1
|
Schlett K, Oueslati Morales CO, Bencsik N, Hausser A. Getting smart - Deciphering the neuronal functions of protein kinase D. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119812. [PMID: 39147241 DOI: 10.1016/j.bbamcr.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that play important roles in various signalling pathways in cells, including neuronal cells. In the nervous system, PKD has been shown to be involved in learning and memory formation by regulating neurotransmitter release, neurite outgrowth and dendrite development, synapse formation and synaptic plasticity. In addition, PKD has been implicated in pain perception or neuroprotection during oxidative stress. Dysregulation of PKD expression and activity has been linked to several neurological disorders, including autism and epilepsy. In this review, we summarize the current knowledge on the function of the PKD family members in neuronal cells, including the spatial regulation of their downstream signalling pathways. We will further discuss the potential role of PKD in the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Katalin Schlett
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Carlos O Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Norbert Bencsik
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Sugawara Y, Mizuno Y, Oku S, Sawada Y, Goto T. Role of protein kinase D1 in vasoconstriction and haemodynamics in rats. Microvasc Res 2024; 152:104627. [PMID: 37963515 DOI: 10.1016/j.mvr.2023.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
AIMS Protein kinase D (PKD), once considered an effector of protein kinase C (PKC), now plays many pathophysiological roles in various tissues. However, little is known about role of PKD in vascular function. We investigated the role of PKD in contraction of rat aorta and human aortic smooth muscle cells (HASMCs) and in haemodynamics in rats. METHODS AND RESULTS Isometric tension of rat aortic was measured to examine norepinephrine-induced contraction in the presence of PKD, PKC and Rho-kinase inhibitors. Phosphorylation of PKD1, myosin targeting subunit-1 (MYPT1), myosin light chain (MLC), CPI-17 and heat-shock protein 27 (HSP27), and actin polymerization were measured in the aorta. Phosphorylation of MYPT1 and MLC was also measured in HASMCs knocked down with specific siRNAs of PKD 1, 2 and 3. Intracellular calcium concentrations and cell shortening were measured in HASMCs. Norepinephrine-induced aortic contraction was accompanied by increased phosphorylation of PKD1, MYPT1 and MLC and actin polymerization, all of which were attenuated with PKD inhibitor CRT0066101. PKD1 phosphorylation was not inhibited by PKC inhibitor, chelerythrine or Rho kinase inhibitor, fasudil. In HASMCs, the phosphorylation of MYPT1 and MLC was attenuated by PKD1, but not PKD2, 3 knockdown. In HASMCs, CRT0066101 inhibited norepinephrine-induced cell shortening without affecting calcium concentration. Administration of CRT0066101 decreased systemic vascular resistance and blood pressure without affecting cardiac output in rats. CONCLUSIONS PKD1 may play roles in aorta contraction and haemodynamics via phosphorylation of MYPT1 and actin polymerization in a calcium-independent manner.
Collapse
Affiliation(s)
- Yoh Sugawara
- Department of Anaesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Mizuno
- Department of Anaesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Shinya Oku
- Department of Anaesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Sawada
- Department of Anaesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahisa Goto
- Department of Anaesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Hezinger L, Bauer S, Ellwanger K, Piotrowsky A, Biber F, Venturelli S, Kufer TA. NOD1 cooperates with HAX-1 to promote cell migration in a RIPK2- and NF-ĸB-independent manner. FEBS J 2023; 290:5295-5312. [PMID: 37488967 DOI: 10.1111/febs.16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.
Collapse
Affiliation(s)
- Lucy Hezinger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sarah Bauer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Biochemistry of Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Felix Biber
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Gutiérrez-Galindo E, Yilmaz ZH, Hausser A. Membrane trafficking in breast cancer progression: protein kinase D comes into play. Front Cell Dev Biol 2023; 11:1173387. [PMID: 37293129 PMCID: PMC10246754 DOI: 10.3389/fcell.2023.1173387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression.
Collapse
Affiliation(s)
| | - Zeynep Hazal Yilmaz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Ganipineni VDP, Idavalapati ASKK, Tamalapakula SS, Moparthi V, Potru M, Owolabi OJ. Depression and Hand-Grip: Unraveling the Association. Cureus 2023; 15:e38632. [PMID: 37159619 PMCID: PMC10163904 DOI: 10.7759/cureus.38632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
This review article explores the association between hand-grip strength and depression. A total of 14 studies were carefully considered to provide a comprehensive analysis of the topic. The studies reveal a consistent association between low hand-grip strength and depressive symptoms, independent of age, gender, and chronic disease status. The evidence suggests that hand-grip strength assessment could be a useful tool for identifying individuals at risk of depression, particularly older adults and those with chronic diseases. Incorporating physical activity and strength training into treatment plans can contribute to better mental health outcomes. Hand-grip strength assessment can also be used as a monitoring tool to track changes in physical and mental health over time in individuals with depression. Healthcare professionals should consider the relationship between hand-grip strength and depression when evaluating patients and developing treatment plans. The findings from this comprehensive clinical review have important clinical implications and highlight the importance of considering physical health factors in the context of mental health.
Collapse
Affiliation(s)
- Vijay Durga Pradeep Ganipineni
- Department of General Medicine, SRM Medical College Hospital and Research Center, Chennai, IND
- Department of General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | | | | | - Vagdevi Moparthi
- Department of Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | - Monica Potru
- Department of Medicine, Guntur Medial College, Guntur, IND
| | | |
Collapse
|
6
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nat Commun 2023; 14:694. [PMID: 36755036 PMCID: PMC9907212 DOI: 10.1038/s41467-023-36140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.
Collapse
|
8
|
Ramos-Alvarez I, Lee L, Jensen RT. Cofilin activation in pancreatic acinar cells plays a pivotal convergent role for mediating CCK-stimulated enzyme secretion and growth. Front Physiol 2023; 14:1147572. [PMID: 37138671 PMCID: PMC10149936 DOI: 10.3389/fphys.2023.1147572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction: The actin regulatory protein, cofilin plays a key signaling role in many cells for numerous cellular responses including in proliferation, development, motility, migration, secretion and growth. In the pancreas it is important in islet insulin secretion, growth of pancreatic cancer cells and in pancreatitis. However, there are no studies on its role or activation in pancreatic acinar cells. Methods: To address this question, we studied the ability of CCK to activate cofilin in pancreatic acinar cells, AR42J cells and CCK1-R transfected Panc-1 cells, the signaling cascades involved and its effect on enzyme secretion and MAPK activation, a key mediator of pancreatic growth. Results: CCK (0.3 and 100 nM), TPA, carbachol, Bombesin, secretin and VIP decreased phospho-cofilin (i.e., activate cofilin) and both phospho-kinetic and inhibitor studies of cofilin, LIM kinase (LIMK) and Slingshot Protein Phosphatase (SSH1) demonstrated these conventional activators of cofilin were not involved. Serine phosphatases inhibitors (calyculin A and okadaic acid), however inhibited CCK/TPA-cofilin activation. Studies of various CCK-activated signaling cascades showed activation of PKC/PKD, Src, PAK4, JNK, ROCK mediated cofilin activation, but not PI3K, p38, or MEK. Furthermore, using both siRNA and cofilin inhibitors, cofilin activation was shown to be essential for CCK-mediated enzyme secretion and MAPK activation. Conclusion: These results support the conclusion that cofilin activation plays a pivotal convergent role for various cell signaling cascades in CCK mediated growth/enzyme secretion in pancreatic acini.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- National Kyushu Cancer Center, Department of Hepato-Biliary-Pancreatology, Fukuoka, Japan
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Robert T. Jensen,
| |
Collapse
|
9
|
A genetic correlation and bivariate genome-wide association study of grip strength and depression. PLoS One 2022; 17:e0278392. [PMID: 36520780 PMCID: PMC9754196 DOI: 10.1371/journal.pone.0278392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Grip strength is an important biomarker reflecting muscle strength, and depression is a psychiatric disorder all over the world. Several studies found a significant inverse association between grip strength and depression, and there is also evidence for common physiological mechanisms between them. We used twin data from Qingdao, China to calculate genetic correlations, and we performed a bivariate GWAS to explore potential SNPs, genes, and pathways in common between grip strength and depression. 139 pairs of Dizygotic twins were used for bivariate GWAS. VEAGSE2 and PASCAL software were used for gene-based analysis and pathway enrichment analysis, respectively. And the resulting SNPs were subjected to eQTL analysis and pleiotropy analysis. The genetic correlation coefficient between grip strength and depression was -0.41 (-0.96, -0.15). In SNP-based analysis, 7 SNPs exceeded the genome-wide significance level (P<5×10-8) and a total of 336 SNPs reached the level of suggestive significance (P<1×10-5). Gene-based analysis and pathway-based analysis identified genes and pathways related to muscle strength and the nervous system. The results of eQTL analysis were mainly enriched in tissues such as the brain, thyroid, and skeletal muscle. Pleiotropy analysis shows that 9 of the 15 top SNPs were associated with both grip strength and depression. In conclusion, this bivariate GWAS identified potentially common pleiotropic SNPs, genes, and pathways in grip strength and depression.
Collapse
|
10
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
12
|
Nair AG, Muttathukunnel P, Müller M. Distinct molecular pathways govern presynaptic homeostatic plasticity. Cell Rep 2021; 37:110105. [PMID: 34910905 PMCID: PMC8692748 DOI: 10.1016/j.celrep.2021.110105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through neurotransmitter release potentiation. PHP is thought to be triggered by impaired receptor function and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly reduce synaptic transmission result in different responses at the Drosophila neuromuscular junction. While receptor inhibition by the glutamate receptor (GluR) antagonist γ-D-glutamylglycine (γDGG) is not compensated by PHP, the GluR inhibitors Philanthotoxin-433 (PhTx) and Gyki-53655 (Gyki) induce compensatory PHP. Intriguingly, PHP triggered by PhTx and Gyki involve separable signaling pathways, including inhibition of distinct GluR subtypes, differential modulation of the active-zone scaffold Bruchpilot, and short-term plasticity. Moreover, while PHP upon Gyki treatment does not require genes promoting PhTx-induced PHP, it involves presynaptic protein kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.
Collapse
Affiliation(s)
- Anu G Nair
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Paola Muttathukunnel
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
13
|
Oueslati Morales CO, Ignácz A, Bencsik N, Sziber Z, Rátkai AE, Lieb WS, Eisler SA, Szűcs A, Schlett K, Hausser A. Protein kinase D promotes activity-dependent AMPA receptor endocytosis in hippocampal neurons. Traffic 2021; 22:454-470. [PMID: 34564930 DOI: 10.1111/tra.12819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.
Collapse
Affiliation(s)
- Carlos O Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Attila Ignácz
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Norbert Bencsik
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Zsofia Sziber
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Anikó Erika Rátkai
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Wolfgang S Lieb
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Attila Szűcs
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Schlett
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Veazey JM, Eliseeva SI, Hillman SE, Stiles K, Smyth TR, Morrissey CE, Tillotson EJ, Topham DJ, Chapman TJ, Georas SN. Inhibiting Protein Kinase D Promotes Airway Epithelial Barrier Integrity in Mouse Models of Influenza A Virus Infection. Front Immunol 2020; 11:580401. [PMID: 33381112 PMCID: PMC7767883 DOI: 10.3389/fimmu.2020.580401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Rationale Protein kinase D (PKD) is a serine/threonine kinase family that is involved in a wide array of signaling pathways. Although PKD has been implicated in immune responses, relatively little is known about the function of PKD in the lung or during viral infections. Objectives We investigated the hypothesis that PKD is involved in multiple aspects of host response to viral infection. Methods The selective PKD inhibitor CRT0010166 was administered to C57BL/6 mice prior to and during challenge with either inhaled double-stranded RNA or Influenza A Virus. PKD signaling pathways were investigated in human bronchial epithelial cells treated with CRT0010166, double-stranded RNA, and/or infected with Influenza A Virus. Measurements Total protein and albumin accumulation in the bronchoalveolar fluid was used to asses inside/out leak. Clearance of inhaled FITC-dextran out of the airspace was used to assess outside/in leak. Cytokines and neutrophils in bronchoalveolar lavage were assayed with ELISAs and cytospins respectively. Viral RNA level was assessed with RT-PCR and protein level assessed by ELISA. Main Results PKD inhibition prevented airway barrier dysfunction and pro-inflammatory cytokine release. Epithelial cells express PKD3, and PKD3 siRNA knock-down inhibited polyI:C induced cytokine production. Lung epithelial-specific deletion of PKD3 (CC10-Cre x PKD3-floxed mice) partially attenuated polyI:C-induced barrier disruption in vivo. Mechanistically, we found that PKD promoted cytokine mRNA transcription, not secretion, likely through activating the transcription factor Sp1. Finally, prophylactic CRT treatment of mice promoted barrier integrity during influenza virus infection and reduced viral burden. Conclusions Inhibiting PKD promotes barrier integrity, limit pathogenic cytokine levels, and restrict Influenza A Virus infection. Therefore, PKD is an attractive target for novel antiviral therapeutics.
Collapse
Affiliation(s)
- Janelle M Veazey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Sophia I Eliseeva
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Sara E Hillman
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Kristie Stiles
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Timothy R Smyth
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | | | - Erika J Tillotson
- Department of Biology, Cornell University, Ithaca, NY, United States
| | - Dave J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Timothy J Chapman
- Center for Infectious Disease and Immunology, Rochester Regional Health, Rochester, NY, United States
| | - Steve N Georas
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.,Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States.,Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| |
Collapse
|
15
|
Leightner AC, Mello Guimaraes Meyers C, Evans MD, Mansky KC, Gopalakrishnan R, Jensen ED. Regulation of Osteoclast Differentiation at Multiple Stages by Protein Kinase D Family Kinases. Int J Mol Sci 2020; 21:ijms21031056. [PMID: 32033440 PMCID: PMC7036879 DOI: 10.3390/ijms21031056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Balanced osteoclast and osteoblast activity is necessary for skeletal health, whereas unbalanced osteoclast activity causes bone loss in many skeletal conditions. A better understanding of pathways that regulate osteoclast differentiation and activity is necessary for the development of new therapies to better manage bone resorption. The roles of Protein Kinase D (PKD) family of serine/threonine kinases in osteoclasts have not been well characterized. In this study we use immunofluorescence analysis to reveal that PKD2 and PKD3, the isoforms expressed in osteoclasts, are found in the nucleus and cytoplasm, the mitotic spindle and midbody, and in association with the actin belt. We show that PKD inhibitors CRT0066101 and CID755673 inhibit several distinct aspects of osteoclast formation. Treating bone marrow macrophages with lower doses of the PKD inhibitors had little effect on M-CSF + RANKL-dependent induction into committed osteoclast precursors, but inhibited their motility and subsequent differentiation into multinucleated mature osteoclasts, whereas higher doses of the PKD inhibitors induced apoptosis of the preosteoclasts. Treating post-fusion multinucleated osteoclasts with the inhibitors disrupted the osteoclast actin belts and impaired their resorptive activity. In conclusion, these data implicate PKD kinases as positive regulators of osteoclasts, which are essential for multiple distinct processes throughout their formation and function.
Collapse
Affiliation(s)
- Amanda C. Leightner
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Carina Mello Guimaraes Meyers
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Michael D. Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-626-4159
| |
Collapse
|
16
|
Maier D, Nagel AC, Preiss A. Genetic interactions between Protein Kinase D and Lobe mutants during eye development of Drosophila melanogaster. Hereditas 2019; 156:37. [PMID: 31889943 PMCID: PMC6924039 DOI: 10.1186/s41065-019-0113-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background In Drosophila, the development of the fly eye involves the activity of several, interconnected pathways that first define the presumptive eye field within the eye anlagen, followed by establishment of the dorso-ventral boundary, and the regulation of growth and apoptosis. In Lobe (L) mutant flies, parts of the eye or even the complete eye are absent because the eye field has not been properly defined. Manifold genetic interactions indicate that L influences the activity of several signalling pathways, resulting in a conversion of eye tissue into epidermis, and in the induction of apoptosis. As information on the molecular nature of the L mutation is lacking, the underlying molecular mechanisms are still an enigma. Results We have identified Protein Kinase D (PKD) as a strong modifier of the L mutant phenotype. PKD belongs to the PKC/CAMK class of Ser/Thr kinases that have been involved in diverse cellular processes including stress resistance and growth. Despite the many roles of PKD, Drosophila PKD null mutants are without apparent phenotype apart from sensitivity to oxidative stress. Here we report an involvement of PKD in eye development in the sensitized genetic background of Lobe. Absence of PKD strongly enhanced the dominant eye defects of heterozygous L2 flies, and decreased their viability. Moreover, eye-specific overexpression of an activated isoform of PKD considerably ameliorated the dominant L2 phenotype. This genetic interaction was not allele specific but similarly seen with three additional, weaker L alleles (L1, L5, LG), demonstrating its specificity. Conclusions We propose that PKD-mediated phosphorylation is involved in underlying processes causing the L phenotype, i.e. in the regulation of growth, the epidermal transformation of eye tissue and apoptosis, respectively.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
17
|
Lieb WS, Lungu C, Tamas R, Berreth H, Rathert P, Storz P, Olayioye MA, Hausser A. The GEF-H1/PKD3 signaling pathway promotes the maintenance of triple-negative breast cancer stem cells. Int J Cancer 2019; 146:3423-3434. [PMID: 31745977 DOI: 10.1002/ijc.32798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase D3 (PKD3) is upregulated in triple-negative breast cancer (TNBC) and associated with cell proliferation and metastasis development but its precise pro-oncogenic function is unknown. Here we show that PKD3 is required for the maintenance of the TNBC stem cell population. The depletion of PKD3 in MDA-MB-231 cells reduced the cancer stem cell frequency in vitro and tumor initiation potential in vivo. We further provide evidence that the RhoGEF GEF-H1 is upstream of PKD3 activation in TNBC stem cells. Most importantly, pharmacological PKD inhibition in combination with paclitaxel synergistically decreased oncosphere and colony formation efficiency in vitro and tumor recurrence in vivo. Based on our results we propose that targeting the GEF-H1/PKD3 signaling pathway in combination with chemotherapy might provide an effective therapeutic option for TNBC.
Collapse
Affiliation(s)
- Wolfgang S Lieb
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Raluca Tamas
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Hannah Berreth
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Biochemistry Department, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology and Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Maier D, Nagel AC, Kelp A, Preiss A. Protein Kinase D Is Dispensable for Development and Survival of Drosophila melanogaster. G3 (BETHESDA, MD.) 2019; 9:2477-2487. [PMID: 31142547 PMCID: PMC6686927 DOI: 10.1534/g3.119.400307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
Members of the Protein Kinase D (PKD) family are involved in numerous cellular processes in mammals, including cell survival after oxidative stress, polarized transport of Golgi vesicles, as well as cell migration and invasion. PKD proteins belong to the PKC/CAMK class of serine/threonine kinases, and transmit diacylglycerol-regulated signals. Whereas three PKD isoforms are known in mammals, Drosophila melanogaster contains a single PKD homolog. Previous analyses using overexpression and RNAi studies indicated likewise multi-facetted roles for Drosophila PKD, including the regulation of secretory transport and actin-cytoskeletal dynamics. Recently, involvement in growth regulation has been proposed based on the hypomorphic dPKDH allele. We have generated PKD null alleles that are homozygous viable without apparent phenotype. They largely match control flies regarding fertility, developmental timing and weight. Males, but not females, are slightly shorter lived and starvation sensitive. Furthermore, migration of pole cells in embryos and border cells in oocytes appears normal. PKD mutants tolerate heat, cold and osmotic stress like the control but are sensitive to oxidative stress, conforming to the described role for mammalian PKDs. A candidate screen to identify functionally redundant kinases uncovered genetic interactions of PKD with Pkcδ, sqa and Drak mutants, further supporting the role of PKD in oxidative stress response, and suggesting its involvement in starvation induced autophagy and regulation of cytoskeletal dynamics. Overall, PKD appears dispensable for fly development and survival presumably due to redundancy, but influences environmental responses.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Alexandra Kelp
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
19
|
Martínez-León E, Amable G, Jácamo R, Picco ME, Anaya L, Rozengurt E, Rey O. Protein kinase D1 inhibition interferes with mitosis progression. J Cell Physiol 2019; 234:20510-20519. [PMID: 30997696 DOI: 10.1002/jcp.28651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/23/2022]
Abstract
Protein kinase D1 (PKD1) plays a vital role in signal transduction, cell proliferation, membrane trafficking, and cancer; however, the majority of the studies up to date had centered primarily on PKD1 functions in interphase, very little is known about its role during cell division. We previously demonstrated that during mitosis PKD1 is activated and associated with centrosomes, spindles, and midbodies. However, these observations did not address whether PKD1 was associated with mitosis regulation. Accordingly, we used rapidly acting PKD-specific inhibitors to examine the contribution of PKD1 the sequence of events in mitosis. We found that although PKD1 overexpression did not affect mitosis progression, suppression of its catalytic activity by two structurally unrelated inhibitors (kb NB 142-70 and CRT 0066101) induced a significant delay in metaphase to anaphase transition time. PKD1 inhibition during mitosis also produced the appearance of abnormal spindles, defects in chromosome alignment, and segregation as well as apoptosis. Thus, these observations indicate that PKD1 activity is associated with mitosis regulation.
Collapse
Affiliation(s)
- Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín," Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín," Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Rodrigo Jácamo
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, University of Texas, Houston, TX
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín," Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Laura Anaya
- División de Hematología, Hospital de Clínicas "José de San Martín," CABA, Buenos Aires, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín," Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
20
|
Plasmacytoid Dendritic Cells and Infected Cells Form an Interferogenic Synapse Required for Antiviral Responses. Cell Host Microbe 2019; 25:730-745.e6. [PMID: 31003939 DOI: 10.1016/j.chom.2019.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/03/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Type I interferon (IFN-I) is critical for antiviral defense, and plasmacytoid dendritic cells (pDCs) are a predominant source of IFN-I during virus infection. pDC-mediated antiviral responses are stimulated upon physical contact with infected cells, during which immunostimulatory viral RNA is transferred to pDCs, leading to IFN production via the nucleic acid sensor TLR7. Using dengue, hepatitis C, and Zika viruses, we demonstrate that the contact site of pDCs with infected cells is a specialized platform we term the interferogenic synapse, which enables viral RNA transfer and antiviral responses. This synapse is formed via αLβ2 integrin-ICAM-1 adhesion complexes and the recruitment of the actin network and endocytic machinery. TLR7 signaling in pDCs promotes interferogenic synapse establishment and provides feed-forward regulation, sustaining pDC contacts with infected cells. This interferogenic synapse may allow pDCs to scan infected cells and locally secrete IFN-I, thereby confining a potentially deleterious response.
Collapse
|
21
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
22
|
Durand N, Borges S, Hall T, Bastea L, Döppler H, Edenfield BH, Thompson EA, Geiger X, Storz P. The phosphorylation status of PIP5K1C at serine 448 can be predictive for invasive ductal carcinoma of the breast. Oncotarget 2018; 9:36358-36370. [PMID: 30555634 PMCID: PMC6284740 DOI: 10.18632/oncotarget.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol-4-phosphate 5-kinase type-1C (PIP5K1C) is a lipid kinase that regulates focal adhesion dynamics and cell attachment through site-specific formation of phosphatidylinositol-4,5-bisphosphate (PI4,5P2). By comparing normal breast tissue to carcinoma in situ and invasive ductal carcinoma subtypes, we here show that the phosphorylation status of PIP5K1C at serine residue 448 (S448) can be predictive for breast cancer progression to an aggressive phenotype, while PIP5K1C expression levels are not indicative for this event. PIP5K1C phosphorylation at S448 is downregulated in invasive ductal carcinoma, and similarly, the expression levels of PKD1, the kinase that phosphorylates PIP5K1C at this site, are decreased. Overall, since PKD1 is a negative regulator of cell migration and invasion in breast cancer, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tavia Hall
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
23
|
Jensch A, Frey Y, Bitschar K, Weber P, Schmid S, Hausser A, Olayioye MA, Radde NE. The tumor suppressor protein DLC1 maintains protein kinase D activity and Golgi secretory function. J Biol Chem 2018; 293:14407-14416. [PMID: 30045871 DOI: 10.1074/jbc.ra118.003787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Many newly synthesized cellular proteins pass through the Golgi complex from where secretory transport carriers sort them to the plasma membrane and the extracellular environment. The formation of these secretory carriers at the trans-Golgi network is promoted by the protein kinase D (PKD) family of serine/threonine kinases. Here, using mathematical modeling and experimental validation of the PKD activation and substrate phosphorylation kinetics, we reveal that the expression level of the PKD substrate deleted in liver cancer 1 (DLC1), a Rho GTPase-activating protein that is inhibited by PKD-mediated phosphorylation, determines PKD activity at the Golgi membranes. RNAi-mediated depletion of DLC1 reduced PKD activity in a Rho-Rho-associated protein kinase (ROCK)-dependent manner, impaired the exocytosis of the cargo protein horseradish peroxidase, and was associated with the accumulation of the small GTPase RAB6 on Golgi membranes, indicating a protein-trafficking defect. In summary, our findings reveal that DLC1 maintains basal activation of PKD at the Golgi and Golgi secretory activity, in part by down-regulating Rho-ROCK signaling. We propose that PKD senses cytoskeletal changes downstream of DLC1 to coordinate Rho signaling with Golgi secretory function.
Collapse
Affiliation(s)
- Antje Jensch
- From the Institute for Systems Theory and Automatic Control and
| | - Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Katharina Bitschar
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Patrick Weber
- From the Institute for Systems Theory and Automatic Control and
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and.,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and .,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| | - Nicole E Radde
- From the Institute for Systems Theory and Automatic Control and .,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Novozhylov DO, Karpov PA, Blume YB. Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wood BM, Bossuyt J. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System. Front Pharmacol 2017; 8:9. [PMID: 28174535 PMCID: PMC5258689 DOI: 10.3389/fphar.2017.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| |
Collapse
|
26
|
Durand N, Bastea LI, Long J, Döppler H, Ling K, Storz P. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ. Sci Rep 2016; 6:35963. [PMID: 27775029 PMCID: PMC5075913 DOI: 10.1038/srep35963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023] Open
Abstract
Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Jason Long
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| |
Collapse
|
27
|
Aicart-Ramos C, He SDQ, Land M, Rubin CS. A Novel Conserved Domain Mediates Dimerization of Protein Kinase D (PKD) Isoforms: DIMERIZATION IS ESSENTIAL FOR PKD-DEPENDENT REGULATION OF SECRETION AND INNATE IMMUNITY. J Biol Chem 2016; 291:23516-23531. [PMID: 27662904 DOI: 10.1074/jbc.m116.735399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling pathways regulated by diacylglycerol. Important physiological processes (including secretion, immune responses, motility, and transcription) are placed under diacylglycerol control by the distinctive substrate specificity and subcellular distribution of PKDs. Potentially, broadly co-expressed PKD polypeptides may interact to generate homo- or heteromultimeric regulatory complexes. However, the frequency, molecular basis, regulatory significance, and physiological relevance of stable PKD-PKD interactions are largely unknown. Here, we demonstrate that mammalian PKDs 1-3 and the prototypical Caenorhabditis elegans PKD, DKF-2A, are exclusively (homo- or hetero-) dimers in cell extracts and intact cells. We discovered and characterized a novel, highly conserved N-terminal domain, comprising 92 amino acids, which mediates dimerization of PKD1, PKD2, and PKD3 monomers. A similar domain directs DKF-2A homodimerization. Dimerization occurred independently of properties of the regulatory and kinase domains of PKDs. Disruption of PKD dimerization abrogates secretion of PAUF, a protein carried in small trans-Golgi network-derived vesicles. In addition, disruption of DKF-2A homodimerization in C. elegans intestine impaired and degraded the immune defense of the intact animal against an ingested bacterial pathogen. Finally, dimerization was indispensable for the strong, dominant negative effect of catalytically inactive PKDs. Overall, the structural integrity and function of the novel dimerization domain are essential for PKD-mediated regulation of a key aspect of cell physiology, secretion, and innate immunity in vivo.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Sophia Dan Qing He
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Marianne Land
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Charles S Rubin
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
28
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1158] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
29
|
Durand N, Borges S, Storz P. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion. J Clin Med 2016; 5:jcm5020020. [PMID: 26848698 PMCID: PMC4773776 DOI: 10.3390/jcm5020020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
30
|
Bencsik N, Szíber Z, Liliom H, Tárnok K, Borbély S, Gulyás M, Rátkai A, Szűcs A, Hazai-Novák D, Ellwanger K, Rácz B, Pfizenmaier K, Hausser A, Schlett K. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation. J Cell Biol 2015; 210:771-83. [PMID: 26304723 PMCID: PMC4555815 DOI: 10.1083/jcb.201501114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
PKD regulates the stabilization of the F-actin network within dendritic spines upon chemically induced plasticity changes and is needed for proper hippocampal LTP and spatial memory formation. Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.
Collapse
Affiliation(s)
- Norbert Bencsik
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Márton Gulyás
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Anikó Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Diána Hazai-Novák
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
31
|
Durand N, Borges S, Storz P. Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cell Mol Life Sci 2015; 72:4369-82. [PMID: 26253275 DOI: 10.1007/s00018-015-2011-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
32
|
C1 domain-targeted isophthalates as protein kinase C modulators: structure-based design, structure–activity relationships and biological activities. Biochem Soc Trans 2014; 42:1543-9. [DOI: 10.1042/bst20140181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinase C (PKC) is a serine/threonine kinase belonging to the AGC family. PKC isoenzymes are activated by phospholipid-derived second messengers, transmit their signal by phosphorylating specific substrates and play a pivotal role in the regulation of various cell functions, including metabolism, growth, differentiation and apoptosis. Therefore they represent an interesting molecular target for the treatment of several diseases, such as cancer and Alzheimer's disease. Adopting a structure-based approach on the crystal structure of the PKCδ C1B domain, our team has developed isophthalic acid derivatives that are able to modify PKC functions by binding to the C1 domain of the enzyme. Bis[3-(trifluoromethyl)benzyl] 5-(hydroxymethyl)isophthalate (HMI-1a3) and bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate (HMI-1b11) were selected from a set of compounds for further studies due to their high affinity for the C1 domains of PKCα and PKCδ. HMI-1a3 showed marked antiproliferative activity in HeLa cells whereas HMI-1b11 induced differentiation and supported neurite growth in SH-SY5Y cells. Our aim in the future is to improve the selectivity and potency of isophthalate derivatives, to clarify their mechanism of action in the cellular environment and to assess their efficacy in cell-based and in vivo disease models. HMI-1a3 has already been selected for a further project and redesigned to function as a probe immobilized on an affinity chromatography column. It will be used to identify cellular target proteins from cell lysates, providing new insights into the mechanism of action of HMI-1a3.
Collapse
|
33
|
Navarro MN, Goebel J, Hukelmann JL, Cantrell DA. Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks. Mol Cell Proteomics 2014; 13:3544-57. [PMID: 25266776 PMCID: PMC4256504 DOI: 10.1074/mcp.m113.037242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope Labeling of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T-cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription, and translation. In other cell types, PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages.
Collapse
Affiliation(s)
- María N Navarro
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Juergen Goebel
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Jens L Hukelmann
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Doreen A Cantrell
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K.
| |
Collapse
|
34
|
Fraire JC, Masseroni ML, Jausoro I, Perassi EM, Diaz Añel AM, Coronado EA. Identification, localization, and quantification of neuronal cell membrane receptors with plasmonic probes: role of protein kinase D1 in their distribution. ACS NANO 2014; 8:8942-58. [PMID: 25137054 DOI: 10.1021/nn501575c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Detecting, imaging, and being able to localize the distribution of several cell membrane receptors on a single neuron are very important topics in neuroscience research. In the present work, the distribution of metabotropic glutamate receptor 1a (mGluR1a) density on neuron cells on subcellular length scales is determined by evaluating the role played by protein kinase D1 (PKD1) in the trafficking of membrane proteins, comparing the distribution of mGluR1a in experiments performed in endogenous PKD1 expression with those in the presence of kinase-inactive protein kinase D1 (PKD1-kd). The localization, distribution, and density of cell surface mGluR1a were evaluated using 90 nm diameter Au nanoparticle (NP) probes specifically functionalized with a high-affinity and multivalent labeling function, which allows not only imaging NPs where this receptor is present but also quantifying by optical means the NP density. This is so because the NP generates a density (ρ)-dependent SERS response that facilitated a spatial mapping of the mGluR1a density distribution on subcellular length scales (dendrites and axons) in an optical microscope. The measured ρ values were found to be significantly higher on dendrites than on axons for endogenous PKD1, while an increase of ρ on axons was observed when PKD1 is altered. The spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the results obtained by fluorescence bright-field analysis and dark-field spectroscopy and provided additional structural details. In addition, it is shown using electrodynamic simulations that SERS spectroscopy could be a very sensitive tool for the spatial mapping of cell membrane receptors on subcellular length scales, as SERS signals are almost linearly dependent on NP density and therefore give indirect information on the distribution of cell membrane proteins. This result is important since the calibration of the ρ-dependent near-field enhancement of the Au immunolabels through correlation of SERS and SEM paves the way toward quantitative immunolabeling studies of cell membrane proteins involved in neuron polarity. From the molecular biology point of view, this study shows that in cultured hippocampal pyramidal cells mGluR1a is predominantly transported to dendrites and excluded from axons. Expression of kinase-inactive protein kinase D1 (PKD1-kd) dramatically and selectively alters the intracellular trafficking and membrane delivery of mGluR1a-containing vesicles.
Collapse
Affiliation(s)
- Juan C Fraire
- INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and ‡INIMEC, Laboratorio de Neurobiología, Universidad Nacional de Córdoba , Córdoba, 5000, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Bielig H, Lautz K, Braun PR, Menning M, Machuy N, Brügmann C, Barisic S, Eisler SA, Andree M, Zurek B, Kashkar H, Sansonetti PJ, Hausser A, Meyer TF, Kufer TA. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog 2014; 10:e1004351. [PMID: 25187968 PMCID: PMC4154870 DOI: 10.1371/journal.ppat.1004351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023] Open
Abstract
NOD1 is an intracellular pathogen recognition receptor that contributes to anti-bacterial innate immune responses, adaptive immunity and tissue homeostasis. NOD1-induced signaling relies on actin remodeling, however, the details of the connection of NOD1 and the actin cytoskeleton remained elusive. Here, we identified in a druggable-genome wide siRNA screen the cofilin phosphatase SSH1 as a specific and essential component of the NOD1 pathway. We show that depletion of SSH1 impaired pathogen induced NOD1 signaling evident from diminished NF-κB activation and cytokine release. Chemical inhibition of actin polymerization using cytochalasin D rescued the loss of SSH1. We further demonstrate that NOD1 directly interacted with SSH1 at F-actin rich sites. Finally, we show that enhanced cofilin activity is intimately linked to NOD1 signaling. Our data thus provide evidence that NOD1 requires the SSH1/cofilin network for signaling and to detect bacterial induced changes in actin dynamics leading to NF-κB activation and innate immune responses.
Collapse
Affiliation(s)
- Harald Bielig
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Peter R. Braun
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis-Innovationszentrum Center for Systems Biomedicine, Falkensee, Germany
| | - Maureen Menning
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christine Brügmann
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Sandra Barisic
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A. Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maria Andree
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Birte Zurek
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Institut Pasteur, Paris, France
- Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas A. Kufer
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
36
|
Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis. PLoS One 2014; 9:e101983. [PMID: 25000413 PMCID: PMC4084945 DOI: 10.1371/journal.pone.0101983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/12/2014] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.
Collapse
|
37
|
Aicart-Ramos C, Sánchez-Ruiloba L, Gómez-Parrizas M, Zaragoza C, Iglesias T, Rodríguez-Crespo I. Protein kinase D activity controls endothelial nitric oxide synthesis. J Cell Sci 2014; 127:3360-72. [PMID: 24928905 DOI: 10.1242/jcs.148601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía Sánchez-Ruiloba
- Instituto de Investigaciones Biomédicas "Alberto Sols". CSIC-UAM, C/Arturo Duperier, Madrid 28029, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Carlos Zaragoza
- Cardiovascular Research Unit University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra Colmenar Viejo Km 9,100, Madrid 28034, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols". CSIC-UAM, C/Arturo Duperier, Madrid 28029, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
38
|
Döppler H, Bastea LI, Borges S, Spratley SJ, Pearce SE, Storz P. Protein kinase d isoforms differentially modulate cofilin-driven directed cell migration. PLoS One 2014; 9:e98090. [PMID: 24840177 PMCID: PMC4026536 DOI: 10.1371/journal.pone.0098090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Background Protein kinase D (PKD) enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4) and the phosphatase slingshot 1L (SSH1L). The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. Methodology/Principal Findings We here analyzed two cell lines (HeLa and MDA-MB-468) that express the subtypes protein kinase D2 (PKD2) and protein kinase D3 (PKD3). We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. Conclusions/Significance Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Samantha J. Spratley
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Sarah E. Pearce
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Borges S, Döppler HR, Storz P. A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells. Breast Cancer Res Treat 2014; 144:79-91. [PMID: 24510012 DOI: 10.1007/s10549-014-2857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022]
Abstract
The treatment of patients with invasive breast cancer remains a major issue because of the acquisition of drug resistance to conventional chemotherapy. Here we propose a new therapeutic strategy by combining DNA methyltransferase inhibitors (DMTIs) with suramin. Cytotoxic effects of suramin or combination treatment with DMTIs were determined in highly invasive breast cancer cell lines MDA-MB-231, BT-20 and HCC1954, or control cells. In addition, effects on cell invasion were determined in 3-dimensional cell culture assays. DMTI-mediated upregulation of Protein Kinase D1 (PKD1) expression was shown by Western blotting. Effects of suramin on PKD1 activity was determined in vitro and in cells. The importance of PKD1 in mediating the effects of such combination treatment in cell invasion was demonstrated using 3D cell culture assays. A proof of principal animal experiment was performed showing that PKD1 is critical for breast cancer growth. We show that when used in combination, suramin and DMTIs impair the invasive phenotype of breast cancer cells. We show that PKD1, a kinase that previously has been described as a suppressor of tumor cell invasion, is an interface for both FDA-approved drugs, since the additive effects observed are due to DMTI-mediated re-expression and suramin-induced activation of PKD1. Our data reveal a mechanism of how a combination treatment with non-toxic doses of suramin and DMTIs may be of therapeutic benefit for patients with aggressive, multi-drug resistant breast cancer.
Collapse
Affiliation(s)
- Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Building, Room 306, 4,500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | | |
Collapse
|
40
|
Talman V, Gateva G, Ahti M, Ekokoski E, Lappalainen P, Tuominen RK. Evidence for a role of MRCK in mediating HeLa cell elongation induced by the C1 domain ligand HMI-1a3. Eur J Pharm Sci 2014; 55:46-57. [PMID: 24486483 DOI: 10.1016/j.ejps.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/03/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Diacylglycerol (DAG) is a central mediator of signaling pathways that regulate cell proliferation, survival and apoptosis. Therefore, C1 domain, the DAG binding site within protein kinase C (PKC) and other DAG effector proteins, is considered a potential cancer drug target. Derivatives of 5-(hydroxymethyl)isophthalic acid are a novel group of C1 domain ligands with antiproliferative and differentiation-inducing effects. Our previous work showed that these isophthalate derivatives exhibit antiproliferative and elongation-inducing effects in HeLa human cervical cancer cells. In this study we further characterized the effects of bis(3-trifluoromethylbenzyl) 5-(hydroxymethyl)isophthalate (HMI-1a3) on HeLa cell proliferation and morphology. HMI-1a3-induced cell elongation was accompanied with loss of focal adhesions and actin stress fibers, and exposure to HMI-1a3 induced a prominent relocation of cofilin-1 into the nucleus regardless of cell phenotype. The antiproliferative and morphological responses to HMI-1a3 were not modified by pharmacological inhibition or activation of PKC, or by RNAi knock-down of specific PKC isoforms, suggesting that the effects of HMI-1a3 were not mediated by PKC. Genome-wide gene expression microarray and gene set enrichment analysis suggested that, among others, HMI-1a3 induces changes in small GTPase-mediated signaling pathways. Our experiments revealed that the isophthalates bind also to the C1 domains of β2-chimaerin, protein kinase D (PKD) and myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), which are potential mediators of small GTPase signaling and cytoskeletal reorganization. Pharmacological inhibition of MRCK, but not that of PKD attenuated HMI-1a3-induced cell elongation, suggesting that MRCK participates in mediating the effects of HMI-1a3 on HeLa cell morphology.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Gergana Gateva
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marja Ahti
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Elina Ekokoski
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
41
|
Huck B, Duss S, Hausser A, Olayioye MA. Elevated protein kinase D3 (PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation. J Biol Chem 2013; 289:3138-47. [PMID: 24337579 DOI: 10.1074/jbc.m113.502633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Here, we show that the expression of the Golgi-localized serine-threonine kinase protein kinase D3 (PKD3) is elevated in triple-negative breast cancer (TNBC). Using an antibody array, we identified PKD3 to trigger the activation of S6 kinase 1 (S6K1), a main downstream target of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Accordingly, PKD3 knockdown in TNBC cells led to reduced S6K1 phosphorylation, which was associated with impaired activation of mTORC1 at endolysosomal membranes, the accumulation of the mannose 6-phosphate receptor in and the recruitment of the autophagy marker light chain 3 to enlarged acidic vesicles. We further show that PKD3 depletion strongly inhibited cell spreading and proliferation of TNBC cells, identifying this kinase as a potential novel molecular therapeutic target in TNBC. Together, our data suggest that PKD3 in TNBC cells provides a molecular connection between the Golgi and endolysosomal compartments to enhance proliferative mTORC1-S6K1 signaling.
Collapse
Affiliation(s)
- Bettina Huck
- From the University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany and
| | | | | | | |
Collapse
|
42
|
Gan H, Wang G, Hao Q, Wang QJ, Tang H. Protein kinase D promotes airway epithelial barrier dysfunction and permeability through down-regulation of claudin-1. J Biol Chem 2013; 288:37343-54. [PMID: 24265314 DOI: 10.1074/jbc.m113.511527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.
Collapse
Affiliation(s)
- Huachen Gan
- From the Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708 and
| | | | | | | | | |
Collapse
|
43
|
Protein kinase D-mediated phosphorylation at Ser99 regulates localization of p21-activated kinase 4. Biochem J 2013; 455:251-60. [PMID: 23841590 DOI: 10.1042/bj20130281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PAKs (p21-activated kinases) are effectors of RhoGTPases. PAK4 contributes to regulation of cofilin at the leading edge of migrating cells through activation of LIMK (Lin-11/Isl-1/Mec-3 kinase). PAK4 activity is regulated by an autoinhibitory domain that is released upon RhoGTPase binding as well as phosphorylation at Ser474 in the activation loop of the kinase domain. In the present study, we add another level of complexity to PAK4 regulation by showing that phosphorylation at Ser99 is required for its targeting to the leading edge. This phosphorylation is mediated by PKD1 (protein kinase D1). Phosphorylation of PAK4 at Ser99 also mediates binding to 14-3-3 protein, and is required for the formation of a PAK4-LIMK-PKD1 complex that regulates cofilin activity and directed cell migration.
Collapse
|
44
|
Protein kinase D1 has a key role in wound healing and skin carcinogenesis. J Invest Dermatol 2013; 134:902-909. [PMID: 24213370 PMCID: PMC3961536 DOI: 10.1038/jid.2013.474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023]
Abstract
Protein kinase D (PKD) is a family of stress-responsive serine/threonine kinases implicated in the regulation of diverse cellular functions including cell growth, differentiation, apoptosis, and cell motility. Although all three isoforms are expressed in keratinocytes, their role in skin biology and pathology is poorly understood. We recently identified a critical role for PKD1 during reversal of keratinocyte differentiation in culture, suggesting a potential pro-proliferative role in epidermal adaptive responses. Here, we generated mice with targeted deletion of PKD1 in epidermis to evaluate the significance of PKD1 in normal and hyperplastic conditions. These mice displayed a normal skin phenotype indicating that PKD1 is dispensable for skin development and homeostasis. Upon wounding however, PKD1-deficient mice exhibited delayed wound re-epithelialization correlated with a reduced proliferation and migration of keratinocytes at the wound edge. In addition, the hyperplastic and inflammatory responses to topical phorbol ester were significantly suppressed suggesting involvement of PKD1 in tumor promotion. Consistently, when subjected to two-stage chemical skin carcinogenesis protocol, PKD1-deficient mice were resistant to papilloma formation when compared to control littermates. These results revealed a critical pro-proliferative role for PKD1 in epidermal adaptive responses, suggesting a potential therapeutic target in skin wound and cancer treatment.
Collapse
|