1
|
Eltanahy AM, Aupetit A, Buhr ED, Van Gelder RN, Gonzales AL. Light-sensitive Ca 2+ signaling in the mammalian choroid. Proc Natl Acad Sci U S A 2024; 121:e2418429121. [PMID: 39514305 DOI: 10.1073/pnas.2418429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The choroid is the thin, vasculature-filled layer of the eye situated between the sclera and the retina, where it serves the metabolic needs of the light-sensing photoreceptors in the retina. Illumination of the interior surface of the back of the eye (fundus) is a critical regulator of subretinal fluid homeostasis, which determines the overall shape of the eye, but it is also important for choroidal perfusion. Noted for having some of the highest blood flow rates in the body, the choroidal vasculature has been reported to lack intrinsic, intravascular pressure-induced (myogenic) autoregulatory mechanisms. Here, we ask how light directly regulates choroid perfusion and ocular fluid homeostasis, testing the hypothesis that light facilitates ocular fluid absorption by directly increasing choroid endothelial permeability and decreasing choroid perfusion. Utilizing ex vivo pressurized whole-choroid and whole-eye preparations from mice expressing cell-specific Ca2+ indicators, we found that the choroidal vasculature has two intrinsically light-sensitive Ca2+-signaling mechanisms: One increases Ca2+-dependent production of nitric oxide in choroidal endothelial cells; the other promotes vasoconstriction through Ca2+ elevation in vascular smooth muscle cells. In addition, we found that choroidal flow, or pressure, modulates endothelial and smooth muscle photosensitivity and trans-retinal absorption of fluid into the choroid. These results collectively suggest that the choroid vasculature exhibits an inverted form of autoregulatory control, where pressure- and light-induced mechanisms work in opposition to regulate blood flow and maintain fluid balance in response to changes in light and dark, aligning with the metabolic needs of photoreceptors.
Collapse
Affiliation(s)
- Ahmed M Eltanahy
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| | - Alex Aupetit
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Roger and Angie Karalis Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98104
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Roger and Angie Karalis Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA 98104
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| |
Collapse
|
2
|
Stefanenko M, Fedoriuk M, Mamenko M, Semenikhina M, Nowling TK, Lipschutz JH, Maximyuk O, Staruschenko A, Palygin O. PAR1-mediated Non-periodical Synchronized Calcium Oscillations in Human Mesangial Cells. FUNCTION 2024; 5:zqae030. [PMID: 38984988 PMCID: PMC11384906 DOI: 10.1093/function/zqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.
Collapse
Affiliation(s)
- Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Ralph H. Johnson VAMC, Charleston, SC 29401, USA
| | - Oleksandr Maximyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Andrianova I, Kowalczyk M, Denorme F. Protease activated receptor-4: ready to be part of the antithrombosis spectrum. Curr Opin Hematol 2024; 31:238-244. [PMID: 38814792 DOI: 10.1097/moh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is a major cause of death worldwide. Platelets play a key role in this pathological process. The serine protease thrombin is a critical regulator of platelet reactivity through protease activated receptors-1 (PAR1) and PAR4. Since targeting PAR4 comes with a low chance for bleeding, strategies blocking PAR4 function have great antithrombotic potential. Here, we reviewed the literature on platelet PAR4 with a particular focus on its role in thromboinflammation. RECENT FINDINGS Functional PAR4 variants are associated with reduced venous thrombosis risk (rs2227376) and increased risk for ischemic stroke (rs773902). Recent advances have allowed for the creation of humanized mouse lines in which human PAR4 is express instead of murine PAR4. This has led to a better understanding of the discrepancies between human and murine PAR4. It also made it possible to introduce single nucleotide polymorphisms (SNPs) in mice allowing to directly test the in vivo functional effects of a specific SNP and to develop in vivo models to study mechanistic and pharmacologic alterations induced by a SNP. SUMMARY PAR4 plays an important role in cardiovascular diseases including stroke, myocardial infarction and atherosclerosis. Targeting PAR4 hold great potential as a safe antithrombotic strategy.
Collapse
Affiliation(s)
- Izabella Andrianova
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mia Kowalczyk
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Mirakhur M, Diener M. Proteinase-activated receptors regulate intestinal functions in a segment-dependent manner in rats. Eur J Pharmacol 2022; 933:175264. [PMID: 36100127 DOI: 10.1016/j.ejphar.2022.175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Proteinases released e.g. during inflammatory or allergic responses affect gastrointestinal functions via proteinase-activated receptors such as PAR1 and PAR2. As the gastrointestinal tract exerts pronounced gradients along its longitudinal axis, the present study focuses on the effect of PAR1 and PAR2 agonists on electrogenic ion transport (measured as short-circuit current; Isc), tissue conductance (Gt) and contractility of the longitudinal muscle layer of rats. In Ussing chamber experiments, the PAR1 agonist TFLLR-NH2, which mimics the tethered ligand liberated after cleavage of the receptor, evoked only a modest increase in Isc (<0.5 μEq·h-1·cm-2) in small intestine, but a strong increase (3-4 μEq·h-1·cm-2) in colon. Pretreatment with tetrodotoxin reduced the response of the colonic segments to the level of the small intestine. Thrombin, the natural activator of PAR1, was much less effective suggesting biased activation by this peptidase. A similar gradient along the longitudinal axis of the intestine was observed with trypsin, the endogenous activator of PAR2. Divergent actions of PAR1 activation by enzymatic cleavage or a mimetic peptide were also observed when recording isometric contractions of longitudinal muscle. For example, in the jejunum TFLLR-NH2 concentration-dependently induced a contractile response, whereas thrombin showed only inconsistent effects. The PAR2 activator AC264613 induced a concentration-dependent decrease in muscle tone combined with an inhibition of phasic spontaneous contractions. PCR experiments and immunohistochemical stainings confirmed the expression of PAR1 and PAR2. The data implies that PAR1 and PAR2 functions vary depending on the intestinal segment.
Collapse
Affiliation(s)
- Maanvee Mirakhur
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
5
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
6
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
7
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
8
|
|
9
|
Thangarasu P, Thamarai Selvi S, Manikandan A. Unveiling novel 2-cyclopropyl-3-ethynyl-4-(4-fluorophenyl)quinolines as GPCR ligands via PI3-kinase/PAR-1 antagonism and platelet aggregation valuations; development of a new class of anticancer drugs with thrombolytic effects. Bioorg Chem 2018; 81:468-480. [DOI: 10.1016/j.bioorg.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
|
10
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
11
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Tourdot BE, Stoveken H, Trumbo D, Yeung J, Kanthi Y, Edelstein LC, Bray PF, Tall GG, Holinstat M. Genetic Variant in Human PAR (Protease-Activated Receptor) 4 Enhances Thrombus Formation Resulting in Resistance to Antiplatelet Therapeutics. Arterioscler Thromb Vasc Biol 2018; 38:1632-1643. [PMID: 29748334 PMCID: PMC6023764 DOI: 10.1161/atvbaha.118.311112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Platelet activation after stimulation of PAR (protease-activated receptor) 4 is heightened in platelets from blacks compared with those from whites. The difference in PAR4 signaling by race is partially explained by a single-nucleotide variant in PAR4 encoding for either an alanine or threonine at amino acid 120 in the second transmembrane domain. The current study sought to determine whether the difference in PAR4 signaling by this PAR4 variant is because of biased Gq signaling and whether the difference in PAR4 activity results in resistance to traditional antiplatelet intervention. APPROACH AND RESULTS Membranes expressing human PAR4-120 variants were reconstituted with either Gq or G13 to determine the kinetics of G protein activation. The kinetics of Gq and G13 activation were both increased in membranes expressing PAR4-Thr120 compared with those expressing PAR4-Ala120. Further, inhibiting PAR4-mediated platelet activation by targeting COX (cyclooxygenase) and P2Y12 receptor was less effective in platelets from subjects expressing PAR4-Thr120 compared with PAR4-Ala120. Additionally, ex vivo thrombus formation in whole blood was evaluated at high shear to determine the relationship between PAR4 variant expression and response to antiplatelet drugs. Ex vivo thrombus formation was enhanced in blood from subjects expressing PAR4-Thr120 in the presence or absence of antiplatelet therapy. CONCLUSIONS Together, these data support that the signaling difference by the PAR4-120 variant results in the enhancement of both Gq and G13 activation and an increase in thrombus formation resulting in a potential resistance to traditional antiplatelet therapies targeting COX-1 and the P2Y12 receptor.
Collapse
Affiliation(s)
- Benjamin E Tourdot
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Hannah Stoveken
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Derek Trumbo
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Jennifer Yeung
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine (Y.K., M.H.), University of Michigan, Ann Arbor.,Ann Arbor Veterans Affairs Health System, MI (Y.K.)
| | - Leonard C Edelstein
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (L.C.E.)
| | - Paul F Bray
- Department of Internal Medicine, University of Utah, Salt Lake City (P.F.B.)
| | - Gregory G Tall
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Michael Holinstat
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.) .,Division of Cardiovascular Medicine, Department of Internal Medicine (Y.K., M.H.), University of Michigan, Ann Arbor
| |
Collapse
|
13
|
Smoktunowicz N, Platé M, Stern AO, D'Antongiovanni V, Robinson E, Chudasama V, Caddick S, Scotton CJ, Jarai G, Chambers RC. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells. Oncotarget 2018; 7:65471-65484. [PMID: 27566553 PMCID: PMC5323169 DOI: 10.18632/oncotarget.11472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022] Open
Abstract
The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer.
Collapse
Affiliation(s)
- Natalia Smoktunowicz
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Alejandro Ortiz Stern
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Vanessa D'Antongiovanni
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Eifion Robinson
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, UK
| | - Chris J Scotton
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Gabor Jarai
- Novartis Institutes of Biomedical Research, Horsham, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| |
Collapse
|
14
|
Huda R, Chang Z, Do J, McCrimmon DR, Martina M. Activation of astrocytic PAR1 receptors in the rat nucleus of the solitary tract regulates breathing through modulation of presynaptic TRPV1. J Physiol 2018; 596:497-513. [PMID: 29235097 DOI: 10.1113/jp275127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS In the rat nucleus of the solitary tract (NTS), activation of astrocytic proteinase-activated receptor 1 (PAR1) receptors leads to potentiation of neuronal synaptic activity by two mechanisms, one TRPV1-dependent and one TRPV1-independent. PAR1-dependent activation of presynaptic TRPV1 receptors facilitates glutamate release onto NTS neurons. The TRPV1-dependent mechanism appears to rely on astrocytic release of endovanilloid-like molecules. A subset of NTS neurons excited by PAR1 directly project to the rostral ventral respiratory group. The PAR1 initiated, TRPV1-dependent modulation of synaptic transmission in the NTS contributes to regulation of breathing. ABSTRACT Many of the cellular and molecular mechanisms underlying astrocytic modulation of synaptic function remain poorly understood. Recent studies show that G-protein coupled receptor-mediated astrocyte activation modulates synaptic transmission in the nucleus of the solitary tract (NTS), a brainstem nucleus that regulates crucial physiological processes including cardiorespiratory activity. By using calcium imaging and patch clamp recordings in acute brain slices of wild-type and TRPV1-/- rats, we show that activation of proteinase-activated receptor 1 (PAR1) in NTS astrocytes potentiates presynaptic glutamate release on NTS neurons. This potentiation is mediated by both a TRPV1-dependent and a TRPV1-independent mechanism. The TRPV1-dependent mechanism appears to require release of endovanilloid-like molecules from astrocytes, which leads to subsequent potentiation of presynaptic glutamate release via activation of presynaptic TRPV1 channels. Activation of NTS astrocytic PAR1 receptors elicits cFOS expression in neurons that project to respiratory premotor neurons and inhibits respiratory activity in control, but not in TRPV1-/- rats. Thus, activation of astrocytic PAR1 receptor in the NTS leads to a TRPV1-dependent excitation of NTS neurons causing a potent modulation of respiratory motor output.
Collapse
Affiliation(s)
- Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Zheng Chang
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Jeehaeh Do
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Donald R McCrimmon
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Marco Martina
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| |
Collapse
|
15
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
16
|
Readmond C, Wu C. Investigating detailed interactions between novel PAR1 antagonist F16357 and the receptor using docking and molecular dynamic simulations. J Mol Graph Model 2017; 77:205-217. [DOI: 10.1016/j.jmgm.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
|
17
|
Gorbacheva LR, Kiseleva EV, Savinkova IG, Strukova SM. A new concept of action of hemostatic proteases on inflammation, neurotoxicity, and tissue regeneration. BIOCHEMISTRY (MOSCOW) 2017; 82:778-790. [DOI: 10.1134/s0006297917070033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Sweeney AM, Fleming KE, McCauley JP, Rodriguez MF, Martin ET, Sousa AA, Leapman RD, Scimemi A. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology. Sci Rep 2017; 7:43606. [PMID: 28256580 PMCID: PMC5335386 DOI: 10.1038/srep43606] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/26/2017] [Indexed: 01/24/2023] Open
Abstract
The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke.
Collapse
Affiliation(s)
- Amanda M Sweeney
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA
| | - Kelsey E Fleming
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA
| | - John P McCauley
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA
| | - Marvin F Rodriguez
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA.,SUNY Oneonta, Dept. Computer Science, 108 Ravine Parkway, Oneonta NY 13820, USA
| | - Elliot T Martin
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA
| | - Alioscka A Sousa
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda MD 20852, USA
| | - Richard D Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda MD 20852, USA
| | - Annalisa Scimemi
- SUNY Albany, Dept. Biology, 1400 Washington Avenue, Albany NY 12222, USA
| |
Collapse
|
19
|
Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci Rep 2016; 6:35497. [PMID: 27762280 PMCID: PMC5071868 DOI: 10.1038/srep35497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism.
Collapse
|
20
|
Lee J, Ghil S. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/G i/o signaling by forming a distinct G protein-dependent complex in live cells. Cell Signal 2016; 28:391-400. [DOI: 10.1016/j.cellsig.2016.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
21
|
Abstract
Gαq signals with phospholipase C-β (PLC-β) to modify behavior in response to an agonist-bound GPCR. While the fundamental steps which prime Gαq to interact with PLC-β have been identified, questions remain concerning signal strength with PLC-β and other effectors. Gαq is generally viewed to function as a simple ON and OFF switch for its effector, dependent on the binding of GTP or GDP. However, Gαq does not have a single effector, Gαq has many different effectors. Furthermore, select effectors also regulate Gαq activity. PLC-β is a lipase and a GTPase activating protein (GAP) selective for Gαq. The contribution of G protein regulating activity to signal amplitude remains unclear. The unique PLC-β coiled-coil domain is essential for maximum Gαq response, both lipase and GAP. Nonetheless, coiled-coil domain associations necessary to maximum response have not been revealed by the structural approach. This review discusses progress towards understanding the basis for signal strength with PLC-β and other effectors. Shared and effector-specific interactions have been identified. Finally, the evidence for allosteric regulation of lipase stimulation by protein kinase C, the membrane, phosphatidic acid, phosphatidylinositol-4, 5-bisphosphate and GPCR is explored. Endogenous allosteric regulators can suppress or enhance maximum lipase stimulation dependent on the PLC-β coiled-coil domain. A better understanding of allosteric modulation may therefore identify a wealth of new targets to regulate signal strength and behavior.
Collapse
Affiliation(s)
- Irene Litosch
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine University of Miami, Miami, FL 33101-6189, USA.
| |
Collapse
|
22
|
Bushi D, Ben Shimon M, Shavit Stein E, Chapman J, Maggio N, Tanne D. Increased thrombin activity following reperfusion after ischemic stroke alters synaptic transmission in the hippocampus. J Neurochem 2015; 135:1140-8. [PMID: 26390857 DOI: 10.1111/jnc.13372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
Abstract
Thrombin, a key player in thrombogenesis, affects cells in the brain through activation of its receptors. Low levels of thrombin activity are protective while high levels are toxic. We sought to quantify thrombin activity levels and their spatial distribution in brains of mice following reperfusion after ischemic stroke focusing on infarct, peri-infarct and contralateral areas. In order to find out the contribution of brain-derived thrombin, mRNA levels of both prothrombin and factor X were determined. Furthermore, we assessed the effect of thrombin levels that were measured in the ischemic brain on synaptic transmission. We found that in the brains of mice following transient middle cerebral artery occlusion, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas (90 ± 33 and 60 ± 18 mU/mL, in the infarct and peri-infarct areas, respectively, compared to 11 ± 3 and 12 ± 5 mU/mL, in the corresponding contralateral areas; mean ± SE; p < 0.05). Brain mRNA levels of prothrombin and, in particular, factor X are up-regulated in the ischemic core. Hippocampal slices treated with thrombin concentrations as found in the ischemic hemisphere show altered synaptic responses. We conclude that high thrombin activity following reperfusion after ischemic stroke may cause synaptic dysfunction. Following transient middle cerebral artery occlusion in mice, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas. Brain mRNA levels of prothrombin and factor X are up-regulated in the ischemic core. Thrombin is known to affect synaptic function in a concentration dependent manner and hippocampal slices treated with the concentrations found in the ischemic hemisphere show altered synaptic responses. We conclude that in ischemic stroke, the high brain thrombin activity found after reperfusion may cause synaptic dysfunction.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Ben Shimon
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Tel Ha Shomer, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias. Proc Natl Acad Sci U S A 2015; 112:E3600-8. [PMID: 26100877 DOI: 10.1073/pnas.1508838112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G-protein-coupled receptor (GPCR) for the coagulant protease thrombin. Similar to other GPCRs, PAR1 is promiscuous and couples to multiple heterotrimeric G-protein subtypes in the same cell and promotes diverse cellular responses. The molecular mechanism by which activation of a given GPCR with the same ligand permits coupling to multiple G-protein subtypes is unclear. Here, we report that N-linked glycosylation of PAR1 at extracellular loop 2 (ECL2) controls G12/13 versus Gq coupling specificity in response to thrombin stimulation. A PAR1 mutant deficient in glycosylation at ECL2 was more effective at stimulating Gq-mediated phosphoinositide signaling compared with glycosylated wildtype receptor. In contrast, wildtype PAR1 displayed a greater efficacy at G12/13-dependent RhoA activation compared with mutant receptor lacking glycosylation at ECL2. Endogenous PAR1 rendered deficient in glycosylation using tunicamycin, a glycoprotein synthesis inhibitor, also exhibited increased PI signaling and diminished RhoA activation opposite to native receptor. Remarkably, PAR1 wildtype and glycosylation-deficient mutant were equally effective at coupling to Gi and β-arrestin-1. Consistent with preferential G12/13 coupling, thrombin-stimulated PAR1 wildtype strongly induced RhoA-mediated stress fiber formation compared with mutant receptor. In striking contrast, glycosylation-deficient PAR1 was more effective at increasing cellular proliferation, associated with Gq signaling, than wildtype receptor. These studies suggest that N-linked glycosylation at ECL2 contributes to the stabilization of an active PAR1 state that preferentially couples to G12/13 versus Gq and defines a previously unidentified function for N-linked glycosylation of GPCRs in regulating G-protein signaling bias.
Collapse
|
24
|
Singh A, Nunes JJ, Ateeq B. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases. Eur J Pharmacol 2015; 763:178-83. [PMID: 25981295 PMCID: PMC4784721 DOI: 10.1016/j.ejphar.2015.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases.
Collapse
Affiliation(s)
- Anukriti Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Jessica J Nunes
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Bushra Ateeq
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
25
|
Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9:151. [PMID: 25954157 PMCID: PMC4404867 DOI: 10.3389/fncel.2015.00151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Maximilian Lenz
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Benno Ikenberg
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Efrat Shavit Stein
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Joab Chapman
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - David Tanne
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Miri Neufeld
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel ; Department of Neurology and Epilepsy Unit, The Tel Aviv Sourasky Medical Center Tel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center Tel HaShomer, Israel
| |
Collapse
|
26
|
Hamamoto A, Kobayashi Y, Saito Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell Signal 2015; 27:818-27. [PMID: 25617691 DOI: 10.1016/j.cellsig.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 02/01/2023]
Abstract
Many G-protein-coupled receptors (GPCRs) are known to functionally couple to multiple G-protein subfamily members. Although promiscuous G-protein coupling enables GPCRs to mediate diverse signals, only a few GPCRs have been identified with differential determinants for coupling to distinct Gα proteins. Mammalian melanin-concentrating hormone receptor 1 (MCHR1) couples to dual G-protein subfamilies. However, the selectivity mechanisms between MCHR1 and different subtypes of Gα proteins are unclear. Our previous studies demonstrated that mammalian MCHR1 couples to both Gi/o and Gq, whereas goldfish MCHR1 exclusively couples to Gq. In this study, we analyzed multiple sequence alignments between rat and goldfish MCHR1s, and designed three multisubstituted mutants of rat MCHR1 by replacing corresponding residues with those in goldfish MCHR1, focusing on regions around the cytosolic intracellular loops. By measurement of intracellular Ca(2+) mobilization, we found that two MCHR1 mutants, i2_6sub and i3_6sub, which contained six simultaneously substituted residues in the second intracellular loop or a combination of substituted residues in the third intracellular loop and fifth transmembrane domain, respectively, significantly reduced Gi/o-sensitive pertussis toxin responsiveness without altering Gq-mediated activity. Analyses of 10 other substitutions revealed that the multiple substitutions in i2_6sub and i3_6sub were necessary for Gi/o-selective responses. As judged by Gi/o-dependent GTPγS binding and cyclic AMP assays, i2_6sub and i3_6sub elicited phenotypes for impaired Gi/o-mediated signaling. We also monitored the dynamic mass redistribution (DMR) in living cells, which reveals receptor activity as an optical trace containing activation of all GPCR coupling classes. Cells transfected with i2_6sub or i3_6sub exhibited reduced Gi/o-mediated DMR responses compared with those transfected with MCHR1. These data suggest that two different regions independently affect the Gi/o-protein preference, and that multiple residues comprise a conformation favoring Gi/o-protein coupling and subsequently result in Gi/o-selective signaling.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
27
|
Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood 2015; 125:1976-85. [PMID: 25587041 DOI: 10.1182/blood-2014-09-599910] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) couples the coagulation cascade to platelet activation during myocardial infarction and to endothelial inflammation during sepsis. This receptor demonstrates marked signaling bias. Its activation by thrombin stimulates prothrombotic and proinflammatory signaling, whereas its activation by activated protein C (APC) stimulates cytoprotective and antiinflammatory signaling. A challenge in developing PAR1-targeted therapies is to inhibit detrimental signaling while sparing beneficial pathways. We now characterize a novel class of structurally unrelated small-molecule PAR1 antagonists, termed parmodulins, and compare the activity of these compounds to previously characterized compounds that act at the PAR1 ligand-binding site. We find that parmodulins target the cytoplasmic face of PAR1 without modifying the ligand-binding site, blocking signaling through Gαq but not Gα13 in vitro and thrombus formation in vivo. In endothelium, parmodulins inhibit prothrombotic and proinflammatory signaling without blocking APC-mediated pathways or inducing endothelial injury. In contrast, orthosteric PAR1 antagonists such as vorapaxar inhibit all signaling downstream of PAR1. Furthermore, exposure of endothelial cells to nanomolar concentrations of vorapaxar induces endothelial cell barrier dysfunction and apoptosis. These studies demonstrate how functionally selective antagonism can be achieved by targeting the cytoplasmic face of a G-protein-coupled receptor to selectively block pathologic signaling while preserving cytoprotective pathways.
Collapse
|
28
|
Litosch I. Regulation of phospholipase C-β(1) GTPase-activating protein (GAP) function and relationship to G(q) efficacy. IUBMB Life 2014; 65:936-40. [PMID: 24170560 DOI: 10.1002/iub.1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022]
Abstract
How cells regulate Gq efficacy (initiation and termination of Gq signaling) to effect response remains a central question in pharmacology and drug discovery. Phospholipase C-β1 (PLC-β1) is an effector and a GTPase activating protein (GAP) specific to Gαq. The physiological function of PLC-β1 GAP remains unclear and controversial. GAPs are generally thought to function in deactivation of Gq signaling. However, PLC-β1 GAP has also been shown to increase signaling efficiency through kinetic coupling with the ligand-activated GPCR. GPCRs function as guanine nucleotide exchange factors (GEF) on the G protein activation cycle. This article sets forth a new hypothesis that could unify these conflicting paradigms as it pertains to physiological signaling and native levels of protein. It is proposed that the physiological function of PLC-β1 GAP is context-dependent and regulated by phosphatidic acid (PA). PA stimulates PLC-β1 GAP activity. In the absence of ligand, PLC-β1 GAP does indeed deactivate Gq signaling, limiting leaky activation to set the threshold for stimulation to sharpen signal kinetics. However in the presence of activating ligand, the increase in levels of PA would stimulate PLC-β1 GAP to kinetically couple with GPCR GEF to increase signaling efficiency. We found that PA-increased Gq efficiency is dependent on signaling via the unique PLC-β1 PA binding domain.
Collapse
|
29
|
Ayoub MA, Trebaux J, Vallaghe J, Charrier-Savournin F, Al-Hosaini K, Gonzalez Moya A, Pin JP, Pfleger KDG, Trinquet E. Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format. Front Endocrinol (Lausanne) 2014; 5:94. [PMID: 25002860 PMCID: PMC4066300 DOI: 10.3389/fendo.2014.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are key components of multiple important cell signaling pathways regulating diverse biological responses. This signaling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We report the development of a new cell-based Phospho-ERK1/2 assay (designated Phospho-ERK), which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently, or stably expressing the different receptors. The validation was performed for agonists, antagonists, and inhibitors in dose-response as well as kinetic analysis, and the signaling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z'-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signaling. Finally, our study is of great interest in the current context of investigating ERK1/2 signaling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signaling.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
| | | | | | | | - Khaled Al-Hosaini
- Department of Molecular Pharmacology, CNRS UMR5203, INSERM U661, Institute of Functional Genomics, Universities Montpellier 1 & 2, Montpellier, France
| | | | - Jean-Philippe Pin
- Department of Molecular Pharmacology, CNRS UMR5203, INSERM U661, Institute of Functional Genomics, Universities Montpellier 1 & 2, Montpellier, France
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
| | | |
Collapse
|
30
|
Ghil S, McCoy KL, Hepler JR. Regulator of G protein signaling 2 (RGS2) and RGS4 form distinct G protein-dependent complexes with protease activated-receptor 1 (PAR1) in live cells. PLoS One 2014; 9:e95355. [PMID: 24743392 PMCID: PMC3990635 DOI: 10.1371/journal.pone.0095355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/26/2014] [Indexed: 12/03/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) is a G-protein coupled receptor (GPCR) that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS) proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET), we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven) and either RGS2-Luciferase (RGS2-Luc) or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR) stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A) that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.
Collapse
Affiliation(s)
- Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Republic of Korea
| | - Kelly L. McCoy
- Department of Pharmacology, Rollins Research center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John R. Hepler
- Department of Pharmacology, Rollins Research center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sidhu TS, French SL, Hamilton JR. Differential signaling by protease-activated receptors: implications for therapeutic targeting. Int J Mol Sci 2014; 15:6169-83. [PMID: 24733067 PMCID: PMC4013622 DOI: 10.3390/ijms15046169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/29/2022] Open
Abstract
Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, "ligand" binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit-the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies.
Collapse
Affiliation(s)
- Tejminder S Sidhu
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Shauna L French
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Justin R Hamilton
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| |
Collapse
|
32
|
|
33
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
34
|
Su MT, Lin SH, Chen YC, Wu LW, Kuo PL. Prokineticin receptor variants (PKR1-I379V and PKR2-V331M) are protective genotypes in human early pregnancy. Reproduction 2013; 146:63-73. [DOI: 10.1530/rep-13-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor genes (PROKR1(PKR1) andPROKR2(PKR2)) play an important role in human early pregnancy. We have previously shown thatPROKR1andPROKR2are associated with recurrent miscarriage (RM) using the tag-SNP method. In this study, we aimed to identifyPROKR1andPROKR2variants in idiopathic RM patients by genotyping of the entire coding regions. Peripheral blood DNA samples of 100 RM women and 100 controls were subjected to sequence the entire exons ofPROKR1andPROKR2. Significant non-synonymous variant genotypes present in the original 200 samples were further confirmed in the extended samples of 144 RM patients and 153 controls. Genetic variants that were over- or under-represented in the patients were ectopically expressed in HEK293 and JAR cells to investigate their effects on intracellular calcium influx, cell proliferation, cell invasion, cell–cell adhesion, and tube organization. We found that the allele and genotype frequencies ofPROKR1(I379V) andPROKR2(V331M) were significantly increased in the normal control groups compared with idiopathic RM women (P<0.05).PROKR1(I379V) andPROKR2(V331M) decreased intracellular calcium influx but increased cell invasiveness (P<0.05), whereas cell proliferation, cell–cell adhesion, and tube organization were not significantly affected. In conclusion,PROKR1(I379V) andPROKR2(V331M) variants conferred lower risk for RM and may play protective roles in early pregnancy by altering calcium signaling and facilitating cell invasiveness.
Collapse
|
35
|
Maggio N, Itsekson Z, Dominissini D, Blatt I, Amariglio N, Rechavi G, Tanne D, Chapman J. Thrombin regulation of synaptic plasticity: implications for physiology and pathology. Exp Neurol 2013; 247:595-604. [PMID: 23454608 DOI: 10.1016/j.expneurol.2013.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Thrombin, a serine protease involved in the coagulation cascade has been recently shown to affect neuronal function following blood-brain barrier breakdown. Several lines of evidence have shown that thrombin may exist in the brain parenchyma under normal physiological conditions, yet its role in normal brain functions and synaptic transmission has not been established. In an attempt to shed light on the physiological functions of thrombin and Protease Activated Receptor 1 (PAR1) in the brain, we studied the effects of thrombin and a PAR1 agonist on long term potentiation (LTP) in mice hippocampal slices. Surprisingly, different concentrations of thrombin affect LTP through different molecular routes converging on PAR1. High thrombin concentrations induced an NMDA dependent, slow onset LTP, whereas low concentrations of thrombin promoted a VGCCs, mGluR-5 dependent LTP through activated Protein C (aPC). Remarkably, aPC facilitated LTP by activating PAR1 through an Endothelial Protein C Receptor (EPCR)-mediated mechanism which involves intracellular calcium stores. These findings reveal a novel mechanism by which PAR1 may regulate the threshold for synaptic plasticity in the hippocampus and provide additional insights into the role of this receptor in normal and pathological conditions.
Collapse
Affiliation(s)
- Nicola Maggio
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Arachiche A, de la Fuente M, Nieman MT. Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets. PLoS One 2013; 8:e55740. [PMID: 23405206 PMCID: PMC3566007 DOI: 10.1371/journal.pone.0055740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/29/2012] [Indexed: 12/17/2022] Open
Abstract
Thrombin activates platelets through protease activated receptors (PARs). Mouse platelets express PAR3 and PAR4. PAR3 does not signal in platelets. However, PAR4 is a relatively poor thrombin substrate and requires PAR3 as a cofactor at low thrombin concentrations. In this study we show that PAR3 also regulates PAR4 signaling. In response to thrombin (30–100 nM) or PAR4 activating peptide (AYPGKF), platelets from PAR3−/− mice had increased Gq signaling compared to wild type mice as demonstrated by a 1.6-fold increase in the maximum intracellular calcium (Ca2+) mobilization, an increase in phosphorylation level of protein kinase C (PKC) substrates, and a 2-fold increase of Ca2+ release from intracellular stores. Moreover, platelets from heterozygous mice (PAR3+/−) had an intermediate increase in maximum Ca2+ mobilization. Treatment of PAR3−/− mice platelets with P2Y12 antagonist (2MeSAMP) did not affect Ca2+ mobilization from PAR4 in response to thrombin or AYPGKF. The activation of RhoA-GTP downstream G12/13 signaling in response to thrombin was not significantly different between wild type and PAR3−/− mice. Since PAR3 influenced PAR4 signaling independent of agonist, we examined the direct interaction between PAR3 and PAR4 with bioluminescence resonance energy transfer (BRET). PAR3 and PAR4 form constitutive homodimers and heterodimers. In summary, our results demonstrate that in addition to enhancing PAR4 activation at low thrombin concentrations, PAR3 negatively regulates PAR4-mediated maximum Ca2+ mobilization and PKC activation in mouse platelets by physical interaction.
Collapse
Affiliation(s)
- Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - María de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|