1
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Dey N. Rephrasing the 'David-Goliath' story in the field of diabetes. Mol Biol Rep 2024; 51:672. [PMID: 38787502 DOI: 10.1007/s11033-024-09618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Diabetes Mellitus has become a serious threat to public health. This non-communicable disease is spreading like wildfire to shape in the form of a global pandemic. It affects several organs during silent progression in the human body. The pathophysiological fallouts associate dysregulation of numerous cellular pathways. MicroRNAs have emerged as potent gene expression regulators by post-transcriptional mechanisms in the last two decades or so. Many microRNAs display differential expression patterns under hyperglycemia affecting coupled cellular signaling cascades. The present article attempts to unfold the involvement of microRNAs as biomarkers in diabetic conditions in current scenarios identifying their therapeutic significance.
Collapse
Affiliation(s)
- Nirmalya Dey
- Amity Institute of Biotechnology, Amity University, Room No. 504, Academic Building Plot No: 36, 37 & 38, Major Arterial Road, Action Area II Kadampukur Village, Rajarhat, Newtown Kolkata, West Bengal, 700135, India.
| |
Collapse
|
3
|
Larrue R, Fellah S, Van der Hauwaert C, Hennino MF, Perrais M, Lionet A, Glowacki F, Pottier N, Cauffiez C. The Versatile Role of miR-21 in Renal Homeostasis and Diseases. Cells 2022; 11:cells11213525. [PMID: 36359921 PMCID: PMC9657972 DOI: 10.3390/cells11213525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression and confer robustness to biological processes. Over the last two decades, their important roles during kidney development, homeostasis and the treatment of diseases have been established, in particular during the onset and progression of various forms of acute and chronic renal disorders. In recent years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. This review summarizes the current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the potential of miR-21 as a biomarker and therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | | | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Lionet
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
4
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
5
|
Miranda-Poma J, Trilla-Fuertes L, López-Camacho E, Zapater-Moros A, López-Vacas R, Lumbreras-Herrera MI, Pertejo-Fernandez A, Fresno-Vara JÁ, Espinosa-Arranz E, Gámez-Pozo A, Pinto-Marín Á. MiRNAs in renal cell carcinoma. Clin Transl Oncol 2022; 24:2055-2063. [PMID: 35729452 DOI: 10.1007/s12094-022-02866-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are small RNA sequences that act as post-transcriptional regulatory genes to control many cellular processes through pairing bases with a complementary messenger RNA (mRNA). A single miRNA molecule can regulate more than 200 different transcripts and the same mRNA can be regulated by multiple miRNAs. In this review, we highlight the importance of miRNAs and collect the existing evidence on their relationship with kidney cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rocío López-Vacas
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | | | - Juan Ángel Fresno-Vara
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain.,CIBERONC, ISCIII, Madrid, Spain
| | | | - Angelo Gámez-Pozo
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain
| | | |
Collapse
|
6
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Shakeri A, Ghanbari M, Tasbandi A, Sahebkar A. Regulation of microRNA-21 expression by natural products in cancer. Phytother Res 2021; 35:3732-3746. [PMID: 33724576 DOI: 10.1002/ptr.7069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Sharma PC, Gupta A. MicroRNAs: potential biomarkers for diagnosis and prognosis of different cancers. Transl Cancer Res 2020; 9:5798-5818. [PMID: 35117940 PMCID: PMC8798648 DOI: 10.21037/tcr-20-1294] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A thorough understanding of the tumor environment and underlying genetic factors helps in the better formulation of cancer management strategies. Availability of efficient diagnostic and prognostic biomarkers facilitates early detection and progression of the disease. MicroRNAs affect different biological processes participating in tumorigenesis through regulation of their target genes. An expanding list of unique RNAs and understanding of their regulatory role has opened up a new field in cancer research. Based on a comprehensive literature search, we identified 728 miRNAs dysregulated in sixteen cancer types namely bladder cancer (BC), breast cancer (BrC), cervical cancer (CC), colorectal cancer (CRC), esophageal cancer (EC), endometrial cancer (EnC), gastric cancer (GC), hepatocellular cancer (HCC), head and neck squamous cell cancer (HNSCC), lung cancer (LC), ovarian cancer (OC), pancreatic cancer (PC), prostate cancer (PrC), renal cell cancer (RCC), skin cancer (SC), and thyroid cancer (TC). Expression of 43 miRNAs was either upregulated or downregulated in six or more of these cancers. Finally, seven miRNAs namely mir-18a, mir-21, mir-143/145, mir-210, mir-218, mir-221, showing maximum dysregulation, either up- or down-regulation in the majority of cancers, were selected for a detailed presentation of their expression and evaluation of their potential as biomarkers in the diagnosis and prognosis of different cancers.
Collapse
Affiliation(s)
- Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Alisha Gupta
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
9
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:606-620. [PMID: 32348938 PMCID: PMC7191126 DOI: 10.1016/j.omtn.2020.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is closely related with the progression of cancer and is an indispensable component that orchestrates the tumor microenvironment. Studies suggest that different mediator and cellular effectors, including cytokines (interleukins, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and granulocyte macrophage colony-stimulating factor [GM-CSF]), chemokines, as well as some transcription factors (nuclear factor κB [NF-κB], signal transducer and activator of transcription 3 [STAT3], hypoxia-inducible factor-1α [HIF1α]), play a crucial role during cancer-related inflammation (CRI). MicroRNAs (miRNAs) are the key components of cellular physiology. They play notable roles during posttranscriptional gene regulation and, thus, might have a potential role in controlling the inflammatory cascade during cancer progression. Taking into consideration the role identified for miRNAs in relation to inflammatory cytokines, we have tried to review their participation in neoplastic progression. Additionally, the involvement of miRNAs with some important transcription factors (NF-κB, STAT3, HIF1α) and proteins (cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS]) closely associated with inflammation during cancer has also been discussed. A clear insight into the responsibility of miRNAs in cytokine signaling and inflammation related to CRI could project them as new therapeutic molecules, which could lead to improved treatment of CRI in the near future.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
10
|
Xiao T, Jie Z. MiR-21 Promotes the Invasion and Metastasis of Gastric Cancer Cells by Activating Epithelial-Mesenchymal Transition. Eur Surg Res 2019; 60:208-218. [PMID: 31722341 DOI: 10.1159/000504133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors. It is likely to occur in lymph nodes and is prone to distant metastasis in its early stages, which portends a poor prognosis. Previous studies have shown that miRNA-21 was abnormally highly expressed and associated with early metastasis in GC, but the mechanism by which it regulates the invasion and metastasis of GC has not been elucidated. METHODS Epithelial-mesenchymal transition (EMT) is an important pathologic basis of tumor invasion and metastasis, and in this study, the relationship between miRNA-21 and EMT in GC invasion and metastasis was investigated using RT-qPCR, Western blot, and wound scratch and transwell assays. RESULTS We found that miRNA-21 expression in GC cell lines was higher than in a gastric mucosal epithelial cell line. After transfection with an miRNA-21 mimic, the upregulation of EMT was found to promote migration and invasion of MGC-803 cells. However, the downregulation of EMT was found to accompany the inhibition of invasion and migration of GC cells after downregulation of miRNA-21 expression due to the transfection of an miRNA-21 inhibitor. CONCLUSIONS These findings suggest that miRNA-21 might promote the invasion and metastasis of GC by upregulating EMT.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, China,
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Construction and analysis of circular RNA molecular regulatory networks in clear cell renal cell carcinoma. Mol Med Rep 2019; 21:141-150. [PMID: 31746384 PMCID: PMC6896406 DOI: 10.3892/mmr.2019.10811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence has indicated that circular (circ)RNAs participate in carcinogenesis; however, the specific regulatory mechanisms underlying the effects of circRNAs, microRNAs (miRNAs/miRs) and genes on the development of clear cell renal cell carcinoma (CCRCC) remain unclear. In the present study, RNA microarray data from CCRCC tissues and control samples were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas, in order to identify significantly dysregulated circRNAs, miRNAs and genes. The Cancer-Specific circRNA Database was used to explore the interactions between miRNAs and circRNAs, whereas TargetScan and miRDB were employed to predict the mRNA targets of miRNAs. Functional enrichment and prognostic analyses were conducted in R. The results revealed that 324 circRNAs were downregulated, whereas 218 circRNAs were upregulated in cancer. In addition, a circRNA-miRNA-mRNA interaction network was constructed. Gene Ontology analysis of the upregulated genes revealed that these genes were enriched in biological processes, including ‘flavonoid metabolic process’, ‘cellular glucuronidation’ and ‘T cell activation’. The downregulated genes were mainly enriched in biological processes, such as ‘nephron development’, ‘kidney development’ and ‘renal system development’. The hub genes, including membrane palmitoylated protein 7, aldehyde dehydrogenase 6 family member A1, transcription factor AP-2α, collagen type IV α 4 chain, nuclear receptor subfamily 3 group C member 2, plasminogen, Holliday junction recognition protein, claudin 10, kinesin family member 18B and thyroid hormone receptor β, and the hub miRNAs, including miR-21-3p, miR-155-3p, miR-144-3p, miR-142-5p, miR-875-3p, miR-885-3p, miR-3941, miR-224-3p, miR-584-3p and miR-138-1-3p, were significantly associated with CCRCC survival. In conclusion, these results suggested that the significantly dysregulated circRNAs, miRNAs and genes identified in this study may be considered potential biomarkers of the carcinogenesis of CCRCC and the survival of patients with this disease.
Collapse
|
12
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Yang S, Zhao Y, Wang L, Liu C, Lu Y, Fang Z, Shi H, Zhang W, Wu X. MicroRNA‑4712‑5p promotes proliferation of the vulvar squamous cell carcinoma cell line A431 by targeting PTEN through the AKT/cyclin D1 signaling pathways. Oncol Rep 2019; 42:1689-1698. [PMID: 31545465 PMCID: PMC6787978 DOI: 10.3892/or.2019.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to screen differentially expressed miRNAs in vulvar squamous cell carcinoma (VSCC), observe the role of microRNA-4712-5p in VSCC and investigate its targets and regulatory mechanism. Differentially expressed miRNAs in human VSCC tissues were screened. microRNA-4712-5p was selected and its expression level was verified in clinical tissue samples and the VSCC cell line A431 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The overexpression vector of microRNA-4712-5p was prepared and transfected into A431 cells; subsequently, cell invasion and metastasis were examined by Cell Counting Kit-8 and Transwell migration assays. Furthermore, the target gene of miRNA-4712-5p was predicted by bioinformatics and verified by The Dual-Luciferase® Reporter (DLR™) Assay System. The expression of phosphatase and tensin homologue (PTEN) and its downstream proteins, such as protein kinase B (PKB; AKT), glycogen synthase kinase (GSK)3β and cyclin D1, were detected by western blot assays. The expression level of microRNA-4712-5p in VSCC tissues and the A431 cell line was found to be significantly increased, promoting proliferation and invasion of VSCC. The DLR™ assay indicated that PTEN was a target of miR-4712-5p. RT-qPCR revealed that PTEN expression was markedly lower in VSCC tissues compared with that in adjacent tissues. After A431 cells were transfected with the miRNA-4712-5p overexpression vector, phospho-AKT (p-AKT) and cyclin D1 expression were notably increased, but miRNA-4712-5p-targeted PTEN and phospho-GSK3β (p-GSK3β) protein markedly decreased. Therefore, microRNA-4712-5p can reduce the expression of PTEN, further affecting its downstream p-AKT, p-GSK3β and cyclin D1 signaling pathways, promoting the proliferation and invasion of VSCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanyan Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lufang Wang
- Department of Gynecology and Obstetrics, Union Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Lu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhidong Fang
- China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hongshuang Shi
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyi Zhang
- Rehabilitation Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Xin Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
14
|
Li W, Zhao J, Yao Q, Li W, Zhi W, Zang L, Liu F, Niu X. Polysaccharides from Poria cocos (PCP) inhibits ox-LDL-induced vascular smooth muscle cells proliferation and migration by suppressing TLR4/NF-κB p65 signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Bratu T, Popoiu CM, Nitu R, Dragomir T, AAbed HIM, Ivan MV. MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients. Cells 2018; 7:E271. [PMID: 30551680 PMCID: PMC6316368 DOI: 10.3390/cells7120271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
Collapse
Affiliation(s)
- Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Bratu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Calin Marius Popoiu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Dragomir
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Hazzaa I M AAbed
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Mihaela Viviana Ivan
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| |
Collapse
|
16
|
Zhang W, Lu Y, Li X, Zhang J, Zheng L, Zhang W, Lin C, Lin W, Li X. CDCA3 promotes cell proliferation by activating the NF-κB/cyclin D1 signaling pathway in colorectal cancer. Biochem Biophys Res Commun 2018; 500:196-203. [PMID: 29627567 DOI: 10.1016/j.bbrc.2018.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Cell division cycle associated 3 (CDCA3) is required for mitotic entry, and mediates the degradation of the inhibitory kinase Wee1. New evidence suggests CDCA3 plays a role in tumor promotion. However, little is known about the relevance of CDCA3 in colorectal cancer(CRC), especially in the regulation of NF-κB activity. In this study, we found that colorectal tumors significantly expressed more CDCA3 than non-cancer tissues. In addition, CDCA3 promoted CRC cell proliferation in vitro. Furthermore, downregulation of CDCA3 not only induced cell cycle arrest but also facilitated apoptosis. Mechanistically, CDCA3 activates the NF-κB signaling pathway by interacting with TRAF2 in CRC. Together, these results define a tumor-supportive role for CDCA3, which may also provide a new promising strategy for treating CRC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Wang S, Mou J, Cui L, Wang X, Zhang Z. Astragaloside IV inhibits cell proliferation of colorectal cancer cell lines through down-regulation of B7-H3. Biomed Pharmacother 2018; 102:1037-1044. [PMID: 29710520 DOI: 10.1016/j.biopha.2018.03.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 10/25/2022] Open
Abstract
Astragaloside IV showed a pivotal anti-cancer efficacy in multiple types of cancers and reversed chemoresistance in colorectal cancer (CRC). However, it remained unknown whether and how Astragaloside IV suppressed the progression of CRC. In the present study, we found that Astragaloside IV treatment significantly and dose-dependently reduced cell proliferation of CRC cell lines (SW620 and HCT116), whereas it showed no significant influence on the cell proliferation of normal colonic cells (FHC). Flow cytometry (FCM) analysis indicated that there was a significant cell cycle arrest in G0/G1 phase of SW620 cells and HCT116 cells which were treated with Astragaloside IV. The mRNA levels and protein levels of several key cell cycle relative proteins (cyclin D1 and CDK4) were also dramatically decreased during the process of G0/G1 arrest after the administration of Astragaloside IV. In addition, we observed an obvious decrease of B7-H3 protein level upon Astragaloside IV treatment, which was a result of mRNA reduction that was verified by real-time quantitative polymerase chain reaction (RT-qPCR) and CHX chase. We further identified that Astragaloside IV suppressed B7-H3 expression by elevating the expression of miR-29c level. Inhibition of miR-29c could dramatically reverse Astragaloside IV-induced B7-H3 decrease and cell growth arrest. This study suggests that Astragaloside IV is a promising anti-cancer drug in CRC.
Collapse
Affiliation(s)
- Shuxia Wang
- The First Department of Oncology, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Jianguo Mou
- The First Department of Oncology, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Lansong Cui
- Department of General Surgery, The 5th People's Hospital of Ji'nan, Ji'nan 250022, Shandong, China
| | - Xingong Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Zhiqing Zhang
- Department of General Surgery, The 5th People's Hospital of Ji'nan, Ji'nan 250022, Shandong, China.
| |
Collapse
|
18
|
Zhao C, He X, Li H, Zhou J, Han X, Wang D, Tian G, Sui F. Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway. Oncol Lett 2018; 15:6881-6886. [PMID: 29725420 PMCID: PMC5920203 DOI: 10.3892/ol.2018.8262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine whether TACC3 expression is associated with the proliferation and migration of osteosarcoma (OS) cells and to investigate the potential underlying molecular mechanisms of TACC3 in OS. First, the levels of mRNA and protein expression in OS cell lines by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively were examined. Second, the effects of TACC3 knockdown and overexpression on the proliferative, migratory and invasive capacities of OS cells were investigated. Finally, western blot analysis was employed to detect the potential mechanism of TACC3 in osteosarcoma. TACC3 expression was significantly increased in osteosarcoma tissues and cell lines, compared to matched controls. The knockdown of TACC3 was able to significantly inhibit the proliferation, migration and invasion of osteosarcoma cells, whereas the overexpression of TACC3 was able to promote cell proliferation and migration. Mechanistically, TACC3 may promote the migration and invasion of osteosarcoma cells via through nuclear factor-κB signaling. These data suggest that TACC3 has an important part in the progression of osteosarcoma and may serve as a potential target for gene therapy.
Collapse
Affiliation(s)
- Congran Zhao
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiaofeng He
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Heng Li
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Jihui Zhou
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiuying Han
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Dongjun Wang
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Guofeng Tian
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Fuge Sui
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
19
|
Li S, Zhou Y, Zheng X, Wu X, Liang Y, Wang S, Zhang Y. Sphk1 promotes breast epithelial cell proliferation via NF-κB-p65-mediated cyclin D1 expression. Oncotarget 2018; 7:80579-80585. [PMID: 27811358 PMCID: PMC5348342 DOI: 10.18632/oncotarget.13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is crucially involved with the promotion of malignant progression and metastasis in various cancers. Growing evidence suggests that many types of cancers express high levels of sphingosine kinase 1 (Sphk1), which is known to mediate cell proliferation We hypothesized that Sphk1/sphingosine-1-phosphate (S1P) signaling contributes to tumor progression. In MCF10A and MCF10A-Sphk1 breast epithelial cells, we used TNF-α to activate the Sphk1/S1P pathway and the measured expression levels of NF-κBp65 and cyclin D1 mRNA and protein in the presence and absence of an NF-κB-p65 inhibitor. Chromatin immunoprecipitation assays were performed to determine whether NF-κB-p65 binds to the cyclin D1 promoter. We found that overexpression of Sphk1 induced NF-κB-p65 activation, increased expression of cyclin D1, shortened the cell division cycle, and thus promoted proliferation of breast epithelial cells. These findings provide insight into the mechanism by which an Sphk1/NF-κB-p65/cyclin D1 signaling pathway mediates cell proliferation.
Collapse
Affiliation(s)
- Shifei Li
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhou
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaodong Zheng
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiujuan Wu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yueyang Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shushu Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
20
|
Zhu S, Fu W, Zhang L, Fu K, Hu J, Jia W, Liu G. LINC00473 antagonizes the tumour suppressor miR-195 to mediate the pathogenesis of Wilms tumour via IKKα. Cell Prolif 2017; 51. [PMID: 29159834 DOI: 10.1111/cpr.12416] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Although dramatic improvements of overall survival has achieved in patients with favourable histology Wilms tumour, disease recurrence is still the main cause of cancer-related death in childhood. Long non-coding RNAs (lncRNAs) as oncogenes or tumour suppressors are dysregulated during carcinogenesis. However, the role of lncRNAs in the pathogenesis of Wilms tumour is unknown. Here, an lncRNA LINC00473 signature that functioned as oncogene was identified in Wilms tumour. METHODS Wilms tumour (n = 15) and relative normal tissues were collected. The LINC00473 expression and function in Wilms tumour was determined. The LncRNA-miRNA network of LINC00473 was analysed in vitro and vivo. RESULTS We uncovered that the expression of LINC00473 was elevated in tumour tissues than that in relative normal tissues. Higher LINC00473 levels correlated to higher stage and unfavourable histology Wilms tumour. Mechanistically, knockdown of LINC00473 inhibited cell vitality and induced Bcl-2-dependent apoptosis and G1/S arrest via CDK2 and cyclin D1. Moreover, LINC00473 harboured binding sites for miR-195 and limited miR-195 availability in a dose-dependent manner. Forced expression of miR-195 impaired tumour survival and metastasis, which, however, could be restored by LINC00473. Furthermore, IKKα was the downstream of LINC00473/miR-195 signals and could be directly targeted by miR-195 to participate LINC00473-induced tumour progression. Loss-of-function of LINC00473 in vivo effectively promoted the regression of Wilms tumour via miR-195/IKKα-mediated growth inhibition. CONCLUSION LINC00473 as an oncogene is up-regulated to participate into the molecular pathogenesis of Wilms tumour via miR-195/IKKα.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liyu Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Hu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Changes in the cellular microRNA profile by the intracellular expression of HIV-1 Tat regulator: A potential mechanism for resistance to apoptosis and impaired proliferation in HIV-1 infected CD4+ T cells. PLoS One 2017; 12:e0185677. [PMID: 28968466 PMCID: PMC5624617 DOI: 10.1371/journal.pone.0185677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 induces changes in the miRNA expression profile of infected CD4+ T cells that could improve viral replication. HIV-1 regulator Tat modifies the cellular gene expression and has been appointed as an RNA silencing suppressor. Tat is a 101-residue protein codified by two exons that regulates the elongation of viral transcripts. The first exon of Tat (amino acids 1–72) forms the transcriptionally active protein Tat72, but the presence of the second exon (amino acids 73–101) results in a more competent regulatory protein (Tat101) with additional functions. Intracellular, full-length Tat101 induces functional and morphological changes in CD4+ T cells that contribute to HIV-1 pathogenesis such as delay in T-cell proliferation and protection against FasL-mediated apoptosis. But the precise mechanism by which Tat produces these changes remains unknown. We analyzed how the stable expression of intracellular Tat101 and Tat72 modified the miRNA expression profile in Jurkat cells and if this correlated with changes in apoptotic pathways and cell cycle observed in Tat-expressing cells. Specifically, the enhanced expression of hsa-miR-21 and hsa-miR-222 in Jurkat-Tat101 cells was associated with the reduced expression of target mRNAs encoding proteins related to apoptosis and cell cycle such as PTEN, PDCD4 and CDKN1B. We developed Jurkat cells with stable expression of hsa-miR-21 or hsa-miR-222 and observed a similar pattern to Jurkat-Tat101 in resistance to FasL-mediated apoptosis, cell cycle arrest in G2/M and altered cell morphology. Consequently, upregulation of hsa-miR-21 and hsa-miR-222 by Tat may contribute to protect against apoptosis and to anergy observed in HIV-infected CD4+ T cells.
Collapse
|
22
|
Bera A, Das F, Ghosh-Choudhury N, Mariappan MM, Kasinath BS, Ghosh Choudhury G. Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion. Am J Physiol Cell Physiol 2017; 313:C430-C447. [PMID: 28701356 PMCID: PMC5668576 DOI: 10.1152/ajpcell.00081.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Aberrant expression of microRNAs (miRs) contributes to diabetic renal complications, including renal hypertrophy and matrix protein accumulation. Reduced expression of phosphatase and tensin homolog (PTEN) by hyperglycemia contributes to these processes. We considered involvement of miR in the downregulation of PTEN. In the renal cortex of type 1 diabetic mice, we detected increased expression of miR-214 in association with decreased levels of PTEN and enhanced Akt phosphorylation and fibronectin expression. Mesangial and proximal tubular epithelial cells exposed to high glucose showed augmented expression of miR-214. Mutagenesis studies using 3'-UTR of PTEN in a reporter construct revealed PTEN as a direct target of miR-214, which controls its expression in both of these cells. Overexpression of miR-214 decreased the levels of PTEN and increased Akt activity similar to high glucose and lead to phosphorylation of its substrates glycogen synthase kinase-3β, PRAS40, and tuberin. In contrast, quenching of miR-214 inhibited high-glucose-induced Akt activation and its substrate phosphorylation; these changes were reversed by small interfering RNAs against PTEN. Importantly, respective expression of miR-214 or anti-miR-214 increased or decreased the mammalian target of rapamycin complex 1 (mTORC1) activity induced by high glucose. Furthermore, mTORC1 activity was controlled by miR-214-targeted PTEN via Akt activation. In addition, neutralization of high-glucose-stimulated miR-214 expression significantly inhibited cell hypertrophy and expression of the matrix protein fibronectin. Finally, the anti-miR-214-induced inhibition of these processes was reversed by the expression of constitutively active Akt kinase and hyperactive mTORC1. These results uncover a significant role of miR-214 in the activation of mTORC1 that contributes to high-glucose-induced mesangial and proximal tubular cell hypertrophy and fibronectin expression.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Pathology, UT Health San Antonio, San Antonio, Texas; and
| | | | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, San Antonio, Texas;
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
23
|
PROX1 promotes human glioblastoma cell proliferation and invasion via activation of the nuclear factor-κB signaling pathway. Mol Med Rep 2016; 15:963-968. [PMID: 28035380 DOI: 10.3892/mmr.2016.6075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/08/2016] [Indexed: 11/05/2022] Open
Abstract
Prospero homeobox protein 1 (PROX1) is highly expressed in high-grade malignant astrocytic gliomas. However, the role of PROX1 in the pathogenesis of glioblastoma multiforme (GBM) remains unclear. The present study overexpressed PROX1 in human GBM cell lines and examined its effects on cell growth, tumorigenesis, and invasiveness. In addition, the involvement of the nuclear factor‑κB (NF‑κB) signaling pathway in the action of PROX1 was examined. It was identified that overexpression of PROX1 significantly increased the proliferation and colony formation of glioblastoma cells, compared with empty vector‑transfected controls. Furthermore, ectopic expression of PROX1 promoted the growth of GBM xenograft tumors. Western blot analysis revealed that PROX1 overexpression induced nuclear accumulation of NF‑κB p65 and upregulated the expression levels of the NF‑κB responsive genes cyclin D1 and matrix metallopeptidase 9. An NF‑κB reporter assay demonstrated that PROX1‑overexpressing glioblastoma cells had significantly greater NF‑κB‑dependent reporter activities compared with empty vector‑transfected controls. Transfection of a dominant inhibitor of κBα mutant into PROX1‑overexpressing cells significantly impaired their proliferation and invasion capacities, which was accompanied by reduced levels of nuclear NF‑κB p65. Collectively, these data indicated that PROX1 serves an oncogenic role in GBM and promotes cell proliferation and invasiveness potentially via activation of the NF‑κB signaling pathway. Therefore, PROX1 may represent a potential target for the treatment of GBM.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a rare disease with poor prognosis and no therapeutics. PAH is characterized by severe remodeling of precapillary pulmonary arteries, leading to increased vascular resistance, pulmonary hypertension compensatory right ventricular hypertrophy, then heart failure and death. PAH pathogenesis shares similarities with carcinogenesis such as excessive cell proliferation, apoptosis resistance, metabolic shifts, or phenotypic transition. Although PAH is not a cancer, comparison of analogous mechanisms between PAH and cancer led to the concept of a cancer-like disease to emerge. MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of posttranscriptional gene expression. miRNA dysregulations have been reported as promoter of the development of various diseases including cancers. RECENT FINDINGS Recent studies revealed that miRNA dysregulations also occur in PAH pathogenesis. In PAH, different miRNAs have been implicated to be the main features of PAH pathophysiology (in pulmonary inflammation, vascular remodeling, angiogenesis, and right heart hypertrophy). SUMMARY The review summarizes the implication of miRNA dysregulation in PAH development and discusses the similarities and differences with those observed in cancers.
Collapse
|
25
|
Zhao Z, Xu M, Wu M, Ma K, Sun M, Tian X, Zhang C, Fu X. Direct reprogramming of human fibroblasts into sweat gland-like cells. Cell Cycle 2016; 14:3498-505. [PMID: 26566868 DOI: 10.1080/15384101.2015.1093707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The skin of patients with an extensive deep burn injury is repaired by a process that leaves a hypertrophic scar without sweat glands and therefore loses the function of perspiration. The aim of this study was to identify whether the key factors related to sweat gland development could directly reprogram fibroblasts into sweat gland-like cells. After introducing the NF-κB and Lef-1 genes into fibroblasts, we found that stably transfected fibroblasts expressed specific markers of sweat glands, including CEA, CK7, CK14 and CK19, both at the protein and mRNA levels. The immunofluorescence staining also showed positive expression of CEA, CK7, CK14 and CK19 in induced fibroblasts, but there were no positive cells in the control groups. The expression of Shh and Cyclin D1, downstream genes of NF-κB and Lef-1, were also significantly increased during regeneration. The induced fibroblasts were implanted into an animal model. Twenty days later, iodine-starch perspiration tests showed that 7 out of the 10 cell-treated paws were positive for perspiration, with a distinctive black point-like area appearing in the center of the paw. Contralateral paws tested negative. Histological examination of skin biopsies from experimental and control paws revealed that sweat glands were fully reconstructed in the test paws, with integral, secretory and ductal portions, but were not present in the control paws. This is the first report of successful reprogramming of fibroblasts into sweat gland-like cells, which will provide a new cell source for sweat gland regeneration in patients with extensive deep burns.
Collapse
Affiliation(s)
- Zhiliang Zhao
- a Would Healing and Cell Biology Laboratory; Institute of Basic Medical Science; General Hospital of PLA ; Beijing , China.,b Department of Plastic Surgery ; General Hospital of The Second Artillery Corps ; Beijing , China
| | - Mengyao Xu
- c Department of Gynecology and Obstetrics ; General Hospital of Shenyang Military Region ; Shenyang , China
| | - Meng Wu
- d Department of Plastic Surgery ; General Hospital of PLA ; Beijing , China
| | - Kui Ma
- e Key Laboratory of Wound Repair and Regeneration of PLA; The first affiliated hospital; General Hospital of PLA ; Beijing , China
| | - Mengli Sun
- e Key Laboratory of Wound Repair and Regeneration of PLA; The first affiliated hospital; General Hospital of PLA ; Beijing , China
| | - Xiaocheng Tian
- b Department of Plastic Surgery ; General Hospital of The Second Artillery Corps ; Beijing , China
| | - Cuiping Zhang
- e Key Laboratory of Wound Repair and Regeneration of PLA; The first affiliated hospital; General Hospital of PLA ; Beijing , China
| | - Xiaobing Fu
- e Key Laboratory of Wound Repair and Regeneration of PLA; The first affiliated hospital; General Hospital of PLA ; Beijing , China
| |
Collapse
|
26
|
Liu X, Huang Y, Zhang Y, Li X, Liu C, Huang S, Xu D, Wu Y, Liu X. T-cell factor (TCF/LEF1) binding elements (TBEs) of FasL (Fas ligand or CD95 ligand) bind and cluster Fas (CD95) and form complexes with the TCF-4 and b-catenin transcription factors in vitro and in vivo which result in triggering cell death and/or cell activation. Cell Mol Neurobiol 2016; 36:1001-1013. [PMID: 27090258 DOI: 10.1007/s10571-015-0290-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
Abstract
T-cell factor 4 (TCF4) is an important transcription factor of the Wnt signaling system. β-catenin, an upstream protein of TCF4, accumulates in the cytoplasm, then translocates to the nucleus to activate the β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional machinery and regulates target genes. Previous studies showed that TCF4 was involved in cell proliferation and apoptosis. However, its expression and function in central nervous system injury are unclear. We performed a traumatic brain injury (TBI) model in adult rats. The expression of TCF4 in the brain cortex detected by Western blot increased after TBI. Double immunofluorescence staining revealed that TCF4 was expressed by neurons and microglia. In addition, co-localization of TCF4 with active caspase-3 or proliferating cell nuclear antigen was observed in neurons and microglia, respectively, suggesting that TCF4 might participate in neuronal apoptosis and microglial proliferation after TBI. To further investigate the functions of TCF4, PC12 and HAPI cells were employed to establish a neuronal apoptosis and microglial proliferation model in vitro, respectively. Knocking down TCF4 with siRNA proved the pro-apoptotic and pro-proliferation effect of TCF4 in PC12 and HAPI cells, respectively. Taken together, TCF4 might promote neuronal apoptosis and microglial proliferation after TBI.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathophysiology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuwei Huang
- Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuanyuan Zhang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Chun Liu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Shen Huang
- Department of Osteology, The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Dezhi Xu
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yang Wu
- Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
27
|
CAO YUNJIE, XU RENFANG, XU XIANLIN, ZHOU YAOJUN, CUI LI, HE XIAOZHOU. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol Med Rep 2016; 14:1019-25. [DOI: 10.3892/mmr.2016.5337] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 04/21/2016] [Indexed: 11/06/2022] Open
|
28
|
Das F, Dey N, Bera A, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells. J Biol Chem 2016; 291:14662-76. [PMID: 27226530 DOI: 10.1074/jbc.m115.694331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/21/2023] Open
Abstract
Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3'UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3'UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1.
Collapse
Affiliation(s)
| | | | | | | | - Nandini Ghosh-Choudhury
- From Veterans Affairs Research and Geriatric Research, Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Goutam Ghosh Choudhury
- the Departments of Medicine and From Veterans Affairs Research and Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900 and
| |
Collapse
|
29
|
Zhao S, Tang H, Yan D, Fan J, Sun H, Wen Y, Yu F, Cui F, Zhang D, Xue Y, Liu C, Yue B, Chen J, Wang J, Wang X, Zhang M, Yu Y, Jiang W, Liu X, Mi Y, Zhou Z, Qin X, Peng Z. DDA1 promotes stage IIB-IIC colon cancer progression by activating NFκB/CSN2/GSK-3β signaling. Oncotarget 2016; 7:19794-812. [PMID: 26942699 PMCID: PMC4991419 DOI: 10.18632/oncotarget.7847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/06/2016] [Indexed: 02/05/2023] Open
Abstract
Conventional high-recurrence risk factors are not sufficient to predict post-operative risk of tumor recurrence or sensitivity to 5-fluorouracil (5-FU)-based chemotherapy for stage II colon cancer. DDA1, an evolutionarily conserved gene located at 19p13.11, may be involved in the activation of nuclear factor kappaB (NFκB). This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of stage II colon cancer via activation of the NFκB pathway. We found that positive expression of DDA1 alone or in combination with p65 nuclear translocation correlated with increased risk of tumor recurrence in patients with stage IIB-IIC colon cancer. DDA1 overexpression in colon cancer lines promoted cell proliferation, facilitated cell cycle progression, inhibited 5-FU-induced apoptosis, enhanced invasion, and induced the epithelial-mesenchymal transition. Suppression of DDA1 inhibited tumor progression, and reduced tumor growth in vivo. We also demonstrated that DDA1-mediated tumor progression is associated with the activation of the NFκB/COP9 signalosome 2(CSN2)/glycogen synthase kinase3β (GSK3β) pathway. These results indicate that DDA1 promotes colon cancer progression through activation of NFκB/CSN2/GSK3β signaling. DDA1, together with NFκB activation status, may serve as a sensitive biomarker for tumor recurrence risk and prognosis in patients with stage IIB-IIC colon cancers.
Collapse
Affiliation(s)
- Senlin Zhao
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dongwang Yan
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Fudong Yu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Feifei Cui
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dongyuan Zhang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yingming Xue
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Liu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Ben Yue
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jian Chen
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jingtao Wang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Wang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Meng Zhang
- Department of Pathology, Fudan University Affiliated Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai First People's Hospital, Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xisheng Liu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
MicroRNAs in the Pathogenesis of Renal Cell Carcinoma and Their Diagnostic and Prognostic Utility as Cancer Biomarkers. Int J Biol Markers 2016; 31:e26-37. [DOI: 10.5301/jbm.5000174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Purpose To provide information about the role of microRNAs in the pathogenesis of renal cell carcinoma (RCC) and their diagnostic and prognostic utility as cancer biomarkers. Methods A literature search was performed in the PubMed and Web of Science databases using the keywords “renal cancer/renal cell carcinoma/kidney cancer” and “miR*/miRNA*/microRNA*”. Articles dealing with the role of miRNAs in the pathogenesis of RCC, diagnostic miRNAs and prognostic miRNAs were separated. Results MiRNAs act both as oncogenes and tumor suppressors. They regulate apoptosis, cell growth, migration, invasion, proliferation, colony formation and angiogenesis through target proteins involved in several signaling pathways, and they are involved in key pathogenetic mechanisms such as hypoxia (HIF/VHL dependent) and epithelial-to-mesenchymal transition. Differentially expressed miRNAs can discriminate either tumor tissue from healthy renal tissue or different RCC subtypes. Circulating miRNAs are promissing as diagnostic biomarkers of RCC. Information about urinary miRNAs associated with RCC is sparse. Detection of a relapse is another implication of diagnostic miRNAs. The expression profiles of several miRNAs correlate with the prognosis of RCC patients. Comparison between primary tumor tissue and metastasis may help identify high-risk primary tumors. Finally, response to target therapy can be estimated thanks to differences in miRNA expression in tissue and serum of therapy-resistant versus therapy-sensitive patients. Conclusions Our understanding of the role of microRNAs in RCC pathogenesis has been increasing dramatically. Identification and validation of their gene targets may have direct impact on developing microRNA-based anticancer therapy. Several microRNAs can serve as diagnostic and prognostic biomarkers.
Collapse
|
31
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
32
|
Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep 2015; 33:1571-8. [PMID: 25682771 PMCID: PMC4358077 DOI: 10.3892/or.2015.3799] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023] Open
Abstract
Despite recent advances in the understanding of the biology of renal cell carcinoma (RCC), successful surgical treatment and implementation of novel-targeted therapies, the prognosis for RCC patients remains poor. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection, classification and the surveillance of RCC treatments are major obstacles. The increasing knowledge regarding the functional role of microRNAs (miRNAs) in pathophysiological processes may provide an important link to the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers for RCC. The aim of this review was to provide new insight into the function of miRNAs in the pathogenesis of RCC and to emphasize their potential as diagnostic and prognostic markers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qizhen Guo
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
33
|
Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Abboud HE, Choudhury GG. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res 2014; 328:99-117. [PMID: 25016284 PMCID: PMC4177976 DOI: 10.1016/j.yexcr.2014.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Balakuntalam S Kasinath
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Hanna E Abboud
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Goutam Ghosh Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
34
|
Das F, Bera A, Ghosh-Choudhury N, Abboud HE, Kasinath BS, Choudhury GG. TGFβ-induced deptor suppression recruits mTORC1 and not mTORC2 to enhance collagen I (α2) gene expression. PLoS One 2014; 9:e109608. [PMID: 25333702 PMCID: PMC4198127 DOI: 10.1371/journal.pone.0109608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Enhanced TGFβ activity contributes to the accumulation of matrix proteins including collagen I (α2) by proximal tubular epithelial cells in progressive kidney disease. Although TGFβ rapidly activates its canonical Smad signaling pathway, it also recruits noncanonical pathway involving mTOR kinase to regulate renal matrix expansion. The mechanism by which chronic TGFβ treatment maintains increased mTOR activity to induce the matrix protein collagen I (α2) expression is not known. Deptor is an mTOR interacting protein that suppresses mTOR activity in both mTORC1 and mTORC2. In proximal tubular epithelial cells, TGFβ reduced deptor levels in a time-dependent manner with concomitant increase in both mTORC1 and mTORC2 activities. Expression of deptor abrogated activity of mTORC1 and mTORC2, resulting in inhibition of collagen I (α2) mRNA and protein expression via transcriptional mechanism. In contrast, neutralization of endogenous deptor by shRNAs increased activity of both mTOR complexes and expression of collagen I (α2) similar to TGFβ treatment. Importantly, downregulation of deptor by TGFβ increased the expression of Hif1α by increasing translation of its mRNA. TGFβ-induced deptor downregulation promotes Hif1α binding to its cognate hypoxia responsive element in the collagen I (α2) gene to control its protein expression via direct transcriptional mechanism. Interestingly, knockdown of raptor to specifically block mTORC1 activity significantly inhibited expression of collagen I (α2) and Hif1α while inhibition of rictor to prevent selectively mTORC2 activation did not have any effect. Critically, our data provide evidence for the requirement of TGFβ-activated mTORC1 only by deptor downregulation, which dominates upon the bystander mTORC2 activity for enhanced expression of collagen I (α2). Our results also suggest the presence of a safeguard mechanism involving deptor-mediated suppression of mTORC1 activity against developing TGFβ-induced renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amit Bera
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Hanna E. Abboud
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Balakuntalam S. Kasinath
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Goutam Ghosh Choudhury
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, Chen K, Xiao H, Li H, Tang K, Ye Z, Huang Q, Xu H. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther 2014; 13:3086-97. [PMID: 25249556 DOI: 10.1158/1535-7163.mct-14-0245] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PTENP1 is a pseudogene of the PTEN tumor suppression gene (TSG). The functions of PTENP1 in clear-cell renal cell carcinoma (ccRCC) have not yet been studied. We found that PTENP1 is downregulated in ccRCC tissues and cells due to methylation. PTENP1 and PTEN are direct targets of miRNA miR21 and their expression is suppressed by miR21 in ccRCC cell lines. miR21 expression promotes ccRCC cell proliferation, migration, invasion in vitro, and tumor growth and metastasis in vivo. Overexpression of PTENP1 in cells expressing miR21 reduces cell proliferation, invasion, tumor growth, and metastasis, recapitulating the phenotypes induced by PTEN expression. Overexpression of PTENP1 in ccRCC cells sensitizes these cells to cisplatin and gemcitabine treatments in vitro and in vivo. In clinical samples, the expression of PTENP1 and PTEN is correlated, and both expressions are inversely correlated with miR21 expression. Patients with ccRCC with no PTENP1 expression have a lower survival rate. These results suggest that PTENP1 functions as a competing endogenous RNA (ceRNA) in ccRCC to suppress cancer progression.
Collapse
Affiliation(s)
- Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Anping Li
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Ji Wang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihong Huang
- The Wistar Institute, Philadelphia, Pennsylvania.
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Bera A, Das F, Ghosh-Choudhury N, Li X, Pal S, Gorin Y, Kasinath BS, Abboud HE, Ghosh Choudhury G. A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. Am J Physiol Cell Physiol 2014; 306:C1089-100. [PMID: 24740537 DOI: 10.1152/ajpcell.00387.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor BB and its receptor (PDGFRβ) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Pathology, University of Texas Health Science Center, San Antonio, Texas;
| | - Xiaonan Li
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Sanjay Pal
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Balakuntalam S Kasinath
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Hanna E Abboud
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and
| | - Goutam Ghosh Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
37
|
Zhou TB, Jiang ZP. Role of miR-21 and its signaling pathways in renal diseases. J Recept Signal Transduct Res 2014; 34:335-7. [PMID: 24576069 DOI: 10.3109/10799893.2014.896382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are endogenous non-coding RNAs that are ∼22 nucleotides in length and can have structural, enzymatic and regulatory functions. miRNAs play important roles in the progression of renal fibrosis. miR-21, through a feed-forward loop and a downstream mediator of transforming growth factor-β (TGF-β), amplifies TGF-β signaling and promotes fibrosis. miR-21 is high on the list of non-coding, small, regulatory RNAs that promote renal fibrosis and emerges as a serum biomarker for kidney diseases, but many questions await answers. This review was performed to sum up the role of miR-21 and its signaling pathways in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
38
|
Leroy X, Camparo P, Gnemmi V, Aubert S, Flamand V, Roupret M, Fantoni JC, Comperat E. Clear cell papillary renal cell carcinoma is an indolent and low-grade neoplasm with overexpression of cyclin-D1. Histopathology 2014; 64:1032-6. [PMID: 24382138 DOI: 10.1111/his.12359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/27/2013] [Accepted: 12/27/2013] [Indexed: 11/28/2022]
Abstract
AIMS Several entities have been individualized recently within the family of renal neoplasms with papillary features. Clear cell papillary renal cell carcinoma (CCPRCC) was first described in patients with end-stage renal disease, but is also observed in patients with normal renal function. The objective of this study was to document the clinicopathological and immunohistochemical characteristics of CCPRCC, with a special emphasis on cyclin D1 expression. METHODS AND RESULTS The patients were 25 men and 17 women, mean age 60.7 years. Seventeen patients had a chronic renal disease. All tumours were stage pT1, with a mean diameter of 2 cm. Six tumours were multifocal. Tumours cells were mainly cuboidal, with clear cytoplasm and low-grade nuclei apically aligned. In all cases, Fuhrman nuclear grade was one or two. No necrosis or vascular invasion was seen. During follow-up (10-72 months), no metastasis or death related to the disease was observed. Immunohistochemistry showed strong and diffuse cytokeratin 7 immunoreactivity in all cases, but no labelling for AMACR or TFE3. There was diffuse nuclear cyclin D1 immunoreactivity in 83% of cases. CONCLUSION CCPRCC is now a well-characterized entity. This tumour is an indolent and very low-grade neoplasm. Here we report the first study, to our knowledge, demonstrating the overexpression of cyclin D1 immunostaining by this tumour.
Collapse
Affiliation(s)
- Xavier Leroy
- Department of Pathology, University Hospitals CHRU, Lille, France; University Lille Nord de France, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One 2013; 8:e85353. [PMID: 24386467 PMCID: PMC3875556 DOI: 10.1371/journal.pone.0085353] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.
Collapse
|