1
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
2
|
Gaurav N, Kanai A, Lachance C, Cox KL, Liu J, Grzybowski AT, Saksouk N, Klein BJ, Komata Y, Asada S, Ruthenburg AJ, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. Guiding the HBO1 complex function through the JADE subunit. Nat Struct Mol Biol 2024; 31:1039-1049. [PMID: 38448574 PMCID: PMC11320721 DOI: 10.1038/s41594-024-01245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.
Collapse
Affiliation(s)
- Nitika Gaurav
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, USA
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Nehmé Saksouk
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
| | - Shuhei Asada
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | | | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Zhang Y, Xie G, Lee JE, Zandian M, Sudarshan D, Estavoyer B, Benz C, Viita T, Asgaritarghi G, Lachance C, Messmer C, Simonetti L, Sinha VK, Lambert JP, Chen YW, Wang SP, Ivarsson Y, Affar EB, Côté J, Ge K, Kutateladze TG. ASXLs binding to the PHD2/3 fingers of MLL4 provides a mechanism for the recruitment of BAP1 to active enhancers. Nat Commun 2024; 15:4883. [PMID: 38849395 PMCID: PMC11161652 DOI: 10.1038/s41467-024-49391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guojia Xie
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Benjamin Estavoyer
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada
| | - Caroline Benz
- Department of Chemistry, BMC, Uppsala University, Uppsala, 75237, Sweden
| | - Tiina Viita
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Golareh Asgaritarghi
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Clémence Messmer
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada
| | - Leandro Simonetti
- Department of Chemistry, BMC, Uppsala University, Uppsala, 75237, Sweden
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jean-Philippe Lambert
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, 75237, Sweden
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada.
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Immanneni C, Calame D, Jiao S, Emrick LT, Holmgren M, Yano ST. ATP1A3 Disease Spectrum Includes Paroxysmal Weakness and Encephalopathy Not Triggered by Fever. Neurol Genet 2024; 10:e200150. [PMID: 38685976 PMCID: PMC11057438 DOI: 10.1212/nxg.0000000000200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/23/2024] [Indexed: 05/02/2024]
Abstract
Background and Objectives Heterozygous pathogenic variants in ATP1A3, which encodes the catalytic alpha subunit of neuronal Na+/K+-ATPase, cause primarily neurologic disorders with widely variable features that can include episodic movement deficits. One distinctive presentation of ATP1A3-related disease is recurrent fever-triggered encephalopathy. This can occur with generalized weakness and/or ataxia and is described in the literature as relapsing encephalopathy with cerebellar ataxia. This syndrome displays genotype-phenotype correlation with variants at p.R756 causing temperature sensitivity of ATP1A3. We report clinical and in vitro functional evidence for a similar phenotype not triggered by fever but associated with protein loss-of-function. Methods We describe the phenotype of an individual with de novo occurrence of a novel heterozygous ATP1A3 variant, NM_152296.5:c.388_390delGTG; p.(V130del). We confirmed the pathogenicity of p.V130del by cell survival complementation assay in HEK293 cells and then characterized its functional impact on enzymatic ion transport and extracellular sodium binding by two-electrode voltage clamp electrophysiology in Xenopus oocytes. To determine whether variant enzymes reach the cell surface, we surface-biotinylated oocytes expressing N-tagged ATP1A3. Results The proband is a 7-year-old boy who has had 2 lifetime episodes of paroxysmal weakness, encephalopathy, and ataxia not triggered by fever. He had speech regression and intermittent hand tremors after the second episode but otherwise spontaneously recovered after episodes and is at present developmentally appropriate. The p.V130del variant was identified on clinical trio exome sequencing, which did not reveal any other variants possibly associated with the phenotype. p.V130del eliminated ATP1A3 function in cell survival complementation assay. In Xenopus oocytes, p.V130del variant Na+/K+-ATPases showed complete loss of ion transport activity and marked abnormalities of extracellular Na+ binding at room temperature. Despite this clear loss-of-function effect, surface biotinylation under the same conditions revealed that p.V130del variant enzymes were still present at the oocyte's cell membrane. Discussion This individual's phenotype expands the clinical spectrum of ATP1A3-related recurrent encephalopathy to include presentations without fever-triggered events. The total loss of ion transport function with p.V130del, despite enzyme presence at the cell membrane, indicates that haploinsufficiency can cause relatively mild phenotypes in ATP1A3-related disease.
Collapse
Affiliation(s)
- Chetan Immanneni
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| | - Daniel Calame
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| | - Song Jiao
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| | - Lisa T Emrick
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| | - Miguel Holmgren
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| | - Sho T Yano
- From the Sam Houston State University College of Osteopathic Medicine (C.I.), Conroe, TX; Molecular Neurophysiology Unit (C.I., S.J., M.H.), National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD; Section of Pediatric Neurology and Developmental Neuroscience (D.C.), Department of Pediatrics; Department of Molecular and Human Genetics (D.C., L.T.E.), Baylor College of Medicine; Texas Children's Hospital (D.C.), Houston, TX; National Human Genome Research Institute (S.T.Y.), National Institutes of Health, Bethesda, MD; and Section of Pediatric Neurology (S.T.Y.), Department of Pediatrics, University of Chicago, IL
| |
Collapse
|
5
|
Blanchet M, Angelo L, Tétreault Y, Khabir M, Sureau C, Vaillant A, Labonté P. HepG2BD: A Novel and Versatile Cell Line with Inducible HDV Replication and Constitutive HBV Expression. Viruses 2024; 16:532. [PMID: 38675875 PMCID: PMC11053718 DOI: 10.3390/v16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals chronically infected with hepatitis B virus (HBV) and hepatitis Delta virus (HDV) present an increased risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV mono-infected individuals. Although HDV only replicates in individuals coinfected or superinfected with HBV, there is currently no in vitro model that can stably express both viruses simultaneously, mimicking the chronic infections seen in HBV/HDV patients. Here, we present the HepG2BD cell line as a novel in vitro culture system for long-term replication of HBV and HDV. HepG2BD cells derive from HepG2.2.15 cells in which a 2 kb HDV cDNA sequence was inserted into the adeno-associated virus safe harbor integration site 1 (AAVS1) using CRISPR-Cas9. A Tet-Off promoter was placed 5' of the genomic HDV sequence for reliable initiation/repression of viral replication and secretion. HBV and HDV replication were then thoroughly characterized. Of note, non-dividing cells adopt a hepatocyte-like morphology associated with an increased production of both HDV and HBV virions. Finally, HDV seems to negatively interfere with HBV in this model system. Altogether, HepG2BD cells will be instrumental to evaluate, in vitro, the fundamental HBV-HDV interplay during simultaneous chronic replication as well as for antivirals screening targeting both viruses.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
- Replicor Inc., Montréal, QC H4P 2R2, Canada;
| | - Léna Angelo
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Yasmine Tétreault
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | - Marwa Khabir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| | | | | | - Patrick Labonté
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (L.A.); (Y.T.); (M.K.)
| |
Collapse
|
6
|
Collin V, Biquand É, Tremblay V, Lavoie ÉG, Blondeau A, Gravel A, Galloy M, Lashgari A, Dessapt J, Côté J, Flamand L, Fradet-Turcotte A. The immediate-early protein 1 of human herpesvirus 6B interacts with NBS1 and inhibits ATM signaling. EMBO Rep 2024; 25:725-744. [PMID: 38177923 PMCID: PMC10897193 DOI: 10.1038/s44319-023-00035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Élise Biquand
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
- INSERM, Centre d'Étude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Tours, France
| | - Vincent Tremblay
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Élise G Lavoie
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Andréanne Blondeau
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Maxime Galloy
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Anahita Lashgari
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Julien Dessapt
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Jacques Côté
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada
| | - Louis Flamand
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Amélie Fradet-Turcotte
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec City, QC, G1R 2J6, Canada.
- Department of Molecular biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Université Laval Cancer Research Center, Université Laval, Quebec City, QC, G1R 3S3, Canada.
| |
Collapse
|
7
|
Araki M, Kontani K. Analysis of the Guanine Nucleotide-Bound State of KRAS by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography. Methods Mol Biol 2024; 2797:227-236. [PMID: 38570463 DOI: 10.1007/978-1-0716-3822-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Guanine nucleotides can be quantitatively analyzed by high-performance liquid chromatography (HPLC). Here we describe an ion-pair reversed-phase HPLC (IP-RP-HPLC)-based method, which enables analyzing GDP and GTP bound to small GTPases immunoprecipitated from cells. The activation status of FLAG-KRAS expressed in HEK293T cells can be investigated with the IP-RP-HPLC method. This method also can be adapted to determine the effects of compounds such as the KRAS/G12C inhibitor sotorasib on the activation status of FLAG-KRAS in the cells.
Collapse
Affiliation(s)
- Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
8
|
Zboray K, Toth AV, Miskolczi TD, Pesti K, Casanova E, Kreidl E, Mike A, Szenes Á, Sági L, Lukacs P. High-throughput ligand profile characterization in novel cell lines expressing seven heterologous insect olfactory receptors for the detection of volatile plant biomarkers. Sci Rep 2023; 13:21757. [PMID: 38066004 PMCID: PMC10709440 DOI: 10.1038/s41598-023-47455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Agriculturally important crop plants emit a multitude of volatile organic compounds (VOCs), which are excellent indicators of their health status and their interactions with pathogens and pests. In this study, we have developed a novel cellular olfactory panel for detecting fungal pathogen-related VOCs we had identified in the field, as well as during controlled inoculations of several crop plants. The olfactory panel consists of seven stable HEK293 cell lines each expressing a functional Drosophila olfactory receptor as a biosensing element along with GCaMP6, a fluorescent calcium indicator protein. An automated 384-well microplate reader was used to characterize the olfactory receptor cell lines for their sensitivity to reference VOCs. Subsequently, we profiled a set of 66 VOCs on all cell lines, covering a concentration range from 1 to 100 μM. Results showed that 49 VOCs (74.2%) elicited a response in at least one olfactory receptor cell line. Some VOCs activated the cell lines even at nanomolar (ppb) concentrations. The interaction profiles obtained here will support the development of biosensors for agricultural applications. Additionally, the olfactory receptor proteins can be purified from these cell lines with sufficient yields for further processing, such as structure determination or integration with sensor devices.
Collapse
Affiliation(s)
- Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- TetraLab Ltd., Budapest, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tímea D Miskolczi
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Pesti
- TetraLab Ltd., Budapest, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Novartis AG, 6336, Langkampfen, Austria
| | - Arpad Mike
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Áron Szenes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - László Sági
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Peter Lukacs
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary.
| |
Collapse
|
9
|
Huynh DT, Tsolova KN, Watson AJ, Khal SK, Green JR, Li D, Hu J, Soderblom EJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. Nat Commun 2023; 14:6558. [PMID: 37848414 PMCID: PMC10582078 DOI: 10.1038/s41467-023-42227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kalina N Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Abigail J Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sai Kwan Khal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jordan R Green
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Shimizu Y, Bandaru S, Hara M, Young S, Sano T, Usami K, Kurano Y, Lee S, Kumagai-Takei N, Takashiba S, Sano S, Ito T. An RNA-immunoprecipitation via CRISPR/dCas13 reveals an interaction between the SARS-CoV-2 5'UTR RNA and the process of human lipid metabolism. Sci Rep 2023; 13:10413. [PMID: 37369697 DOI: 10.1038/s41598-023-36680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
We herein elucidate the function of SARS-CoV-2derived 5'UTR in the human cells. 5'UTR bound host cellular RNAs were immunoprecipitated by gRNA-dCas13 (targeting luciferase RNA fused to SARS-CoV-2 5'UTR) in HEK293T and A549 cells. The 5'UTR bound RNA extractions were predominantly enriched for regulating lipid metabolism. Overexpression of SARS-CoV-2 5'UTR RNA altered the expression of factors involved in the process of the human Mevalonate pathway. In addition, we found that HMG-CoA reductase inhibitors were shown to suppress SARS-CoV-2 5'UTR-mediated translation activities. In conclusion, we deduce the array of host RNAs interacting with SARS-CoV-2 5'UTR that drives SARS-CoV-2 translation and influences host metabolic pathways.
Collapse
Affiliation(s)
- Yurika Shimizu
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8525, Japan
| | - Srinivas Bandaru
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
- Koneru Lakshmaiah Educational Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, 522302, India
| | - Mari Hara
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Sonny Young
- Stanford University, Stanford, CA, 94305, USA
| | - Toshikazu Sano
- Department of Surgery, Division of Pediatric Cardiothoracic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kaya Usami
- Okayama University Medical School, Okayama, 700-8558, Japan
| | - Yuta Kurano
- Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Naoko Kumagai-Takei
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8525, Japan
| | - Shunji Sano
- Department of Surgery, Division of Pediatric Cardiothoracic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
11
|
Huynh DT, Hu J, Schneider JR, Tsolova KN, Soderblom EJ, Watson AJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529563. [PMID: 36865196 PMCID: PMC9980138 DOI: 10.1101/2023.02.22.529563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. Interestingly, NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc is a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons, underlining its functional significance. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, indicating a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jordan R. Schneider
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kalina N. Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abigail J. Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S. Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Becht DC, Klein BJ, Kanai A, Jang SM, Cox KL, Zhou BR, Phanor SK, Zhang Y, Chen RW, Ebmeier CC, Lachance C, Galloy M, Fradet-Turcotte A, Bulyk ML, Bai Y, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain. Nat Commun 2023; 14:697. [PMID: 36754959 PMCID: PMC9908889 DOI: 10.1038/s41467-023-36368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ruo-Wen Chen
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | | | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Maxime Galloy
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Mameri A, Côté J. JAZF1: A metabolic actor subunit of the NuA4/TIP60 chromatin modifying complex. Front Cell Dev Biol 2023; 11:1134268. [PMID: 37091973 PMCID: PMC10119425 DOI: 10.3389/fcell.2023.1134268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
The multisubunit NuA4/TIP60 complex is a lysine acetyltransferase, chromatin modifying factor and gene co-activator involved in diverse biological processes. The past decade has seen a growing appreciation for its role as a metabolic effector and modulator. However, molecular insights are scarce and often contradictory, underscoring the need for further mechanistic investigation. A particularly exciting route emerged with the recent identification of a novel subunit, JAZF1, which has been extensively linked to metabolic homeostasis. This review summarizes the major findings implicating NuA4/TIP60 in metabolism, especially in light of JAZF1 as part of the complex.
Collapse
|
14
|
Jaiswal V, Varghese SA, Ghosh S. Validation of CRISPR activation system in Aedes cells using multicistronic plasmid vectors. Front Bioeng Biotechnol 2023; 11:1142415. [PMID: 37152643 PMCID: PMC10155059 DOI: 10.3389/fbioe.2023.1142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Aedes mosquitoes transmit several pathogens including flaviviruses to humans which result in high morbidity and mortality. Owing to adaptability and climate change, these mosquito vectors are predicted to establish in new geographical areas thus exposing larger populations to the risk of infection. Therefore, control of Aedes vector is necessary to prevent disease transmission. Recently, genetic approaches to vector control have shown promise; however, the tools and methods for manipulating the mosquito genome are rather limited. While CRISPR-Cas9 system has been adapted for gene editing purposes in Aedes mosquito, the dCas9-based transcription control of genes remain unexplored. In this study we report implementation of the CRISPR activation system in Aedes cells. For this we designed, constructed and tested a bi-partite plasmid-based strategy that allows expression of the dCas9-VPR and targeting guide RNA together with a reporter cassette. Quantitative analysis of the fluorescent reporter gene levels showed a robust over-expression validating CRISPR activation in Aedes cells. This strategy and the biological parts will be useful resource for synthetic transcription factor-based robust upregulation of Aedes genes for application of synthetic biology approaches for vector control.
Collapse
|
15
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Marker-free co-selection for successive rounds of prime editing in human cells. Nat Commun 2022; 13:5909. [PMID: 36207338 PMCID: PMC9546848 DOI: 10.1038/s41467-022-33669-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. However, efficiency remains a key challenge in a broad range of human cell types. In this work, we design a robust co-selection strategy through coediting of the ubiquitous and essential sodium/potassium pump (Na+/K+ ATPase). We readily engineer highly modified pools of cells and clones with homozygous modifications for functional studies with minimal pegRNA optimization. This process reveals that nicking the non-edited strand stimulates multiallelic editing but often generates tandem duplications and large deletions at the target site, an outcome dictated by the relative orientation of the protospacer adjacent motifs. Our approach streamlines the production of cell lines with multiple genetic modifications to create cellular models for biological research and lays the foundation for the development of cell-type specific co-selection strategies. Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. Here the authors develop a co-selection strategy to facilitate prime editing in human cells and provide design principles to prevent the formation of undesired editing byproducts at the target site.
Collapse
|
17
|
Cytosolic sequestration of spatacsin by Protein Kinase A and 14-3-3 proteins. Neurobiol Dis 2022; 174:105858. [PMID: 36096339 DOI: 10.1016/j.nbd.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.
Collapse
|
18
|
Vann KR, Acharya A, Jang SM, Lachance C, Zandian M, Holt TA, Smith AL, Pandey K, Durden DL, El-Gamal D, Côté J, Byrareddy SN, Kutateladze TG. Binding of the SARS-CoV-2 envelope E protein to human BRD4 is essential for infection. Structure 2022; 30:1224-1232.e5. [PMID: 35716662 PMCID: PMC9212912 DOI: 10.1016/j.str.2022.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 10/26/2022]
Abstract
Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Québec City, QC G1R 3S3, Canada
| | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Québec City, QC G1R 3S3, Canada
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tina A Holt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Audrey L Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Donald L Durden
- Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92130, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Québec City, QC G1R 3S3, Canada.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
20
|
Devoucoux M, Fort V, Khelifi G, Xu J, Alerasool N, Galloy M, Wong N, Bourriquen G, Fradet-Turcotte A, Taipale M, Hope K, Hussein SMI, Côté J. Oncogenic ZMYND11-MBTD1 fusion protein anchors the NuA4/TIP60 histone acetyltransferase complex to the coding region of active genes. Cell Rep 2022; 39:110947. [PMID: 35705031 DOI: 10.1016/j.celrep.2022.110947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
A recurrent chromosomal translocation found in acute myeloid leukemia leads to an in-frame fusion of the transcription repressor ZMYND11 to MBTD1, a subunit of the NuA4/TIP60 histone acetyltransferase complex. To understand the abnormal molecular events that ZMYND11-MBTD1 expression can create, we perform a biochemical and functional characterization comparison to each individual fusion partner. ZMYND11-MBTD1 is stably incorporated into the endogenous NuA4/TIP60 complex, leading to its mislocalization on the body of genes normally bound by ZMYND11. This can be correlated to increased chromatin acetylation and altered gene transcription, most notably on the MYC oncogene, and alternative splicing. Importantly, ZMYND11-MBTD1 expression favors Myc-driven pluripotency during embryonic stem cell differentiation and self-renewal of hematopoietic stem/progenitor cells. Altogether, these results indicate that the ZMYND11-MBTD1 fusion functions primarily by mistargeting the NuA4/TIP60 complex to the body of genes, altering normal transcription of specific genes, likely driving oncogenesis in part through the Myc regulatory network.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Victoire Fort
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Gabriel Khelifi
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Joshua Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Maxime Galloy
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Nicholas Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gaëlle Bourriquen
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Kristin Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
21
|
Lankford C, Houtman J, Baker SA. Identification of HCN1 as a 14-3-3 client. PLoS One 2022; 17:e0268335. [PMID: 35679272 PMCID: PMC9182292 DOI: 10.1371/journal.pone.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.
Collapse
Affiliation(s)
- Colten Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-Beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert JP, Hussein SMI, Côté J. MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Mol Cell Proteomics 2022; 21:100253. [PMID: 35636729 PMCID: PMC9253478 DOI: 10.1016/j.mcpro.2022.100253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
MRG15/MORF4L1 is a highly conserved protein in eukaryotes that contains a chromodomain (CHD) recognizing methylation of lysine 36 on histone H3 (H3K36me3) in chromatin. Intriguingly, it has been reported in the literature to interact with several different factors involved in chromatin modifications, gene regulation, alternative mRNA splicing, and DNA repair by homologous recombination. To get a complete and reliable picture of associations in physiological conditions, we used genome editing and tandem affinity purification to analyze the stable native interactome of human MRG15, its paralog MRGX/MORF4L2 that lacks the CHD, and MRGBP (MRG-binding protein) in isogenic K562 cells. We found stable interchangeable association of MRG15 and MRGX with the NuA4/TIP60 histone acetyltransferase/chromatin remodeler, Sin3B histone deacetylase/demethylase, ASH1L histone methyltransferase, and PALB2-BRCA2 DNA repair protein complexes. These associations were further confirmed and analyzed by CRISPR tagging of endogenous proteins and comparison of expressed isoforms. Importantly, based on structural information, point mutations could be introduced that specifically disrupt MRG15 association with some complexes but not others. Most interestingly, we also identified a new abundant native complex formed by MRG15/X-MRGBP-BRD8-EP400NL (EP400 N-terminal like) that is functionally similar to the yeast TINTIN (Trimer Independent of NuA4 for Transcription Interactions with Nucleosomes) complex. Our results show that EP400NL, being homologous to the N-terminal region of NuA4/TIP60 subunit EP400, creates TINTIN by competing for BRD8 association. Functional genomics indicate that human TINTIN plays a role in transcription of specific genes. This is most likely linked to the H4ac-binding bromodomain of BRD8 along the H3K36me3-binding CHD of MRG15 on the coding region of transcribed genes. Taken together, our data provide a complete detailed picture of human MRG proteins-associated protein complexes, which are essential to understand and correlate their diverse biological functions in chromatin-based nuclear processes.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Céline Roques
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Catherine Lachance
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Anahita Lashgari
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada; Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Karine Jacquet
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Prudente
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud Droit
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada.
| |
Collapse
|
23
|
Sigismondo G, Papageorgiou DN, Krijgsveld J. Cracking chromatin with proteomics: From chromatome to histone modifications. Proteomics 2022; 22:e2100206. [PMID: 35633285 DOI: 10.1002/pmic.202100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Chromatin is the assembly of genomic DNA and proteins packaged in the nucleus of eukaryotic cells, which together are crucial in regulating a plethora of cellular processes. Histones may be the best known class of protein constituents in chromatin, which are decorated by a range of post-translational modifications to recruit accessory proteins and protein complexes to execute specific functions, ranging from DNA compaction, repair, transcription and duplication, all in a dynamic fashion and depending on the cellular state. The key role of chromatin in cellular fitness is emphasized by the deregulation of chromatin determinants predisposing to different diseases, including cancer. For this reason, deep investigation of chromatin composition is fundamental to better understand cellular physiology. Proteomic approaches have played a crucial role to understand critical aspects of this complex interplay, benefiting from the ability to identify and quantify proteins and their modifications in an unbiased manner. This review gives an overview of the proteomic approaches that have been developed by combining mass spectrometry-based with tailored biochemical and genetic methods to examine overall protein make-up of chromatin, to characterize chromatin domains, to determine protein interactions, and to decipher the broad spectrum of histone modifications that represent the quintessence of chromatin function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gianluca Sigismondo
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Division of Proteomics of Stem Cells and Cancer, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Kelly JJ, Tranter D, Pardon E, Chi G, Kramer H, Happonen L, Knee KM, Janz JM, Steyaert J, Bulawa C, Paavilainen VO, Huiskonen JT, Yue WW. Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nat Struct Mol Biol 2022; 29:420-429. [PMID: 35449234 PMCID: PMC9113939 DOI: 10.1038/s41594-022-00755-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/01/2022] [Indexed: 01/16/2023]
Abstract
The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
Collapse
Affiliation(s)
- John J Kelly
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Knee
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jay M Janz
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Christine Bulawa
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Ville O Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
27
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 2022; 13:277. [PMID: 35022409 PMCID: PMC8755797 DOI: 10.1038/s41467-021-27882-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes. Function of nucleosomal acetyltransferase of H4 (NuA4), one major complex of HAT, remains unclear in plants. Here, the authors generate mutants targeting two components of the putative NuA4 complex in Arabidopsis (EAF1 and EPL1) and show their roles in photosynthesis genes regulation through H4K5ac and H2A.Z acetylation.
Collapse
|
29
|
Agbo L, Blanchet SA, Kougnassoukou Tchara PE, Fradet-Turcotte A, Lambert JP. Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. Methods Mol Biol 2022; 2456:223-240. [PMID: 35612745 DOI: 10.1007/978-1-0716-2124-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear receptors, including hormone receptors, perform their cellular activities by modulating their protein-protein interactions. They engage with specific ligands and translocate to the nucleus, where they bind the DNA and activate extensive transcriptional programs. Therefore, gaining a comprehensive overview of the protein-protein interactions they establish requires methods that function effectively throughout the cell with fast dynamics and high reproducibility. Focusing on estrogen receptor alpha (ESR1), the founding member of the nuclear receptor family, this chapter describes a new lentiviral system that allows the expression of TurboID-hemagglutinin (HA)-2 × Strep tagged proteins in mammalian cells to perform fast proximity biotinylation assays. Key validation steps for these reagents and their use in interactome mapping experiments in two distinct breast cancer cell lines are described. Our protocol enabled the quantification of ESR1 interactome generated by cellular contexts that were hormone-sensitive or not.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Sophie Anne Blanchet
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Amélie Fradet-Turcotte
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada.
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
| |
Collapse
|
30
|
Poetz F, Corbo J, Levdansky Y, Spiegelhalter A, Lindner D, Magg V, Lebedeva S, Schweiggert J, Schott J, Valkov E, Stoecklin G. RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation. Nat Commun 2021; 12:7175. [PMID: 34887419 PMCID: PMC8660800 DOI: 10.1038/s41467-021-27471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Alexander Spiegelhalter
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Jörg Schweiggert
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA.
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Henneberg F, Chari A. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Life (Basel) 2021; 11:1289. [PMID: 34947821 PMCID: PMC8707722 DOI: 10.3390/life11121289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these macromolecular machines is fundamental to elucidate mechanisms by which they maintain homeostasis. As the faithful function of macromolecular complexes is essential for cell survival, their mis-function leads to the development of human diseases. Furthermore, detailed mechanistic interrogation of the function of macromolecular machines can be exploited to develop and optimize biotechnological processes. The purification of intact macromolecular complexes is an essential prerequisite for this; however, chromatographic purification schemes can induce the dissociation of subunits or the disintegration of the whole complex. Here, we discuss the development and application of chromatography-free purification strategies based on fractionated PEG precipitation and orthogonal density gradient centrifugation that overcomes existing limitations of established chromatographic purification protocols. The presented case studies illustrate the capabilities of these procedures for the purification of macromolecular complexes.
Collapse
Affiliation(s)
- Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
32
|
Development of a versatile HPLC-based method to evaluate the activation status of small GTPases. J Biol Chem 2021; 297:101428. [PMID: 34801548 PMCID: PMC8668980 DOI: 10.1016/j.jbc.2021.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Small GTPases cycle between an inactive GDP-bound and an active GTP-bound state to control various cellular events, such as cell proliferation, cytoskeleton organization, and membrane trafficking. Clarifying the guanine nucleotide-bound states of small GTPases is vital for understanding the regulation of small GTPase functions and the subsequent cellular responses. Although several methods have been developed to analyze small GTPase activities, our knowledge of the activities for many small GTPases is limited, partly because of the lack of versatile methods to estimate small GTPase activity without unique probes and specialized equipment. In the present study, we developed a versatile and straightforward HPLC-based assay to analyze the activation status of small GTPases by directly quantifying the amounts of guanine nucleotides bound to them. This assay was validated by analyzing the RAS-subfamily GTPases, including HRAS, which showed that the ratios of GTP-bound forms were comparable with those obtained in previous studies. Furthermore, we applied this assay to the investigation of psychiatric disorder-associated mutations of RHEB (RHEB/P37L and RHEB/S68P), revealing that both mutations cause an increase in the ratio of the GTP-bound form in cells. Mechanistically, loss of sensitivity to TSC2 (a GTPase-activating protein for RHEB) for RHEB/P37L, as well as both decreased sensitivity to TSC2 and accelerated guanine-nucleotide exchange for RHEB/S68P, is involved in the increase of their GTP-bound forms, respectively. In summary, the HPLC-based assay developed in this study provides a valuable tool for analyzing small GTPases for which the activities and regulatory mechanisms are less well understood.
Collapse
|
33
|
Dolgalev G, Poverennaya E. Applications of CRISPR-Cas Technologies to Proteomics. Genes (Basel) 2021; 12:1790. [PMID: 34828396 PMCID: PMC8625504 DOI: 10.3390/genes12111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.
Collapse
|
34
|
Galloy M, Lachance C, Cheng X, Distéfano-Gagné F, Côté J, Fradet-Turcotte A. Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Front Cell Dev Biol 2021; 9:729338. [PMID: 34604228 PMCID: PMC8481805 DOI: 10.3389/fcell.2021.729338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The modification of histones-the structural components of chromatin-is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.
Collapse
Affiliation(s)
- Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Félix Distéfano-Gagné
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Amelie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
35
|
Zhang H, Devoucoux M, Song X, Li L, Ayaz G, Cheng H, Tempel W, Dong C, Loppnau P, Côté J, Min J. Structural Basis for EPC1-Mediated Recruitment of MBTD1 into the NuA4/TIP60 Acetyltransferase Complex. Cell Rep 2021; 30:3996-4002.e4. [PMID: 32209463 DOI: 10.1016/j.celrep.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
MBTD1, a H4K20me reader, has recently been identified as a component of the NuA4/TIP60 acetyltransferase complex, regulating gene expression and DNA repair. NuA4/TIP60 inhibits 53BP1 binding to chromatin through recognition of the H4K20me mark by MBTD1 and acetylation of H2AK15, blocking the ubiquitination mark required for 53BP1 localization at DNA breaks. The NuA4/TIP60 non-catalytic subunit EPC1 enlists MBTD1 into the complex, but the detailed molecular mechanism remains incompletely explored. Here, we present the crystal structure of the MBTD1-EPC1 complex, revealing a hydrophobic C-terminal fragment of EPC1 engaging the MBT repeats of MBTD1 in a site distinct from the H4K20me binding site. Different cellular assays validate the physiological significance of the key residues involved in the MBTD1-EPC1 interaction. Our study provides a structural framework for understanding the mechanism by which MBTD1 recruits the NuA4/TIP60 acetyltransferase complex to influence transcription and DNA repair pathway choice.
Collapse
Affiliation(s)
- Heng Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Xiaosheng Song
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gamze Ayaz
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Harry Cheng
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Fang Y, Xu X, Ding J, Yang L, Doan MT, Karmaus PWF, Snyder NW, Zhao Y, Li JL, Li X. Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell 2021; 28:748-763.e7. [PMID: 33450185 DOI: 10.1016/j.stem.2020.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 08/20/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Histone crotonylation is a non-acetyl histone lysine modification that is as widespread as acetylation. However, physiological functions associated with histone crotonylation remain almost completely unknown. Here we report that histone crotonylation is crucial for endoderm differentiation. We demonstrate that key crotonyl-coenzyme A (CoA)-producing enzymes are specifically induced in endodermal cells during differentiation of human embryonic stem cells (hESCs) in vitro and in mouse embryos, where they function to increase histone crotonylation and enhance endodermal gene expression. Chemical enhancement of histone crotonylation promotes endoderm differentiation of hESCs, whereas deletion of crotonyl-CoA-producing enzymes reduces histone crotonylation and impairs meso/endoderm differentiation in vitro and in vivo. Our study uncovers a histone crotonylation-mediated mechanism that promotes endodermal commitment of pluripotent stem cells, which may have important implications for therapeutic strategies against a number of human diseases.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jun Ding
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lu Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Mary T Doan
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Peer W F Karmaus
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Dogan M, Teralı K, Eroz R, Demirci H, Kocabay K. Clinical and molecular findings in a Turkish family with an ultra-rare condition, ELP2-related neurodevelopmental disorder. Mol Biol Rep 2021; 48:701-708. [PMID: 33393008 DOI: 10.1007/s11033-020-06097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Elongator is a multi-subunit protein complex bearing six different protein subunits, Elp1 to -6, that are highly conserved among eukaryotes. Elp2 is the second major subunit of Elongator and, together with Elp1 and Elp3, form the catalytic core of this essential complex. Pathogenic variants that affect the structure and function of the Elongator complex may cause neurodevelopmental disorders. Here, we report on a new family with three children affected with a severe form of intellectual disability along with spastic tetraparesis, choreoathetosis, and self injury. Molecular genetic analyses reveal a homozygous missense variant in the ELP2 gene (NM_018255.4 (ELP2): c.1385G > A (p.Arg462Gln)), while in silico studies suggest a loss of electrostatic interactions that may contribute to the overall stability of the encoded protein. We also include a comparison of the patients with ELP2-related neurodevelopmental disorder to those previously reported in the literature. Apart from being affected with intellectual disability, we have extremely limited clinical knowledge about patients harboring ELP2 variants. Besides providing support to the causal role of p.Arg462Gln in ELP2-related neurodevelopmental disorder, we add self-injurious behavior to the clinical phenotypic repertoire of the disease.
Collapse
Affiliation(s)
- Mustafa Dogan
- Department of Medical Genetics, Malatya Research and Training Hospital, Malatya, Turkey.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Recep Eroz
- Department of Medical Genetics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Huseyin Demirci
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Kenan Kocabay
- Department of Pediatrics, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
38
|
Geny S, Pichard S, Poterszman A, Concordet JP. Gene Tagging with the CRISPR-Cas9 System to Facilitate Macromolecular Complex Purification. Methods Mol Biol 2021; 2305:153-174. [PMID: 33950389 DOI: 10.1007/978-1-0716-1406-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The need to generate modified cell lines that express tagged proteins of interest has become increasingly important. Here, we describe a detailed protocol for facile CRISPR/Cas9-mediated gene tagging and isolation of modified cells. In this protocol, we combine two previously published strategies that promote CRISPR/Cas9-mediated gene tagging: using chemically modified single-stranded oligonucleotides as donor templates and a co-selection strategy targeting the ATP1A1 gene at the same time as the gene of interest. Altogether, the protocol proposed here is both easier and saves time compared to other approaches for generating cells that express tagged proteins of interest, which is crucial to purify native complex from human cells.
Collapse
Affiliation(s)
- Sylvain Geny
- Laboratoire Structure et Instabilité des Génomes, Inserm U1154, CNRS UMR 7196, Museum National d'Histoire Naturelle, Paris, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- Université de Strasbourg, Illkirch, France.
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Inserm U1154, CNRS UMR 7196, Museum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
39
|
Geny S, Pichard S, Brion A, Renaud JB, Jacquemin S, Concordet JP, Poterszman A. Tagging Proteins with Fluorescent Reporters Using the CRISPR/Cas9 System and Double-Stranded DNA Donors. Methods Mol Biol 2021; 2247:39-57. [PMID: 33301111 DOI: 10.1007/978-1-0716-1126-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Macromolecular complexes govern the majority of biological processes and are of great biomedical relevance as factors that perturb interaction networks underlie a number of diseases, and inhibition of protein-protein interactions is a common strategy in drug discovery. Genome editing technologies enable precise modifications in protein coding genes in mammalian cells, offering the possibility to introduce affinity tags or fluorescent reporters for proteomic or imaging applications in the bona fide cellular context. Here we describe a streamlined procedure which uses the CRISPR/Cas9 system and a double-stranded donor plasmid for efficient generation of homozygous endogenously GFP-tagged human cell lines. Establishing cellular models that preserve native genomic regulation of the target protein is instrumental to investigate protein localization and dynamics using fluorescence imaging but also to affinity purify associated protein complexes using anti-GFP antibodies or nanobodies.
Collapse
Affiliation(s)
- Sylvain Geny
- Laboratoire Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle (MNHN), Institut National de la Santé et de la Recherche Médicale (INSERM), U1154, Centre National de la Recherche Scientifique (CNRS), UMR7196 , Paris, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, Illkirch, France
| | - Alice Brion
- Laboratoire Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle (MNHN), Institut National de la Santé et de la Recherche Médicale (INSERM), U1154, Centre National de la Recherche Scientifique (CNRS), UMR7196 , Paris, France
| | - Jean-Baptiste Renaud
- Laboratoire Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle (MNHN), Institut National de la Santé et de la Recherche Médicale (INSERM), U1154, Centre National de la Recherche Scientifique (CNRS), UMR7196 , Paris, France
| | - Sophie Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, Illkirch, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle (MNHN), Institut National de la Santé et de la Recherche Médicale (INSERM), U1154, Centre National de la Recherche Scientifique (CNRS), UMR7196 , Paris, France.
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Center for Integrated Biology, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, CNRS UMR 7104 - Inserm U 1258, University of Strasbourg, Illkirch, France.
| |
Collapse
|
40
|
Kwon SC, Jang H, Shen S, Baek SC, Kim K, Yang J, Kim J, Kim JS, Wang S, Shi Y, Li F, Kim VN. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Res 2020; 48:11097-11112. [PMID: 33035348 PMCID: PMC7641749 DOI: 10.1093/nar/gkaa827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
The microprocessor complex cleaves the primary transcript of microRNA (pri-miRNA) to initiate miRNA maturation. Microprocessor is known to consist of RNase III DROSHA and dsRNA-binding DGCR8. Here, we identify Enhancer of Rudimentary Homolog (ERH) as a new component of Microprocessor. Through a crystal structure and biochemical experiments, we reveal that ERH uses its hydrophobic groove to bind to a conserved region in the N-terminus of DGCR8, in a 2:2 stoichiometry. Knock-down of ERH or deletion of the DGCR8 N-terminus results in a reduced processing of suboptimal pri-miRNAs in polycistronic miRNA clusters. ERH increases the processing of suboptimal pri-miR-451 in a manner dependent on its neighboring pri-miR-144. Thus, the ERH dimer may mediate 'cluster assistance' in which Microprocessor is loaded onto a poor substrate with help from a high-affinity substrate in the same cluster. Our study reveals a role of ERH in the miRNA biogenesis pathway.
Collapse
Affiliation(s)
- S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Harim Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Siyuan Shen
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihye Yang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Suman Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
42
|
Humbert J, Salian S, Makrythanasis P, Lemire G, Rousseau J, Ehresmann S, Garcia T, Alasiri R, Bottani A, Hanquinet S, Beaver E, Heeley J, Smith ACM, Berger SI, Antonarakis SE, Yang XJ, Côté J, Campeau PM. De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. Am J Hum Genet 2020; 107:564-574. [PMID: 32822602 PMCID: PMC7477011 DOI: 10.1016/j.ajhg.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.
Collapse
Affiliation(s)
- Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Smrithi Salian
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Periklis Makrythanasis
- Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Gabrielle Lemire
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Justine Rousseau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Sophie Ehresmann
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Thomas Garcia
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Rami Alasiri
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Sylviane Hanquinet
- Unit of Pediatric Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Erin Beaver
- Mercy Kids Genetics, St. Louis, MO 63141, USA
| | | | - Ann C M Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Seth I Berger
- Children's National Health System, Washington, DC 20010, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
43
|
Beyer T, Klose F, Kuret A, Hoffmann F, Lukowski R, Ueffing M, Boldt K. Tissue- and isoform-specific protein complex analysis with natively processed bait proteins. J Proteomics 2020; 231:103947. [PMID: 32853754 DOI: 10.1016/j.jprot.2020.103947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Protein-protein interaction analysis is an important tool to elucidate the function of proteins and protein complexes as well as their dynamic behavior. To date, the analysis of tissue- or even cell- or compartment-specific protein interactions is still relying on the availability of specific antibodies suited for immunoprecipitation. Here, we aimed at establishing a method that allows identification of protein interactions and complexes from intact tissues independent of specific, high affinity antibodies used for protein pull-down and isolation. Tagged bait proteins were expressed in human HEK293T cells and residual interactors removed by SDS. The resulting tag-fusion protein was then used as bait to pull proteins from tissue samples. Tissue-specific interactions were reproducibly identified from porcine retina as well as from retinal pigment epithelium using the ciliary protein lebercilin as bait. Further, murine heart-specific interactors of two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 (cGK1) were investigated. Here, specific interactions were associated with the cGK1α and β gene products, that differ only in their unique amino-terminal region comprising about 100 aa. As such, the new protocol provides a fast and reliable method for tissue-specific protein complex analysis which is independent of the availability or suitability of antibodies for immunoprecipitation. SIGNIFICANCE: Protein-protein interaction in the functional relevant tissue is still difficult due to the dependence on specific antibodies or bait production in bacteria or insect cells. Here, the tagged protein of interest is produced in a human cell line and bound proteins are gently removed using SDS. Because applying the suitable SDS concentration is a critical step, different SDS solutions were tested to demonstrate their influence on interactions and the clean-up process. The established protocol enabled a tissue-specific analysis of the ciliary proteins lebercilin and TMEM107 using pig eyes. In addition, two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 showed distinct protein interactions in mouse heart tissue. With the easy, fast and cheap protocol presented here, deep insights in tissue-specific and functional relevant protein complex formation is possible.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| | - Karsten Boldt
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| |
Collapse
|
44
|
Fages J, Chailleux C, Humbert J, Jang SM, Loehr J, Lambert JP, Côté J, Trouche D, Canitrot Y. JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. PLoS Genet 2020; 16:e1008511. [PMID: 32598339 PMCID: PMC7351224 DOI: 10.1371/journal.pgen.1008511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/10/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomal DNA (rDNA) is the most transcribed genomic region and contains hundreds of tandem repeats. Maintaining these rDNA repeats as well as the level of rDNA transcription is essential for cellular homeostasis. DNA damages generated in rDNA need to be efficiently and accurately repaired and rDNA repeats instability has been reported in cancer, aging and neurological diseases. Here, we describe that the histone demethylase JMJD6 is rapidly recruited to nucleolar DNA damage and is crucial for the relocalisation of rDNA in nucleolar caps. Yet, JMJD6 is dispensable for rDNA transcription inhibition. Mass spectrometry analysis revealed that JMJD6 interacts with the nucleolar protein Treacle and modulates its interaction with NBS1. Moreover, cells deficient for JMJD6 show increased sensitivity to nucleolar DNA damage as well as loss and rearrangements of rDNA repeats upon irradiation. Altogether our data reveal that rDNA transcription inhibition is uncoupled from rDNA relocalisation into nucleolar caps and that JMJD6 is required for rDNA stability through its role in nucleolar caps formation. Ribosomal DNA is composed of repeated sequences and is the most transcribed genomic region. Transcription of rDNA is essential for cellular homeostasis and cell proliferation. Numerous pathologies such as cancer and neurological disorders are associated with defective rDNA repeats maintenance. The mechanisms involved in the control of rDNA integrity involve major DNA repair pathways such as Non-Homologous End Joining and Homologous Recombination. However, how they are controlled and orchestrated is poorly understood. Here, we identified JMJD6 as a new member of the maintenance of rDNA integrity. We observed that JMJD6 controls the recruitment of NBS1 in the nucleolus in order to lead to the proper management of rDNA damages
Collapse
Affiliation(s)
- Jérémie Fages
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Catherine Chailleux
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Suk-Min Jang
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jérémy Loehr
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jean-Philippe Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jacques Côté
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yvan Canitrot
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
45
|
Kothari C, Osseni MA, Agbo L, Ouellette G, Déraspe M, Laviolette F, Corbeil J, Lambert JP, Diorio C, Durocher F. Machine learning analysis identifies genes differentiating triple negative breast cancers. Sci Rep 2020; 10:10464. [PMID: 32591639 PMCID: PMC7320018 DOI: 10.1038/s41598-020-67525-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various molecular approaches have been used to target TNBC but with little success. Here, using machine learning algorithms, we analyzed the available BC data from the Cancer Genome Atlas Network (TCGA) and have identified two potential genes, TBC1D9 (TBC1 domain family member 9) and MFGE8 (Milk Fat Globule-EGF Factor 8 Protein), that could successfully differentiate TNBC from non-TNBC, irrespective of their heterogeneity. TBC1D9 is under-expressed in TNBC as compared to non-TNBC patients, while MFGE8 is over-expressed. Overexpression of TBC1D9 has a better prognosis whereas overexpression of MFGE8 correlates with a poor prognosis. Protein-protein interaction analysis by affinity purification mass spectrometry (AP-MS) and proximity biotinylation (BioID) experiments identified a role for TBC1D9 in maintaining cellular integrity, whereas MFGE8 would be involved in various tumor survival processes. These promising genes could serve as biomarkers for TNBC and deserve further investigation as they have the potential to be developed as therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Charu Kothari
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Mazid Abiodoun Osseni
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Lynda Agbo
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Geneviève Ouellette
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Maxime Déraspe
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - François Laviolette
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département D'informatique Et de génie Logiciel, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Caroline Diorio
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
- Département de Médecine Sociale Et Préventive, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada.
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada.
| |
Collapse
|
46
|
Scacchetti A, Schauer T, Reim A, Apostolou Z, Campos Sparr A, Krause S, Heun P, Wierer M, Becker PB. Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. eLife 2020; 9:e56325. [PMID: 32432549 PMCID: PMC7239659 DOI: 10.7554/elife.56325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Histone acetylation and deposition of H2A.Z variant are integral aspects of active transcription. In Drosophila, the single DOMINO chromatin regulator complex is thought to combine both activities via an unknown mechanism. Here we show that alternative isoforms of the DOMINO nucleosome remodeling ATPase, DOM-A and DOM-B, directly specify two distinct multi-subunit complexes. Both complexes are necessary for transcriptional regulation but through different mechanisms. The DOM-B complex incorporates H2A.V (the fly ortholog of H2A.Z) genome-wide in an ATP-dependent manner, like the yeast SWR1 complex. The DOM-A complex, instead, functions as an ATP-independent histone acetyltransferase complex similar to the yeast NuA4, targeting lysine 12 of histone H4. Our work provides an instructive example of how different evolutionary strategies lead to similar functional separation. In yeast and humans, nucleosome remodeling and histone acetyltransferase complexes originate from gene duplication and paralog specification. Drosophila generates the same diversity by alternative splicing of a single gene.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Tamas Schauer
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Alexander Reim
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMunichGermany
| | - Zivkos Apostolou
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Aline Campos Sparr
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of EdinburghEdinburghUnited Kingdom
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMunichGermany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-UniversityMunichGermany
| |
Collapse
|
47
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
48
|
Lamaa A, Humbert J, Aguirrebengoa M, Cheng X, Nicolas E, Côté J, Trouche D. Integrated analysis of H2A.Z isoforms function reveals a complex interplay in gene regulation. eLife 2020; 9:53375. [PMID: 32109204 PMCID: PMC7048395 DOI: 10.7554/elife.53375] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
The H2A.Z histone variant plays major roles in the control of gene expression. In human, H2A.Z is encoded by two genes expressing two isoforms, H2A.Z.1 and H2A.Z.2 differing by three amino acids. Here, we undertook an integrated analysis of their functions in gene expression using endogenously-tagged proteins. RNA-Seq analysis in untransformed cells showed that they can regulate both distinct and overlapping sets of genes positively or negatively in a context-dependent manner. Furthermore, they have similar or antagonistic function depending on genes. H2A.Z.1 and H2A.Z.2 can replace each other at Transcription Start Sites, providing a molecular explanation for this interplay. Mass spectrometry analysis showed that H2A.Z.1 and H2A.Z.2 have specific interactors, which can mediate their functional antagonism. Our data indicate that the balance between H2A.Z.1 and H2A.Z.2 at promoters is critically important to regulate specific gene expression, providing an additional layer of complexity to the control of gene expression by histone variants.
Collapse
Affiliation(s)
- Assala Lamaa
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Agudelo D, Carter S, Velimirovic M, Duringer A, Rivest JF, Levesque S, Loehr J, Mouchiroud M, Cyr D, Waters PJ, Laplante M, Moineau S, Goulet A, Doyon Y. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Res 2020; 30:107-117. [PMID: 31900288 PMCID: PMC6961573 DOI: 10.1101/gr.255414.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRISPR1-Cas9 (St1Cas9) system. We found that St1Cas9 strain variants enable targeting to five distinct A-rich PAMs and provide a structural basis for their specificities. The small size of this ortholog enables expression of the holoenzyme from a single adeno-associated viral vector for in vivo editing applications. Delivery of St1Cas9 to the neonatal liver efficiently rewired metabolic pathways, leading to phenotypic rescue in a mouse model of hereditary tyrosinemia. These robust enzymes expand and complement current editing platforms available for tailoring mammalian genomes.
Collapse
Affiliation(s)
- Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Sophie Carter
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Minja Velimirovic
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Alexis Duringer
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Jean-François Rivest
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Sébastien Levesque
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Mathilde Mouchiroud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ)-Université Laval, Québec, Québec G1V 4G5, Canada
| | - Denis Cyr
- Service de Génétique médicale, Département de Pédiatrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), et CRCHUS, Sherbrooke, Québec J1H 5N4, Canada
| | - Paula J Waters
- Service de Génétique médicale, Département de Pédiatrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), et CRCHUS, Sherbrooke, Québec J1H 5N4, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ)-Université Laval, Québec, Québec G1V 4G5, Canada
- Université Laval Cancer Research Centre, Québec, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec G1V 0A6, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
50
|
Xiong J, He J, Xie WP, Hinojosa E, Ambati CSR, Putluri N, Kim HE, Zhu MX, Du G. Rapid affinity purification of intracellular organelles using a twin strep tag. J Cell Sci 2019; 132:jcs.235390. [PMID: 31780580 DOI: 10.1242/jcs.235390] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cells are internally organized into compartmentalized organelles that execute specialized functions. To understand the functions of individual organelles and their regulations, it is critical to resolve the compositions of individual organelles, which relies on a rapid and efficient isolation method for specific organellar populations. Here, we introduce a robust affinity purification method for rapid isolation of intracellular organelles (e.g. lysosomes, mitochondria and peroxisomes) by taking advantage of the extraordinarily high affinity between the twin strep tag and streptavidin variants. With this method, we can isolate desired organelles with high purity and yield in 3 min from the post-nuclear supernatant of mammalian cells or less than 8 min for the whole purification process. Using lysosomes as an example, we show that the rapid procedure is especially useful for studying transient and fast cellular activities, such as organelle-initiated signaling and organellar contents of small-molecular metabolites. Therefore, our method offers a powerful tool to dissect spatiotemporal regulation and functions of intracellular organelles.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wendy P Xie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ezekiel Hinojosa
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chandra Shekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA .,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA .,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|