1
|
Lee R, Won KJ, Kim JH, Lee BH, Hwang SH, Nah SY. Gintonin Stimulates Glucose Uptake in Myocytes: Involvement of Calcium and Extracellular Signal-Regulated Kinase Signaling. Biomolecules 2024; 14:1316. [PMID: 39456249 PMCID: PMC11505745 DOI: 10.3390/biom14101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, glucose transporter (GLUT) 4 expression, and adenosine triphosphate (ATP) content in C2C12 myotubes. Gintonin (3-30 μg/mL) dose-dependently stimulated glucose uptake in myotubes. The expression of GLUT4 on the cell membrane was increased by gintonin treatment. Treatment with 1-3 μg/mL of gintonin increased glycogen content in myotubes, but the content was decreased at 30 μg/mL of gintonin. The ATP content in myotubes increased following treatment with 10-100 μg/mL gintonin. Gintonin transiently elevated intracellular calcium concentrations and increased the phosphorylation of extracellular signal-regulated kinase (ERK). Gintonin-induced transient calcium increases were inhibited by treatment with the lysophosphatidic acid receptor inhibitor Ki16425, the phospholipase C inhibitor U73122, and the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Gintonin-stimulated glucose uptake was decreased by treatment with U73122, the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester, and the ERK inhibitor PD98059. These results show that gintonin plays a role in glucose metabolism by increasing glucose uptake through transient calcium increases and ERK signaling pathways. Thus, gintonin may be beneficial for glucose metabolism control.
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Kyung-Jong Won
- Department of Physiology and Premedical Science, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Byung-Hwan Lee
- Jeju Self-Governing Provincial Veterinary Research Institute, Jeju 63344, Republic of Korea;
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| |
Collapse
|
2
|
Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis. Biomed Pharmacother 2021; 140:111679. [PMID: 34029952 DOI: 10.1016/j.biopha.2021.111679] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
The use of doxorubicin (DOX) to treat various tumors is limited by its cardiotoxicity. This study aimed to investigate and compare the cardioprotective effects of nicotinamide (NAM) and alfacalcidol (1α(OH)D3), against DOX-induced cardiotoxicity. Sprague Dawley male rats received DOX (5 mg/kg, i.p.) once/week for four consecutive weeks. Treated groups received either NAM (600 mg/kg, p.o.) for 28 consecutive days or 1α(OH)D3 (0.5 ug/kg, i.p.) once/week for four consecutive weeks. DOX elicited marked cardiac tissue injury manifested by elevated serum cardiotoxicity indices, conduction and histopathological abnormalities. Both NAM and 1α(OH)D3 successfully reversed all these changes. From the mechanistic point of view, DOX provoked intense cytosolic and mitochondrial calcium (Ca2+) overload hence switching on calpain1 (CPN1) and mitochondrial-mediated apoptotic cascades as confirmed by upregulating Bax and caspase-3 while downregulating Bcl-2 expression. DOX also disrupted cardiac bioenergetics as evidenced by adenosine triphosphate (ATP) depletion and a declined ATP/ADP ratio. Moreover, DOX upregulated the Ca2+ sensor; calmodulin kinase II gamma (CaMKII-δ) which further contributed to cardiac damage. Interestingly, co-treatment with either NAM or 1α(OH)D3 reversed all DOX associated abnormalities by preserving Ca2+ homeostasis, replenishing ATP stores and obstructing apoptotic events. Additionally, DOX prompted nuclear factor kappa B (NF-κB) dependent inflammatory responses and subsequently upregulated interleukin-6 (IL-6) expression. Co-treatment with NAM or 1α(OH)D3 effectively obstructed these inflammatory signals. Remarkably, NAM showed superior beneficial cardioprotective properties over 1α(OH)D3. Both NAM and 1α(OH)D3 efficiently attenuated DOX-cardiomyopathy mainly via preserving Ca2+ homeostasis and diminishing apoptotic and inflammatory pathways. NAM definitely exhibited effective cardioprotective capabilities over 1α(OH)D3.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | - Amany I El-Brairy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Yang M, Li C, Sun L. Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome. Curr Med Chem 2021; 28:1347-1362. [PMID: 32048952 DOI: 10.2174/0929867327666200212100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria-associated Endoplasmic Reticulum (ER) Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and mediate communication between these two organelles. MAMs have been demonstrated to be involved in calcium signaling, lipid transfer, mitochondrial dynamic change, mitophagy, and the ER stress response. In addition, MAMs are critical for metabolic regulation, and their dysfunction has been reported to be associated with metabolic syndrome, including the downregulation of insulin signaling and the accelerated progression of hyperlipidemia, obesity, and hypertension. This review covers the roles of MAMs in regulating insulin sensitivity and the molecular mechanism underlying MAM-regulated cellular metabolism and reveals the potential of MAMs as a therapeutic target in treating metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| | - Chenrui Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| |
Collapse
|
4
|
Kwon EB, Kang MJ, Ryu HW, Lee S, Lee JW, Lee MK, Lee HS, Lee SU, Oh SR, Kim MO. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153178. [PMID: 32126492 DOI: 10.1016/j.phymed.2020.153178] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lowering blood glucose levels by increasing glucose uptake in insulin target tissues, such as skeletal muscle and adipose tissue, is one strategy to discover and develop antidiabetic drugs from natural products used as traditional medicines. PURPOSE Our goal was to reveal the mechanism and activity of acacetin (5,7-dihydroxy-4'-methoxyflavone), one of the major compounds in Agastache rugose, in stimulating glucose uptake in muscle cells. METHODS To determine whether acacetin promotes GLUT4-dependent glucose uptake in cultured L6 skeletal muscle cells, we performed a [14C] 2-deoxy-D-glucose (2-DG) uptake assay after treating differentiated L6-GLUT4myc cells with acacetin. RESULTS Acacetin dose-dependently increased 2-DG uptake by enhancing GLUT4 translocation to the plasma membrane. Our results revealed that acacetin activated the CaMKII-AMPK pathway by increasing intracellular calcium concentrations. We also found that aPKCλ/ζ phosphorylation and intracellular reactive oxygen species (ROS) production were involved in acacetin-induced GLUT4 translocation. Moreover, acacetin-activated AMPK inhibited intracellular lipid accumulation and increased 2-DG uptake in HepG2 cells. CONCLUSION Taken together, these results suggest that acacetin might be useful as an antidiabetic functional ingredient. Subsequent experiments using disease model animals are needed to verify our results.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Seoghyen Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Hyun-Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, South Korea.
| |
Collapse
|
5
|
Zhong P, Quan D, Peng J, Xiong X, Liu Y, Kong B, Huang H. Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. J Mol Cell Cardiol 2017; 109:1-16. [DOI: 10.1016/j.yjmcc.2017.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/24/2023]
|
6
|
Defries DM, Taylor CG, Zahradka P. GLUT3 is present in Clone 9 liver cells and translocates to the plasma membrane in response to insulin. Biochem Biophys Res Commun 2016; 477:433-9. [PMID: 27320866 DOI: 10.1016/j.bbrc.2016.06.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
Abstract
Clone 9 cells have been reported to express only the GLUT1 facilitative glucose transporter; however, previous studies have not examined Clone 9 cells for GLUT3 content. The current study sought to profile the presence of glucose transporters in Clone 9 cells, H4IIE hepatoma cells, and L6 myoblasts and myotubes. While the other cell types contained the expected complement of transporters, Clone 9 cells had GLUT3 which was previously not reported. Interestingly, both GLUT3 mRNA and protein were detected in Clone 9 cells, but only mRNA for GLUT1 was detected. Glucose transport in Clone 9 cells was insulin-sensitive in a concentration-dependent manner, concomitant with the presence of GLUT3 in the plasma membrane after insulin treatment. Although basal glucose uptake was unaffected, insulin-stimulated glucose uptake was abolished with siRNA-mediated GLUT3 knockdown. These results contradict previous reports that Clone 9 cells exclusively express GLUT1 and suggest GLUT3 is a key insulin-sensitive glucose transporter required for insulin-stimulated glucose uptake by Clone 9 cells.
Collapse
Affiliation(s)
- Danielle M Defries
- Department of Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, Manitoba R3T 292, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, Manitoba R2H 2A6, Canada; Department of Kinesiology and Applied Health, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada.
| | - Carla G Taylor
- Department of Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, Manitoba R3T 292, Canada; Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, Manitoba R2H 2A6, Canada.
| | - Peter Zahradka
- Department of Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, Manitoba R3T 292, Canada; Department of Physiology and Pathophysiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
7
|
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev 2016; 73:140-54. [PMID: 26024537 DOI: 10.1093/nutrit/nuu012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abnormal expression and/or function of mammalian hexose transporters contribute to the hallmark hyperglycemia of diabetes. Due to different roles in glucose handling, various organ systems possess specific transporters that may be affected during the diabetic state. Diabetes has been associated with higher rates of intestinal glucose transport, paralleled by increased expression of both active and facilitative transporters and a shift in the location of transporters within the enterocyte, events that occur independent of intestinal hyperplasia and hyperglycemia. Peripheral tissues also exhibit deregulated glucose transport in the diabetic state, most notably defective translocation of transporters to the plasma membrane and reduced capacity to clear glucose from the bloodstream. Expression of renal active and facilitative glucose transporters increases as a result of diabetes, leading to elevated rates of glucose reabsorption. However, this may be a natural response designed to combat elevated blood glucose concentrations and not necessarily a direct effect of insulin deficiency. Functional foods and nutraceuticals, by modulation of glucose transporter activity, represent a potential dietary tool to aid in the management of hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Danielle M Stringer
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.
| | - Peter Zahradka
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Castro AJG, Frederico MJS, Cazarolli LH, Mendes CP, Bretanha LC, Schmidt ÉC, Bouzon ZL, de Medeiros Pinto VA, da Fonte Ramos C, Pizzolatti MG, Silva FRMB. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:51-61. [PMID: 25312987 DOI: 10.1016/j.bbagen.2014.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND The effect of in vivo treatment with ursolic acid (UA) on glycemia in hyperglycemic rats and its mechanism of action on muscle were studied. METHODS The UA effects on glycemia, glycogen, LDH, calcium and on insulin levels were evaluated after glucose tolerance curve. The β-cells were evaluated through the transmission electron microscopy. UA mechanism of action was studied on muscles through the glucose uptake with/without specific insulin signaling inhibitors. The nuclear effect of UA and the GLUT4 expression on muscle were studied using thymidine, GLUT4 immunocontent, immunofluorescence and RT-PCR. RESULTS UA presented a potent antihyperglycemic effect, increased insulin vesicle translocation, insulin secretion and augmented glycogen content. Also, UA stimulates the glucose uptake through the involvement of the classical insulin signaling related to the GLUT4 translocation to the plasma membrane as well as the GLUT4 synthesis. These were characterized by increasing the GLUT4 mRNA expression, the activation of DNA transcription, the expression of GLUT4 and its presence at plasma membrane. Also, the modulation of calcium, phospholipase C, protein kinase C and PKCaM II is mandatory for the full stimulatory effect of UA on glucose uptake. UA did not change the serum LDH and serum calcium balance. CONCLUSIONS The antihyperglycemic role of UA is mediated through insulin secretion and insulinomimetic effect on glucose uptake, synthesis and translocation of GLUT4 by a mechanism of cross-talk between calcium and protein kinases. GENERAL SIGNIFICANCE UA is a potential anti-diabetic agent with pharmacological properties for insulin resistance and diabetes therapy.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Camila Pires Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra Czermainski Bretanha
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Éder Carlos Schmidt
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Zenilda Laurita Bouzon
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
9
|
Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T. The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio 2014; 4:898-904. [PMID: 25383313 PMCID: PMC4223153 DOI: 10.1016/j.fob.2014.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/30/2022] Open
Abstract
WH activates AMPK, and enhances glucose uptake in L6 myotubes independently of insulin. WH induces ATP depletion and LKB1 phosphorylates AMPK. Activation of AMPK by WH is not due to Ca2+ dependent pathway. L6 myotubes have only one type of peptide transporter (PHT1; SLC15a4). WH activates AMPK via incorporation into cells from PHT1.
The di-peptide Trp-His (WH) has vasorelaxant and anti-atherosclerotic functions. We hypothesized that WH has multiple biological functions and may aid AMP-activated protein kinase (AMPK) activation and affect the glucose transport system in skeletal muscle. First, we examined whether WH or His-Trp (HW) can activate AMPKα. Treatment of L6 myotubes with WH or HW significantly increased phosphorylation of AMPKα. WH activated AMPK independently of insulin and significantly increased glucose uptake into L6 myotubes following translocation of glucose transporter 4 (Glut4) to the plasma membrane. This activation was induced by the LKB1 pathway but was independent of changes in intracellular Ca2+ levels and the Ca2+/calmodulin-dependent kinase pathway. L6 myotubes express only one type of oligopeptide transporter, peptide/histidine transporter 1 (PHT1, also known as SLC15a4), and WH is incorporated into cells and activates AMPKα following PHT1-mediated cell uptake. These findings indicate that (1) WH activates AMPK and insulin independently enhances glucose uptake following translocation of Glut4 to the plasma membrane, (2) activation of AMPKα by WH is mediated by the LKB1 pathway, without altering the Ca2+-dependent pathway, and (3) L6 myotubes express only one type of peptide transporter (PHT1; SLC15a4), which incorporates WH into cells to activate AMPKα.
Collapse
Key Words
- 2DG, 2-deoxy-d-glucose
- AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside
- AMP-activated protein kinase
- AMPK, AMP-activated protein kinase
- CaMK, Ca2+/calmodulin-dependent kinase
- DMEM, Dulbecco’s modified Eagle’s medium
- Glucose transporter 4
- Glut, glucose transporter
- IRS-1, insulin receptor substrate-1
- KRH, Krebs–Ringer–HEPES buffer
- LKB1
- PHT1, peptide/histidine transporter 1
- PM, plasma membrene
- Peptide transporter
- TEA, triethanolamine
- Trp-His
- VDCC, voltage-dependent calcium channel
Collapse
Affiliation(s)
- Minoru Soga
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Ayaka Ohashi
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Megumi Taniguchi
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 812-8581, Japan
| | - Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
10
|
Asrih M, Gardier S, Papageorgiou I, Montessuit C. Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes. J Mol Cell Cardiol 2013; 56:106-15. [DOI: 10.1016/j.yjmcc.2012.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023]
|
11
|
Acute exposure of L6 myotubes to cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers stimulates glucose uptake by modulating Ca2+/calmodulin-dependent protein kinase II. Int J Biochem Cell Biol 2012; 44:1321-30. [DOI: 10.1016/j.biocel.2012.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023]
|