a role in the mPGES-1/prostaglandin E2/EP4/MAPK positive feedback loops. In addition, P38 and extracellular signal-regulated kinase 1/2 exhibited negative feedback effects on mPGES-1. In conclusion, the results suggested that cross-talk between mPGES-1 and the MAPK signaling pathway was very complex. Therefore, the combined regulation of mPGES-1 and the MAPK signaling pathway may be developed into a new candidate therapy for T-ALL in the future.
Collapse
Affiliation(s)
- Yi-Qing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jiao-Ting Chen
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Song-Mei Yin
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Da-Nian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhi-Yuan He
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shuang-Feng Xie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiu-Ju Wang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu-Dan Wu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hong-Yun Liu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie-Yu Wang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Juan Yang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Li-Ping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
23
|
Chen J, Si M, Wang Y, Liu L, Zhang Y, Zhou A, Wei W. Ginsenoside metabolite compound K exerts anti-inflammatory and analgesic effects via downregulating COX2. Inflammopharmacology 2018; 27:157-166. [PMID: 29946770 DOI: 10.1007/s10787-018-0504-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the anti-inflammatory and analgesic activities of the ginsenoside metabolite compound K (CK) and its mechanisms. METHODS Mice model of xylene-induced ear swelling and rat model of carrageenan-induced paw swelling were used to evaluate the effect of CK on acute inflammation. The analgesic effect of CK was evaluated on heat-, acetic acid-, and carrageenan-induced hyperalgesia. The levels of prostaglandin E2 (PGE2), cyclooxygenase-1 (COX-1), and COX-2 in carrageenan-induced rat paw swelling and gastric mucosa were detected by enzyme-linked immunosorbent assay (ELISA). COX-1 and COX-2 expressions in carrageenan-induced rat paw swelling and gastric mucosa were detected by western blotting. In vitro effect of CK (10-9, 10-8, 10-7, 10-6, 10-5 M) on COX-1 and COX-2 activities was evaluated by measuring the production of 6-keto-PGF1α and PGE2 in rat peritoneal macrophages. RESULTS CK at doses of 7, 14, 28, 56, 112, and 224 mg/kg alleviated xylene-induced ear oedema, whereas CK at 40, 80, and 160 mg/kg alleviated carrageenan-induced paw oedema. CK at 224 mg/kg showed an analgesic effect against acetic acid-induced pain. CK at 40, 80, and 160 mg/kg significantly increased rat inflammatory pain threshold, but had no effect on heat-induced pain threshold. CK at 10, 20, 40, 80, and 160 mg/kg reduced PGE2 level in the paw tissue, but showed no effect on that in the gastric mucosa. CK at 20, 40, 80, and 160 mg/kg decreased COX-2 expression in the paw tissue and gastric mucosa, but exhibited no effect on COX-1 expression or on COX-1 and COX-2 activities. CONCLUSION CK exerted anti-inflammatory and analgesic effects, possibly by reducing the catalytic synthesis of PGE2 via downregulation of COX-2 expression.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Min Si
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Ying Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Lihua Liu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Yunfang Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Aiwu Zhou
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China.
| |
Collapse
|
24
|
Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
25
|
Cull AH, Rauh MJ. Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol 2017; 102:209-219. [DOI: 10.1189/jlb.5ri0317-083r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
|
26
|
Kern K, Pierre S, Schreiber Y, Angioni C, Thomas D, Ferreirós N, Geisslinger G, Scholich K. CD200 selectively upregulates prostaglandin E 2 and D 2 synthesis in LPS-treated bone marrow-derived macrophages. Prostaglandins Other Lipid Mediat 2017; 133:53-59. [PMID: 28583890 DOI: 10.1016/j.prostaglandins.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
The CD200/CD200R signalling pathway downregulates the synthesis of proinflammatory mediators and induces the synthesis of antiinflammatory mediators in macrophages and microglia. However, very little is known about the effect of this immunosuppressive pathway on the synthesis of lipid mediators. Therefore, we determined the synthesis of 35 lipids spanning 5 different lipid families in bone marrow-derived macrophages, which were treated with interleukin (IL) 4, IL10, lipopolysaccharide (LPS), or interferon γ (IFNγ) in absence and presence of CD200. Out of these conditions the only significant effect of CD200 was an increased synthesis of prostaglandin (PG) E2 and D2 in the presence of LPS. Accordingly, mRNA levels of cyclooxygenase-2, microsomal PGE2 synthase-1 and hematopoietic PGD synthase were upregulated by CD200 in presence of LPS. During Complete Freund's Adjuvant (CFA-) induced inflammation mPGES-1 was expressed in monocyte-derived macrophages and its expression was stronger in CD200R-positive than in CD200R-negative macrophages.
Collapse
Affiliation(s)
- Katharina Kern
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany.
| |
Collapse
|
27
|
Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X, David LL, Pamir N. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics 2017; 16:873-890. [PMID: 28325852 DOI: 10.1074/mcp.m116.065524] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Indexed: 01/17/2023] Open
Abstract
The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.
Collapse
Affiliation(s)
- Deanna L Plubell
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Phillip A Wilmarth
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Yuqi Zhao
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alexandra M Fenton
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Jessica Minnier
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Ashok P Reddy
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - John Klimek
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Xia Yang
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Larry L David
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Nathalie Pamir
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon;
| |
Collapse
|
28
|
Ramanan M, Pilli V, Aradhyam G, Doble M. Transcriptional regulation of microsomal prostaglandin E synthase 1 by the proto-oncogene, c-myc, in the pathogenesis of inflammation and cancer. Biochem Biophys Res Commun 2017; 482:556-562. [DOI: 10.1016/j.bbrc.2016.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022]
|
29
|
Noma T, Takahashi-Yanaga F, Arioka M, Mori Y, Sasaguri T. Inhibition of GSK-3 reduces prostaglandin E2 production by decreasing the expression levels of COX-2 and mPGES-1 in monocyte/macrophage lineage cells. Biochem Pharmacol 2016; 116:120-9. [DOI: 10.1016/j.bcp.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
30
|
Carceller MC, Guillén MI, Ferrándiz ML, Alcaraz MJ. Paracrine in vivo inhibitory effects of adipose tissue-derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy 2016; 17:1230-9. [PMID: 26276006 DOI: 10.1016/j.jcyt.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Excessive or unresolved inflammation leads to tissue lesions. Adipose tissue-derived mesenchymal stromal cells (AMSCs) have shown protective effects that may be dependent on the modulation of inflammation by secreted factors. METHODS We used the zymosan-induced mouse air pouch model at two time points (4 h and 18 h) to evaluate the in vivo effects of AMSCs and their conditioned medium (CM) on key steps of the early inflammatory response. We assessed the effects of AMSCs and CM on leukocyte migration and myeloperoxidase activity. The levels of chemokines, cytokines and eicosanoids in exudates were measured by use of enzyme-linked immunoassay or radio-immunoassay. In addition, the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1) was studied by use of Western blotting and the phosphorylation of p65 nuclear factor-κB (NF-κB) by immunofluorescence. RESULTS All inflammatory parameters were significantly reduced by CM and AMSCs to a similar extent at 4 h after zymosan injection with lower effects at 18 h. The observed inhibition of leukocyte migration was associated with reduced levels of chemokines and leukotriene B4. Interleukin-1β, interleukin-6, tumor necrosis factor-α and tumor necrosis factor-stimulated gene 6 levels were significantly decreased. The downregulation of mPGES-1 was associated with inhibition of prostaglandin E2 production. Our results suggest that these anti-inflammatory effects are related, in part, to the inhibition of NF-κB activation. CONCLUSIONS AMSCs dampen the early process of inflammation in the zymosan-induced mouse air pouch model through paracrine mechanisms. These results support the potential utility of these cells as a source of novel treatment approaches for inflammatory pathologies.
Collapse
Affiliation(s)
| | - María Isabel Guillén
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain; Department of Chemistry, Biochemistry and Molecular Biology, Cardenal Herrera-CEU University, Valencia, Spain
| | | | - María José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain.
| |
Collapse
|
31
|
Kats A, Norgård M, Wondimu Z, Koro C, Concha Quezada H, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit RANKL- and LPS-mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells. J Cell Mol Med 2016; 20:1128-38. [PMID: 26987561 PMCID: PMC4882984 DOI: 10.1111/jcmm.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Zenebech Wondimu
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Catalin Koro
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hernán Concha Quezada
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Tamura K, Naraba H, Hara T, Nakamura K, Yoshie M, Kogo H, Tachikawa E. A positive feedback loop between progesterone and microsomal prostaglandin E synthase-1-mediated PGE2 promotes production of both in mouse granulosa cells. Prostaglandins Other Lipid Mediat 2016; 123:56-62. [DOI: 10.1016/j.prostaglandins.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 12/26/2022]
|
33
|
BADINGA L, GÜLAY MŞ, EALY A. CLA and EPA inhibit LPS-induced prostaglandin release from bovine endometrial cells through an NF-κB-dependent signaling mechanism. TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES 2016. [DOI: 10.3906/vet-1510-67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Osma-Garcia IC, Punzón C, Fresno M, Díaz-Muñoz MD. Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration. Eur J Immunol 2015; 46:677-88. [PMID: 26631603 DOI: 10.1002/eji.201545629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Macrophage migration to the focus of infection is a hallmark of the innate immune response. Macrophage spreading, adhesion, and migration through the extracellular matrix require dynamic remodeling of the actin cytoskeleton associated to integrin clustering in podosomes and focal adhesions. Here, we show that prostaglandin E2 (PGE2 ), the main prostaglandin produced by macrophages during inflammation, promote the distinctive dose-dependent formation of podosomes or focal adhesions in macrophages. Low concentrations of PGE2 increased p110γ PI3K expression, phosphorylation of actin-related protein 2, and formation of podosomes, which enhanced macrophage migration in response to chemokines. However, high doses of PGE2 increased phosphorylation of paxillin and focal adhesion kinase, the expression of serine/threonine protein kinase 1, and promoted focal adhesion formation and macrophage adhesion, reducing macrophage chemotaxis. In summary, we describe the dual role of PGE2 as a promoter of macrophage chemotaxis and adhesion, proposing a new model of macrophage migration to the inflammatory focus in the presence of a gradient of PGE2 .
Collapse
Affiliation(s)
- Inés C Osma-Garcia
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Punzón
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel D Díaz-Muñoz
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Stamatakis K, Jimenez-Martinez M, Jimenez-Segovia A, Chico-Calero I, Conde E, Galán-Martínez J, Ruiz J, Pascual A, Barrocal B, López-Pérez R, García-Bermejo ML, Fresno M. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget 2015; 6:39941-59. [PMID: 26498686 PMCID: PMC4741871 DOI: 10.18632/oncotarget.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized.We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandin E synthase) are co-expressed in human colorectal tumors. Moreover, we detected that COX2 and microsomal Prostaglandin E2 synthase 1 (mPGES1) proteins are both up-regulated in colorectal human tumor biopsies.Using colon carcinoma cell cultures we found that COX2 overexpression significantly increased mPGES1 mRNA and protein. This up-regulation was due to an increase in early growth response 1 (EGR1) levels and its transcriptional activity. EGR1 was induced by COX2-generated PGF2α. A PGF2α receptor antagonist, or EGR1 silencing, inhibited the mPGES1 induction by COX2 overexpression. Moreover, using immunodeficient mice, we also demonstrated that both COX2- and mPGES1-overexpressing carcinoma cells were more efficient forming tumors.Our results describe for the first time the molecular pathway correlating PTGS2 and PTGES in colon cancer progression. We demonstrated that in this pathway mPGES1 is induced by COX2 overexpression, via autocrine PGs release, likely PGF2α, through an EGR1-dependent mechanism. This signaling provides a molecular explanation to PTGS2 and PTGES association and contribute to colon cancer advance, pointing out novel potential therapeutic targets in this oncological context.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| | - Marta Jimenez-Martinez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Jimenez-Segovia
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Chico-Calero
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Conde
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Javier Galán-Martínez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Ruiz
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Pascual
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| |
Collapse
|
36
|
Ishii T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic Biol Med 2015; 88:189-198. [PMID: 25968070 DOI: 10.1016/j.freeradbiomed.2015.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator.
Collapse
|
37
|
Guo B, Tian XC, Li DD, Yang ZQ, Cao H, Zhang QL, Liu JX, Yue ZP. Expression, regulation and function of Egr1 during implantation and decidualization in mice. Cell Cycle 2015; 13:2626-40. [PMID: 25486203 DOI: 10.4161/15384101.2014.943581] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract Early growth response gene 1 (Egr1), a zinc finger transcriptional factor, plays an important role in regulating cell proliferation, differentiation and angiogenesis. Current data have shown that Egr1 is involved in follicular development, ovulation, luteinization and placental angiogenesis. However, the expression, regulation and function of Egr1 in mouse uterus during embryo implantation and decidualization are poorly understood. Here we showed that Egr1 was strongly expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy. Injection of Egr1 siRNA into the mouse uterine horn could obviously reduce the number of implanted embryos and affect the uterine vascular permeability. Further study found that Egr1 played a role through influencing the expression of cyclooxygenase-2 (Cox-2), microsomal prostaglandin E synthase 1 (mPGES-1), vascular endothelial growth factor (Vegf), transformation related protein 53 (Trp53) and matrix metallopeptidase 9 (Mmp9) genes in the process of mouse embryo implantation. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) might direct the expression of Egr1 in the uterine stromal cells. Under in vivo and in vitro artificial decidualization, Egr1 expression was significantly decreased. Overexpression of Egr1 downregulated the expression of decidual marker decidual/trophoblast PRL-related protein (Dtprp) in the uterine stromal cells, while inhibition of Egr1 upregulated the expression of Dtprp under in vitro decidualization. Estrogen and progesterone could regulate the expression of Egr1 in the ovariectomized mouse uterus and uterine stromal cells. These results suggest that Egr1 may be essential for embryo implantation and decidualization.
Collapse
Affiliation(s)
- Bin Guo
- a College of Veterinary Medicine ; Jilin University ; Changchun , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schneiders J, Fuchs F, Damm J, Herden C, Gerstberger R, Soares DM, Roth J, Rummel C. The transcription factor nuclear factor interleukin 6 mediates pro- and anti-inflammatory responses during LPS-induced systemic inflammation in mice. Brain Behav Immun 2015; 48:147-64. [PMID: 25813145 DOI: 10.1016/j.bbi.2015.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/27/2015] [Accepted: 03/14/2015] [Indexed: 11/18/2022] Open
Abstract
The transcription factor nuclear factor interleukin 6 (NF-IL6) plays a pivotal role in neuroinflammation and, as we previously suggested, hypothalamus-pituitary-adrenal-axis-activation. Here, we investigated its contribution to immune-to-brain communication and brain controlled sickness symptoms during lipopolysaccharide (LPS)-induced (50 or 2500 μg/kg i.p.) systemic inflammation in NF-IL6-deficient (KO) or wildtype mice (WT). In WT LPS induced a dose-dependent febrile response and reduction of locomotor activity. While KO developed a normal fever after low-dose LPS-injection the febrile response was almost abolished 3-7 h after a high LPS-dose. High-dose LPS-stimulation was accompanied by decreased (8 h) followed by enhanced (24 h) inflammation in KO compared to WT e.g. hypothalamic mRNA-expression including microsomal prostaglandin E synthase, inducible nitric oxide synthase and further inflammatory mediators, neutrophil recruitment to the brain as well as plasma levels of inflammatory markers such as IL-6 and IL-10. Interestingly, KO showed reduced locomotor activity even under basal conditions, but enhanced locomotor activity to novel environment stress. Hypothalamic-pituitary-adrenal-axis-activity of KO was intact, but tryptophan-metabolizing enzymes were shifted to enhanced serotonin production and reuptake. Overall, we showed for the first time that NF-IL6 plays a dual role for sickness response and immune-to-brain communication: acting pro-inflammatory at 8h but anti-inflammatory at 24 h after onset of the inflammatory response reflecting active natural programming of inflammation. Moreover, reduced locomotor activity observed in KO might be due to altered tryptophan metabolism and serotonin reuptake suggesting some role for NF-IL6 as therapeutic target for depressive disorders.
Collapse
Affiliation(s)
- Jenny Schneiders
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Franziska Fuchs
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Jelena Damm
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Denis Melo Soares
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Bahia, Salvador 40110-060, Bahia, Brazil
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
39
|
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98:1-15. [PMID: 26123522 DOI: 10.1016/j.bcp.2015.06.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Oliver Werz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
40
|
Guillem-Llobat P, Íñiguez MA. Inhibition of lipopolysaccharide-induced gene expression by liver X receptor ligands in macrophages involves interference with early growth response factor 1. Prostaglandins Leukot Essent Fatty Acids 2015; 96:37-49. [PMID: 25736222 DOI: 10.1016/j.plefa.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/08/2023]
Abstract
Liver X receptors (LXRs) are nuclear receptors that act as ligand-dependent transcription factors forming permissive heterodimers with retinoid X receptors (RXRs). In this study we aimed to assess the effect of LXR/RXR activation on the transcriptional induction of pro-inflammatory genes including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in activated macrophages. Our study shows that LXR ligands such as oxysterols, GW3965 or TO901317, as well as RXR ligands like 9cis retinoic acid or SR11237, decreased LPS-induced expression of COX-2 and mPGES-1. Consequently, LPS-dependent PGE2 production was substantially reduced in macrophages treated with LXR/RXR ligands. The inhibitory effects of LXR/RXR activation on LPS-induced expression of COX-2 and mPGES-1 in macrophages, occurred by a mechanism involving interference with transcriptional activation of these genes. LXR/RXR activation interfered with the activity of transcription factors essential in the up-regulation of the expression of pro-inflammatory genes in these cells, such as NFκB, but also Egr-1, which had not been previously associated with LXR-mediated gene repression. As this transcription factor is involved in the regulation of a variety of genes involved in inflammatory processes, LXR and RXR-mediated interference with Egr-1 signaling could represent an important event mediating the anti-inflammatory effects of these receptors in macrophages.
Collapse
Affiliation(s)
- Paloma Guillem-Llobat
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Miguel A Íñiguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation. Prostaglandins Other Lipid Mediat 2015; 116-117:49-56. [PMID: 25619459 DOI: 10.1016/j.prostaglandins.2015.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3(-/-) mice than that from Atf3(+/+) mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3(-/-) mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses.
Collapse
|
42
|
Degraaf AJ, Zasłona Z, Bourdonnay E, Peters-Golden M. Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am J Respir Cell Mol Biol 2014; 51:242-50. [PMID: 24601788 DOI: 10.1165/rcmb.2013-0495oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alveolar macrophages (AMs) represent the first line of innate immune defense in the lung. AMs use pattern recognition receptors (PRRs) to sense pathogens. The best studied PRR is Toll-like receptor (TLR)4, which detects LPS from gram-negative bacteria. The lipid mediator prostaglandin (PG)E2 dampens AM immune responses by inhibiting the signaling events downstream of PRRs. We examined the effect of PGE2 on TLR4 expression in rat AMs. Although PGE2 did not reduce the mRNA levels of TLR4, it decreased TLR4 protein levels. The translation inhibitor cycloheximide reduced TLR4 protein levels with similar kinetics as PGE2, and its effects were not additive with those of the prostanoid, suggesting that PGE2 inhibits TLR at the translational level. The action of PGE2 could be mimicked by the direct stimulator of cAMP formation, forskolin, and involved E prostanoid receptor 2 ligation and cAMP-dependent activation of unanchored type I protein kinase A. Cells pretreated with PGE2 for 24 hours exhibited decreased TNF-α mRNA and protein levels in response to LPS stimulation. Knockdown of TLR4 protein by small interfering RNA to the levels achieved by PGE2 treatment likewise decreased TNF-α mRNA and protein in response to LPS, establishing the functional significance of this PGE2 effect. We provide the first evidence of a lipid mediator acting through its cognate G protein-coupled receptor to affect PRR translation. Because PGE2 is produced in abundance at sites of infection, its inhibitory effects on AM TLR4 expression have important implications for host defense in the lung.
Collapse
Affiliation(s)
- Angela Juliette Degraaf
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
43
|
Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages. Redox Biol 2014; 2:892-900. [PMID: 25180166 PMCID: PMC4143813 DOI: 10.1016/j.redox.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 11/24/2022] Open
Abstract
Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages. Phytochemical indicaxanthin promotes synthesis of anti-inflammatory prostaglandins. Prooxidant activity of indicaxanthin causes anti-inflammatory response in macrophages. Indicaxanthin modulates the redox status of LPS-stimulated macrophages. Membrane lipid peroxides are signaling intermediates in inflamed macrophages.
Collapse
|
44
|
Aida-Yasuoka K, Yoshioka W, Kawaguchi T, Ohsako S, Tohyama C. A mouse strain less responsive to dioxin-induced prostaglandin E2 synthesis is resistant to the onset of neonatal hydronephrosis. Toxicol Sci 2014; 141:465-74. [PMID: 25015655 DOI: 10.1093/toxsci/kfu142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dioxin is a ubiquitous environmental pollutant that induces toxicity when bound to the aryl hydrocarbon receptor (AhR). Significant differences in susceptibility of mouse strains to dioxin toxicity are largely accounted for by the dissociation constant of binding to dioxins of AhR subtypes encoded by different alleles. We showed that cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), components of a prostanoid synthesis pathway, play essential roles in the onset of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hydronephrosis of neonatal mice. Although C57BL/6J and BALB/cA mice harbor AhR receptors highly responsive to TCDD, they were found by chance to differ significantly in the incidence of TCDD-induced hydronephrosis. Therefore, the goal of the present study was to determine the molecular basis of this difference in susceptibility to TCDD toxicity. For this purpose, we administered C57BL/6J and BALB/cA dams' TCDD at an oral dose of 15 or 80 μg/kg on postnatal day (PND) 1 to expose pups to TCDD via lactation, and the pups' kidneys were collected on PND 7. The incidence of hydronephrosis in C57BL/6J pups (64%) was greater than in BALB/cA pups (0%, p < 0.05), despite similarly increased levels of COX-2 mRNA. The incidence of hydronephrosis in these mouse strains paralleled the levels of renal mPGES-1 mRNA and early growth response 1 (Egr-1) that modulates mPGES-1 gene expression, as well as PGE2 concentrations in urine. Although these mouse strains possess AhR alleles tightly bound to TCDD, their difference in incidence and severity of hydronephrosis can be explained, in part, by differences in the expression of mPGES-1 and Egr-1.
Collapse
Affiliation(s)
- Keiko Aida-Yasuoka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Tatsuya Kawaguchi
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Fan Y, Zhang J, Cai L, Wang S, Liu C, Zhang Y, You L, Fu Y, Shi Z, Yin Z, Luo L, Chang Y, Duan X. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2775-83. [PMID: 24983770 DOI: 10.1016/j.bbamcr.2014.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jie Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linlin Cai
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shengnan Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Caizhi Liu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yongze Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yujian Fu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
46
|
Upregulation of COX-2 in the lung cancer promotes overexpression of multidrug resistance protein 4 (MRP4) via PGE2-dependent pathway. Eur J Pharm Sci 2014; 62:189-96. [PMID: 24909729 DOI: 10.1016/j.ejps.2014.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/22/2022]
Abstract
It is apparent that lung cancer is associated with inflammation, with accompanying hallmark elevations of cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) levels. However, the effects of these changes on MRP efflux transporters have not been thoroughly investigated before. Here, we report that upregulation of COX-2 can induce overexpression of MRP4 in both A549 non-small-cell lung cancer cell lines and mouse lung cancer models. In A549 cells, phorbol 12-myristate 13-acetate (PMA) treatment induced upregulation of COX-2 and MRP4 together, but not other MRP transporters. Transient overexpression of human COX-2 cDNA also specifically increased COX-2 and MRP4. Moreover, COX inhibitor treatment and COX-2-specific siRNA significantly inhibited the upregulation of MRP4. Additionally, PMA-treatment increased extracellular PGE2 levels, likely due to increased MRP4 function. Likewise, COX-2-specific siRNA reduced extracellular PGE2 levels. Furthermore, COX-2 upregulation resulted in an increase in mPGES-1, an enzyme responsible for PGE2 production. Finally, metastasized lung cancer model mice exhibited increased expression levels of COX-2 and MRP4, as well as mPGES-1. In conclusion, the present study suggests that overexpression of MRP4 in lung cancer may be attributable to COX-2 upregulation via a PGE2-dependent pathway.
Collapse
|
47
|
Critical role for peripherally-derived interleukin-10 in mediating the thermoregulatory manifestations of fever and hypothermia in severe forms of lipopolysaccharide-induced inflammation. Pflugers Arch 2013; 466:1451-66. [DOI: 10.1007/s00424-013-1371-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023]
|
48
|
NOD2 triggers PGE2 synthesis leading to IL-8 activation in Staphylococcus aureus-infected human conjunctival epithelial cells. Biochem Biophys Res Commun 2013; 440:551-7. [PMID: 24099766 DOI: 10.1016/j.bbrc.2013.09.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 01/28/2023]
Abstract
We previously showed that Staphylococcus aureus and Pseudomonas aeruginosa stimulate IL-8 expression in human conjunctival epithelial cells through different signal transduction pathways. As in some cell types both the bacteria may induce the release of prostaglandin E2 (PGE2) and PGE2 may affect the expression of IL-8, we aimed at investigating whether in human conjunctival cells infected with S. aureus or P. aeruginosa the activation of IL-8 transcription was mediated by PGE2 and which were the underlying molecular mechanisms. We found that S. aureus, but not P. aeruginosa, triggered IL-8 activation by increasing COX-2 expression and PGE2 levels in a time-dependent manner. Overexpression of nucleotide-binding oligomerization domain-2 (NOD2) resulted to be essential in the enhancement of IL-8 induced by S. aureus. It dramatically activated c-jun NH2-terminal kinase (JNK) pathway which in turn led to COX2 upregulation and ultimately to IL-8 transcription. The full understanding of the S. aureus-induced biochemical processes in human conjunctival epithelium will bring new insight to the knowledge of the molecular mechanisms involved in conjunctiva bacterial infections and develop novel treatment aiming at phlogosis modulation.
Collapse
|
49
|
Anti-inflammatory Effect of Acetylpuerarin on Eicosanoid Signaling Pathway in Primary Rat Astrocytes. J Mol Neurosci 2013; 52:577-85. [DOI: 10.1007/s12031-013-0113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/02/2013] [Indexed: 01/15/2023]
|
50
|
Zanellato I, Bonarrigo I, Ravera M, Gabano E, Gust R, Osella D. The hexacarbonyldicobalt derivative of aspirin acts as a CO-releasing NSAID on malignant mesothelioma cells. Metallomics 2013; 5:1604-13. [PMID: 24057048 DOI: 10.1039/c3mt00117b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antiproliferative activity of the aspirin derivative [2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS) and its analogue hexacarbonyl[μ-(2-ethylphenyl)methanol]dicobalt (Co-EPM) was investigated on malignant pleural mesothelioma (MPM) cell lines, having an epithelioid or a sarcomatoid phenotype. In sarcomatoid cell lines Co-ASS was more potent than Co-EPM and the prototypal metallo-drug cisplatin, and induced cell death through the intrinsic apoptotic pathway, associated with a strong NF-κB inhibition. In contrast, both Co-ASS and Co-EPM showed only a modest cytostatic activity against epithelioid MPM cells. Co-EPM induced an increase of senescent cells, while Co-ASS did not; the different outcomes were traced back to the organic (aspirin-like) portion of the molecule. Both Co-EPM and Co-ASS significantly reduced reactive oxygen/nitrogen species (ROS/RNS), and in turn nitrites, suggesting that the hexacarbonyldicobalt moiety may deliver CO within the cell, acting as a CO-releasing molecule (CO-RM). In perspective, Co-ASS would be better considered as a CO-NSAID agent (a CO-releasing molecule retaining the NSAID properties similar to NO- and H2S-NSAIDs) than as an antitumor drug candidate.
Collapse
Affiliation(s)
- Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), Sezione Ambiente-Vita, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|