1
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Xie M, Dheer A, Perry JF, Barath A, Nguyen AT, Worrell GA, Wu LJ. Microglial TREM2 promotes phagocytic clearance of damaged neurons after status epilepticus. Brain Behav Immun 2025; 123:540-555. [PMID: 39353548 DOI: 10.1016/j.bbi.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. Microglial TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about how TREM2 affects microglial function within epileptogenesis. To investigate this, we utilized male TREM2 knockout (KO) mice within the intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both the severity of acute status epilepticus and the number of spontaneous recurrent seizures characteristic of chronic focal epilepsy. Phagocytic clearance of damaged neurons by microglia was also impaired by TREM2 KO and reduced phagocytic activity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between expression of the microglial phagocytic marker CD68 and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity are important to epileptogenic pathology.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Animals
- Status Epilepticus/metabolism
- Status Epilepticus/genetics
- Microglia/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Knockout
- Male
- Phagocytosis/physiology
- Phagocytosis/genetics
- Mice
- Neurons/metabolism
- Humans
- Disease Models, Animal
- Kainic Acid
- Mice, Inbred C57BL
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/genetics
- Seizures/metabolism
- Seizures/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Koichiro Haruwaka
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Blake A Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jadyn F Perry
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Nguyen DA, Niquet J, Marrero-Rosado B, Schultz CR, Stone MF, de Araujo Furtado M, Biney AK, Lumley LA. Age differences in organophosphorus nerve agent-induced seizure, blood brain barrier integrity, and neurodegeneration in midazolam-treated rats. Exp Neurol 2024; 385:115122. [PMID: 39710244 DOI: 10.1016/j.expneurol.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Exposure to organophosphorus nerve agents irreversibly inhibits acetylcholinesterase and may lead to cholinergic crisis and seizures. Although benzodiazepines are the standard of care after nerve agent-induced status epilepticus, when treatment is delayed for up to 30 min or more, refractory status epilepticus can develop. Adult male rodents are often utilized for evaluation of therapeutic efficacy against nerve agent exposure. However, there may be age and sex differences in toxicity and in therapeutic response. We previously reported that juvenile rats are less susceptible to the lethal effects of soman compared to adults, while pups are the most susceptible. Here, we report on age and sex differences in delayed midazolam treatment efficacy on survival, seizures and brain pathology. Male and female pups, juvenile and adult rats were exposed to an equitoxic dose of soman and treated with atropine sulfate and the oxime asoxime chloride (HI-6 dimethanesulphonate) 1 min after exposure and with midazolam 40 min after seizure onset, determined by EEG in juvenile and adult rats, and by behavior in pups. Survival, seizure data, and spontaneous recurrent seizures were evaluated. Brains were processed to assess neurodegeneration, neuroinflammation, and blood brain barrier (BBB) integrity. Juvenile and adult rats exposed to soman and treated with midazolam had BBB disruption, epileptogenesis, neurodegeneration, microglial activation, and astrogliosis; adult rats had poorer outcomes. Pups and juvenile rats exposed to soman had poor survival prior to midazolam treatment but most survived once treated; overall, neurodegeneration or disrupted BBB integrity was not detected in midazolam-treated pups. We found that age is a determinant factor in soman-induced toxicity and response to standard medical countermeasures. In addition, we observed sex differences in response to soman in juveniles and males with respect to body weight growth curves and in neuronal loss in juveniles and adults. Adjunct therapies to midazolam are warranted and it is important to evaluate both age and sex as factors in therapeutic response.
Collapse
Affiliation(s)
- Donna A Nguyen
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
| | - Brenda Marrero-Rosado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | | | - Abiel K Biney
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America.
| |
Collapse
|
3
|
Cases-Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024; 65:3457-3468. [PMID: 39401070 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical Center, Ōmura, Japan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Auvin
- Pediatric Neurology Department, AP-HP, Robert Debré University Hospital, CRMR épilepsies Rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Department of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Chen IC, Ho SY, Tsai CW, Chen EL, Liou HH. Microglia-Impaired Phagocytosis Contributes to the Epileptogenesis in a Mouse Model of Dravet Syndrome. Int J Mol Sci 2024; 25:12721. [PMID: 39684432 DOI: 10.3390/ijms252312721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Dravet syndrome (DS) is a genetic disorder caused by a deficit in the Nav1.1 channel, leading to drug-resistant epilepsy. The Nav1.1 channel plays a crucial role in microglial cell activation, and microglia are recognized as key mediators of seizures. In this study, we explored the role of microglia in DS-related epileptogenesis using a knock-in mouse model (Scn1aE1099X/+) that mimics a subset of DS patients. In these DS mice, we observed a significant downregulation of the Nav1.1 channel in microglia. This channel deficit led microglia to adopt a pro-inflammatory state in their quiescent phase. In the LPS-activated state, microglia predominantly exhibited an intermediate morphology rather than the expected fully activated form. The reduced expression of pro-inflammatory cytokines was detected in microglia following treatment with LPS. Notably, we found a significant decrease in the phagocytic ability of microglia in DS mice. Electrophysiological studies revealed an increased immature synaptic activity in the dentate gyrus in DS mice. The impaired microglial phagocytosis of damaged cells, combined with reduced cytokine secretion, may result in an excess of immature synaptic connections, neuronal hyperexcitation, and the formation of abnormal neural circuits in the hippocampus of Scn1aE1099X/+ mice. These changes could potentially contribute to mechanisms relevant to epileptogenesis in DS.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Pharmacology and Neurology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Yin Ho
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Che-Wen Tsai
- Department of Pharmacology and Neurology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - En-Li Chen
- Department of Pharmacology and Neurology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Horng-Huei Liou
- Department of Pharmacology and Neurology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
- Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei 24205, Taiwan
| |
Collapse
|
5
|
Li S, Adamu A, Ye Y, Gao F, Mi R, Xue G, Wang Z. (+)-Borneol inhibits neuroinflammation and M1 phenotype polarization of microglia in epileptogenesis through the TLR4-NFκB signaling pathway. Front Neurosci 2024; 18:1497102. [PMID: 39605791 PMCID: PMC11599196 DOI: 10.3389/fnins.2024.1497102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objective To investigate the effect of (+)-borneol on neuroinflammation and microglia phenotype polarization in epileptogenesis and its possible mechanism. Methods Based on mouse models of status epilepticus (SE) induced by pilocarpine, and treated with 15 mg/kg (+)-borneol, western-blot was used to detect the expressions of NeuN, Iba-1, TLR4, p65 and p-p65 in the hippocampus. Immunofluorescence was used to detect the expression of apoptosis-related proteins Bax and Bcl-2. To explore the effect of (+)-borneol on microglia in vitro, we used the kainic acid-induced microglia model and the concentration of (+)-borneol was 25 μM according to CCK-8 results. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the supernatant of each group was detected by ELISA. The nitric oxide (NO) content in the supernatant was detected by Griess method. The expressions of Iba-1 and TLR4-NFκB signaling pathway-related proteins (TLR4, p65, p-p65) were detected by Western-Blot. Immunofluorescence was used to detect microglia's M1 and M2 phenotype polarization and the expression of Iba-1 and TLR4. Results (+)-borneol reduced hippocampal neuronal injury, apoptosis, and microglia activation by inhibiting the TLR-NFκB signaling pathway in SE mice. TLR4 agonist LPS partially reversed the neuroprotective effect of (+)-borneol. In the KA-induced microglia model, (+)-borneol inhibited microglia activation, M1 phenotype polarization, and secretion of pro-inflammatory cytokines through the TLR4-NFκB signaling pathway. LPS treatment inhibited the therapeutic effects of (+)-borneol. Conclusion (+)-borneol inhibits microglial neuroinflammation and M1 phenotype polarization through TLR4-NFκB signaling pathway and reduces neuronal damage and apoptosis in SE mice. Therefore, (+)-borneol may be a potential drug for epilepsy modification therapy.
Collapse
Affiliation(s)
- Shuo Li
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Alhamdu Adamu
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Yucai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Fankai Gao
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rulin Mi
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guofang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaojun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Mroue-Ruiz FH, Desai B, Garvin M, Shehu J, Kamau F, Kar U, Bolton JL. Constitutive expression of CX3CR1-BAC-Cre introduces minimal off-target effects in microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621625. [PMID: 39554070 PMCID: PMC11566009 DOI: 10.1101/2024.11.01.621625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
CX3CR1-Cre mouse lines have produced important advancements in our understanding of microglial biology. Recent studies have demonstrated the adverse effects of tamoxifen-induced CX3CR1-Cre expression during development, which include changes in microglial density, phenotype, and DNA damage, as well as anxiety-like behavior. However, the unintended effects of constitutive CX3CR1-BAC-Cre expression remain unexplored. Here, we characterized the effects of CX3CR1-BAC-Cre expression on microglia in CX3CR1-BAC-Cre+/- and CX3CR1-BAC-Cre-/- male and female littermates during early postnatal development and adulthood in multiple brain regions. Additionally, we performed anxiety-like behavior tests to assess changes caused by Cre expression. We found that CX3CR1-BAC-Cre expression causes subtle region- and sex-specific changes in microglial density, volume, and morphology during development, but these changes normalized by adulthood in all brain regions except the hippocampus. No behavioral effects were found. Our findings suggest that the constitutive-Cre model might be less detrimental than the inducible model, and highlight the need for proper controls.
Collapse
Affiliation(s)
| | - Bhoomi Desai
- Neuroscience Institute, Georgia State University
| | | | - Jonila Shehu
- Neuroscience Institute, Georgia State University
| | - Faith Kamau
- Neuroscience Institute, Georgia State University
| | - Urjoshi Kar
- Neuroscience Institute, Georgia State University
| | | |
Collapse
|
7
|
Narvaiz DA, Blandin KJ, Sullens DG, Womble PD, Pilcher JB, O'Neill G, Wiley TA, Kwok EM, Chilukuri SV, Lugo JN. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res 2024; 206:107440. [PMID: 39213710 DOI: 10.1016/j.eplepsyres.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
8
|
Cutugno G, Kyriakidou E, Nadjar A. Rethinking the role of microglia in obesity. Neuropharmacology 2024; 253:109951. [PMID: 38615749 DOI: 10.1016/j.neuropharm.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microglia are the macrophages of the central nervous system (CNS), implying their role in maintaining brain homeostasis. To achieve this, these cells are sensitive to a plethora of endogenous and exogenous signals, such as neuronal activity, cellular debris, hormones, and pathological patterns, among many others. More recent research suggests that microglia are highly responsive to nutrients and dietary variations. In this context, numerous studies have demonstrated their significant role in the development of obesity under calorie surfeit. Because many reviews already exist on this topic, we have chosen to present the state of our reflections on various concepts put forth in the literature, bringing a new perspective whenever possible. Our literature review focuses on studies conducted in the arcuate nucleus of the hypothalamus, a key structure in the control of food intake. Specifically, we present the recent data available on the modifications of microglial energy metabolism following the consumption of an obesogenic diet and their consequences on hypothalamic neuron activity. We also highlight the studies unraveling the mechanisms underlying obesity-related sexual dimorphism. The review concludes with a list of questions that remain to be addressed in the field to achieve a comprehensive understanding of the role of microglia in the regulation of body energy metabolism. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- G Cutugno
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - E Kyriakidou
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - A Nadjar
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
9
|
Li CF, Zhang QP, Cheng J, Xu GH, Zhu JX, Yi LT. Role of ginsenoside Rb1 in attenuating depression-like symptoms through astrocytic and microglial complement C3 pathway. Metab Brain Dis 2024; 39:1039-1050. [PMID: 39034364 DOI: 10.1007/s11011-024-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ginsenoside Rb1, known as gypenoside III, exerts antidepressant-like effects in previous studies. It has also been indicated that ginsenoside Rb1 regulated neuroinflammation via inhibiting NF-κB signaling. According to the evidence that astrocytes can regulate microglia and neuroinflammation by secreting complement C3, the present study aimed to demonstrate the molecular mechanisms underlying ginsenoside Rb1-induced antidepressant-like effects from the astrocytic and microglial complement C3 pathway. The complement C3 mediated mechanism of ginsenoside Rb1 was investigated in mice exposed to chronic restraint stress (CRS). The results showed that ginsenoside Rb1 reversed the depressive-like behaviors in CRS. Treatment with ginsenoside Rb1 reduced both the number of astrocytes and microglia. In addition, ginsenoside Rb1 suppressed TLR4/NF-κB/C3 signaling in the astrocytes of the hippocampus. Furthermore, ginsenoside Rb1 attenuated the contents of synaptic protein including synaptophysin and PSD95 in microglia, suggesting the inhibition of microglia-mediated synaptic elimination caused by CRS. Importantly, ginsenoside Rb1 also maintained the dendritic spines in mice. In conclusion, our results demonstrate that ginsenoside Rb1 produces the antidepressant-like effects by inhibiting astrocyte TLR4/NF-κB/C3 signaling to covert microglia from a pro-inflammatory phenotype (amoeboid) towards an anti-inflammatory phenotype (ramified), which inhibit the synaptic pruning in the hippocampus.
Collapse
Affiliation(s)
- Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| |
Collapse
|
10
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
11
|
Zhang Q, Li Y, Liu Y, Wang X, Yang Y, Shi L. The cGAS/STING signaling pathway is involved in sevoflurane induced neuronal necroptosis via regulating microglia M1 polarization. Cell Signal 2024; 119:111195. [PMID: 38688381 DOI: 10.1016/j.cellsig.2024.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE The specific mechanisms of sevoflurane-induced neurotoxicity are still undetermined. The aim of the current study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in sevoflurane-induced neuronal necroptosis. METHODS BV2 microglial cells were divided into a control group and a 4% sevoflurane exposure group. Western blotting was used to detect expression of the M1 polarization marker inducible nitric oxide synthase (iNOS). RNA was collected for RNA sequencing analysis. After STING knockdown in microglia, western blotting was performed to examine expression of the pro-inflammatory markers CD16 and CD32. The tumor necrosis factor-α (TNF-α) level in media was detected using an enzyme-linked immunosorbent assay. BV2 microglia conditioned media was collected to incubate HT22 neuronal cells, and their cell activity was measured using a CCK8 assay. Calcium was observed by fluorescence. Western blotting was performed to evaluate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) expression. Neuronal necroptosis rate were detected using flow cytometry. RESULTS Sevoflurane exposure promoted microglial M1 polarization. The cGAS/STING pathway was screened and identified by RNA sequencing analysis of sevoflurane-exposed microglia and the control group. Compared with the control group, STING knockdown in microglia rescued the amoeboid morphology, inhibited TNF-α release, and significantly decreased iNOS, CD16, and CD32 expression. Moreover, calcium ions and necroptosis within neurons were decreased, and RIPK1, RIPK3, and p-MLKL expression was markedly decreased in microglia media culture with STING knockdown. CONCLUSION These results suggest that sevoflurane can regulate microglial M1 polarization by activating the cGAS/STING signaling pathway and increasing immune factor release, thus accelerating the neuronal necroptosis induced by calcium overload.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanqin Liu
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Xin Wang
- Department of Neurology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Yonghui Yang
- Department of Pathology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China.
| | - Lei Shi
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China.
| |
Collapse
|
12
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
13
|
Bröer S, Pauletti A. Microglia and infiltrating macrophages in ictogenesis and epileptogenesis. Front Mol Neurosci 2024; 17:1404022. [PMID: 38873242 PMCID: PMC11171130 DOI: 10.3389/fnmol.2024.1404022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Phagocytes maintain homeostasis in a healthy brain. Upon injury, they are essential for repairing damaged tissue, recruiting other immune cells, and releasing cytokines as the first line of defense. However, there seems to be a delicate balance between the beneficial and detrimental effects of their activation in a seizing brain. Blocking the infiltration of peripheral phagocytes (macrophages) or their depletion can partially alleviate epileptic seizures and prevent the death of neurons in experimental models of epilepsy. However, the depletion of resident phagocytes in the brain (microglia) can aggravate disease outcomes. This review describes the role of resident microglia and peripheral infiltrating monocytes in animal models of acutely triggered seizures and epilepsy. Understanding the roles of phagocytes in ictogenesis and the time course of their activation and involvement in epileptogenesis and disease progression can offer us new biomarkers to identify patients at risk of developing epilepsy after a brain insult, as well as provide novel therapeutic targets for treating epilepsy.
Collapse
Affiliation(s)
- Sonja Bröer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
15
|
Capadona J, Hoeferlin G, Grabinski S, Druschel L, Duncan J, Burkhart G, Weagraff G, Lee A, Hong C, Bambroo M, Olivares H, Bajwa T, Memberg W, Sweet J, Hamedani HA, Acharya A, Hernandez-Reynoso A, Donskey C, Jaskiw G, Chan R, Ajiboye A, von Recum H, Zhang L. Bacteria Invade the Brain Following Sterile Intracortical Microelectrode Implantation. RESEARCH SQUARE 2024:rs.3.rs-3980065. [PMID: 38496527 PMCID: PMC10942555 DOI: 10.21203/rs.3.rs-3980065/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis. Here, we report that bacteria, including those commonly found in the gut, enter the brain following intracortical microelectrode implantation in mice implanted with single-shank silicon microelectrodes. Systemic antibiotic treatment of mice implanted with microelectrodes to suppress bacteria resulted in differential expression of bacteria in the brain tissue and a reduced acute inflammatory response compared to untreated controls, correlating with temporary improvements in microelectrode recording performance. Long-term antibiotic treatment resulted in worsening microelectrode recording performance and dysregulation of neurodegenerative pathways. Fecal microbiome composition was similar between implanted mice and an implanted human, suggesting translational findings. However, a significant portion of invading bacteria was not resident in the brain or gut. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University
| | | | | | | |
Collapse
|
16
|
Peng X, Mao Y, Liu Y, Dai Q, Tai Y, Luo B, Liang Y, Guan R, Zhou W, Chen L, Zhang Z, Shen G, Wang H. Microglial activation in the lateral amygdala promotes anxiety-like behaviors in mice with chronic moderate noise exposure. CNS Neurosci Ther 2024; 30:e14674. [PMID: 38468130 PMCID: PMC10927919 DOI: 10.1111/cns.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Long-term non-traumatic noise exposure, such as heavy traffic noise, can elicit emotional disorders in humans. However, the underlying neural substrate is still poorly understood. METHODS We exposed mice to moderate white noise for 28 days to induce anxiety-like behaviors, measured by open-field, elevated plus maze, and light-dark box tests. In vivo multi-electrode recordings in awake mice were used to examine neuronal activity. Chemogenetics were used to silence specific brain regions. Viral tracing, immunofluorescence, and confocal imaging were applied to define the neural circuit and characterize the morphology of microglia. RESULTS Exposure to moderate noise for 28 days at an 85-dB sound pressure level resulted in anxiety-like behaviors in open-field, elevated plus maze, and light-dark box tests. Viral tracing revealed that fibers projecting from the auditory cortex and auditory thalamus terminate in the lateral amygdala (LA). A noise-induced increase in spontaneous firing rates of the LA and blockade of noise-evoked anxiety-like behaviors by chemogenetic inhibition of LA glutamatergic neurons together confirmed that the LA plays a critical role in noise-induced anxiety. Noise-exposed animals were more vulnerable to anxiety induced by acute noise stressors than control mice. In addition to these behavioral abnormalities, ionized calcium-binding adaptor molecule 1 (Iba-1)-positive microglia in the LA underwent corresponding morphological modifications, including reduced process length and branching and increased soma size following noise exposure. Treatment with minocycline to suppress microglia inhibited noise-associated changes in microglial morphology, neuronal electrophysiological activity, and behavioral changes. Furthermore, microglia-mediated synaptic phagocytosis favored inhibitory synapses, which can cause an imbalance between excitation and inhibition, leading to anxiety-like behaviors. CONCLUSIONS Our study identifies LA microglial activation as a critical mediator of noise-induced anxiety-like behaviors, leading to neuronal and behavioral changes through selective synapse phagocytosis. Our results highlight the pivotal but previously unrecognized roles of LA microglia in chronic moderate noise-induced behavioral changes.
Collapse
Affiliation(s)
- Xiaoqi Peng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yehao Liu
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Qian Dai
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Yingju Tai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of PsychiatryThe First Affiliated Hospital of USTCHefeiChina
| | - Yue Liang
- Department of OtolaryngologyThe First Affiliated Hospital of USTCHefeiChina
| | - Ruirui Guan
- Department of OtolaryngologyThe First Affiliated Hospital of USTCHefeiChina
| | - Wenjie Zhou
- Songjiang Research InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Guoming Shen
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Haitao Wang
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| |
Collapse
|
17
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Dheer A, Perry JF, Xie M, Nguyen AT, Worrell GA, Wu LJ. Impaired microglial phagocytosis promotes seizure development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573794. [PMID: 38260601 PMCID: PMC10802340 DOI: 10.1101/2023.12.31.573794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Blake A. Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Jadyn F. Perry
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, USA
| |
Collapse
|
20
|
Zhang G, Lu J, Zheng J, Mei S, Li H, Zhang X, Ping A, Gao S, Fang Y, Yu J. Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage. Neural Regen Res 2024; 19:161-170. [PMID: 37488863 PMCID: PMC10479839 DOI: 10.4103/1673-5374.375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 07/26/2023] Open
Abstract
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage. The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation. However, the effect of Spi1 on intracerebral hemorrhage remains unclear. In this study, we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome. We showed that high Spi1 expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis, glycolysis, and autophagy, as well as debris clearance and sustained remyelination. Notably, microglia with higher levels of Spi1 expression were characterized by activation of pathways associated with a variety of hemorrhage-related cellular processes, such as complement activation, angiogenesis, and coagulation. In conclusion, our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage. This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuhao Mei
- Department of Neurosurgery, Huashan Hospital of Fudan University School of Medicine, Shanghai, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
22
|
Yang Y, Chen L, Zhang N, Zhao Y, Che H, Wang Y, Zhang T, Wen M. DHA and EPA Alleviate Epileptic Depression in PTZ-Treated Young Mice Model by Inhibiting Neuroinflammation through Regulating Microglial M2 Polarization and Improving Mitochondrial Metabolism. Antioxidants (Basel) 2023; 12:2079. [PMID: 38136199 PMCID: PMC10740521 DOI: 10.3390/antiox12122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Depression is the most common complication of childhood epilepsy, leading to a poor prognosis for seizure control and poor quality of life. However, the molecular mechanisms underlying epileptic depression have not been completely elucidated. Increasing evidence suggests that oxidative stress and neuroinflammation are major contributors to depression. The positive effects of dietary supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on depression have been previously reported. However, knowledge regarding the effects of EPA and DHA in managing depressive symptoms in pediatric patients with epilepsy is limited. Therefore, this study aims to investigate the effects of EPA and DHA on epileptic depression in a pentylenetetrazole (PTZ)-treated young mouse model. Three-week-old mice were fed a DHA- or EPA-enriched diet for 21 days and treated with PTZ (35 mg/kg, i.p.) every other day for a total of 10 times. EPA was more effective than DHA at alleviating PTZ-induced depressive symptoms. Pathological results revealed that DHA and EPA significantly improved neuronal degeneration in the hippocampus. Analysis of the mechanism revealed that DHA and EPA mitigated PTZ-induced myelin damage by increasing the protein levels of CNPase, Olig2, and MBP. Furthermore, both DHA and EPA reduced neuroinflammation by promoting microglial M2 polarization and suppressing the LCN2-NLRP3 inflammasome pathway. Notably, EPA polarized microglia towards the M2 phenotype. In addition, DHA and EPA decreased oxidative stress by inhibiting NOX2 and enhancing mitochondrial metabolism through the increased expression of mitochondrial respiratory chain complex I-V proteins. These findings suggest that DHA and EPA can be used as effective interventions to improve depression in children with epilepsy, with EPA being a particularly favorable option.
Collapse
Affiliation(s)
- Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Yingcai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
- Pet Nutrition Research and Development Center Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
23
|
Blum N, Mirian C, Maier AD, Mathiesen TI, Vilhardt F, Haslund-Vinding JL. Translocator protein (TSPO) expression in neoplastic cells and tumor-associated macrophages in meningiomas. J Neuropathol Exp Neurol 2023; 82:1020-1032. [PMID: 37952221 DOI: 10.1093/jnen/nlad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Meningiomas are the most common primary intracranial tumors and show extensive infiltration of macrophages. The mitochondrial membrane protein translocator protein (TSPO) has been used as an in vivo marker of microglia and macrophage activation to visualize neuroinflammation. However, it is unknown which cell types express TSPO in meningiomas. Immunohistochemistry of 38 WHO grade 1-3 meningiomas was subjected to segmentation and deep learning classification of TSPO expression to either Iba1-positive tumor-associated macrophages (TAMs) or all other (mainly neoplastic) cells. A possible association between clinical data and TSPO expression intensities was also investigated. TAMs accounted for 15.9%-26% of all cells in the meningioma tissue. Mean fluorescence intensity of TSPO was significantly higher in TAMs (p < 0.0001), but the mass of neoplastic cells in the tumors exceeded that of TAMs. Thus, the summed fluorescence intensity of TSPO in meningioma cells was 64.1% higher than in TAMs (p = 0.0003). We observed no correlation between TSPO expression intensity and WHO grade. These results indicate that both macrophage-lineage and neoplastic cells in meningiomas express TSPO and that the SPECT-TSPO signal in meningiomas mainly reflects the latter; TSPO is expressed equally in parenchymal activated and resting macrophage/microglia lineage cells.
Collapse
Affiliation(s)
- Nadja Blum
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Dang Y, Wang T. Research Progress on the Immune-Inflammatory Mechanisms of Posttraumatic Epilepsy. Cell Mol Neurobiol 2023; 43:4059-4069. [PMID: 37889439 DOI: 10.1007/s10571-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Posttraumatic epilepsy (PTE) is a severe complication arising from a traumatic brain injury caused by various violent actions on the brain. The underlying mechanisms for the pathogenesis of PTE are complex and have not been fully defined. Approximately, one-third of patients with PTE are resistant to antiepileptic therapy. Recent research evidence has shown that neuroinflammation is critical in the development of PTE. This article reviews the immune-inflammatory mechanisms regarding microglial activation, astrocyte proliferation, inflammatory signaling pathways, chronic neuroinflammation, and intestinal flora. These mechanisms offer novel insights into the pathophysiological mechanisms of PTE and have groundbreaking implications in the prevention and treatment of PTE. Immunoinflammatory cross-talk between glial cells and gut microbiota in posttraumatic epilepsy. This graphical abstract depicts the roles of microglia and astrocytes in posttraumatic epilepsy, highlighting the influence of the gut microbiota on their function. TBI traumatic brain injury, AQP4 aquaporin-4, Kir4.1 inward rectifying K channels.
Collapse
Affiliation(s)
- Yangbin Dang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
25
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Zoungrana LI, Didik S, Wang H, Slotabec L, Li J. Activated protein C in epilepsy pathophysiology. Front Neurosci 2023; 17:1251017. [PMID: 37901428 PMCID: PMC10603301 DOI: 10.3389/fnins.2023.1251017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Epilepsy is one of the most common neurologic disorders that is characterized by recurrent seizures, and depending on the type of seizure, it could lead to a severe outcome. Epilepsy's mechanism of development is not fully understood yet, but some of the common features of the disease are blood-brain barrier disruption, microglia activation, and neuroinflammation. Those are also targets of activated protein C (APC). In fact, by downregulating thrombin, known as a pro-inflammatory, APC acts as an anti-inflammatory. APC is also an anti-apoptotic protein, instance by blocking p53-mediated apoptosis. APC's neuroprotective effect could prevent blood-brain barrier dysfunction by acting on endothelial cells. Furthermore, through the downregulation of proapoptotic, and proinflammatory genes, APC's neuroprotection could reduce the effect or prevent epilepsy pathogenesis. APC's activity acts on blood-brain barrier disruption, inflammation, and apoptosis and causes neurogenesis, all hallmarks that could potentially treat or prevent epilepsy. Here we review both Activated Protein C and epilepsy mechanism, function, and the possible association between them.
Collapse
Affiliation(s)
- Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Steven Didik
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
27
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
28
|
Abstract
Epilepsy is a neurological disorder caused by the pathological hyper-synchronization of neuronal discharges. The fundamental research of epilepsy mechanisms and the targets of drug design options for its treatment have focused on neurons. However, approximately 30% of patients suffering from epilepsy show resistance to standard anti-epileptic chemotherapeutic agents while the symptoms of the remaining 70% of patients can be alleviated but not completely removed by the current medications. Thus, new strategies for the treatment of epilepsy are in urgent demand. Over the past decades, with the increase in knowledge on the role of glia in the genesis and development of epilepsy, glial cells are receiving renewed attention. In a normal brain, glial cells maintain neuronal health and in partnership with neurons regulate virtually every aspect of brain function. In epilepsy, however, the supportive roles of glial cells are compromised, and their interaction with neurons is altered, which disrupts brain function. In this review, we will focus on the role of glia-related processes in epileptogenesis and their contribution to abnormal neuronal activity, with the major focus on the dysfunction of astroglial potassium channels, water channels, gap junctions, glutamate transporters, purinergic signaling, synaptogenesis, on the roles of microglial inflammatory cytokines, microglia-astrocyte interactions in epilepsy, and on the oligodendroglial potassium channels and myelin abnormalities in the epileptic brain. These recent findings suggest that glia should be considered as the promising next-generation targets for designing anti-epileptic drugs that may improve epilepsy and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Jelena Bogdanović Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Dos Santos NL, Lenert ME, Castillo ZW, Mody PH, Thompson LT, Burton MD. Age and sex drive differential behavioral and neuroimmune phenotypes during postoperative pain. Neurobiol Aging 2023; 123:129-144. [PMID: 36577640 PMCID: PMC9892227 DOI: 10.1016/j.neurobiolaging.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Surgical procedures in the geriatric population are steadily increasing, driven by improved healthcare technologies and longer lifespans. However, effective postoperative pain treatments are lacking, and this diminishes quality of life and recovery. Here we present one of the first preclinical studies to pursue sex- and age-specific differences in postoperative neuroimmune phenotypes and pain. We found that aged males, but not females, had a delayed onset of mechanical hypersensitivity post-surgery and faster resolution than young counterparts. This sex-specific age effect was accompanied by decreased paw innervation and increased local inflammation. Additionally, we find evidence of an age-dependent decrease in hyperalgesic priming and perioperative changes in nociceptor populations and spinal microglia in the aged. These findings suggest that impaired neuronal function and maladaptive inflammatory mechanisms influence postoperative pain development in advanced age. Elucidation of these neuroimmune phenotypes across age and sex enables the development of novel therapies that can be tailored for improved pain relief.
Collapse
Affiliation(s)
- Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Lucien T Thompson
- Aging and Memory Research Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA.
| |
Collapse
|
30
|
Bäckström F, Ahl M, Wickham J, Ekdahl CT. Reduced epilepsy development in synapsin 2 knockout mice with autistic behavior following early systemic treatment with interleukin-6 receptor antibody. Epilepsy Res 2023; 191:107114. [PMID: 36870094 DOI: 10.1016/j.eplepsyres.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) have an increased risk of developing epilepsy. Both ASD and epilepsy have been associated with increased levels of immune factors in the blood, including the proinflammatory cytokine interleukin 6 (IL-6). Mice lacking the synapsin 2 gene (Syn2 KO) exhibit ASD-like behavior and develop epileptic seizures. Their brains display neuroinflammatory changes including elevated IL-6 levels. We aimed to investigate the effect of systemic IL-6 receptor antibody (IL-6R ab) treatment on seizure development and frequency in Syn2 KO mice. MATERIAL AND METHODS Weekly systemic (i.p.) injections of IL-6R ab or saline were given to Syn2 KO mice starting either early in life at 1 month of age, before seizure debut or at 3 months of age, directly after seizure debut and continued for 4 or 2 months, respectively. Seizures were provoked by handling the mice three times per week. The neuroinflammatory response and synaptic protein levels in the brain were determined by ELISA, immunohistochemistry and western blots. In an additional group of Syn2 KO mice, with IL-6R ab treatment early in life, ASD-related behavioral tests including social interaction and repetitive self-grooming, as well as cognitive memory and depressive-/anxiety-like tests, and actigraphy measurements of circadian sleep-awake rhythm were analyzed. RESULTS The IL-6R ab treatment reduced seizure development and frequency in Syn2 KO mice when initiated before, but not after, seizure debut. However, early treatment did not reverse the neuroinflammatory response or the imbalance in synaptic protein levels in the brain previously reported in Syn2 KO mice. The treatment did not affect social interaction, performance in memory, depressive-/anxiety-like tests or the sleep-awake rhythm of Syn2 KO mice. CONCLUSION These findings suggest the involvement of IL-6 receptor signaling during epilepsy development in Syn2 KO mice, without significant alterations of the immune reaction in the brain, and independently of cognitive performance, mood and circadian sleep-awake rhythm.
Collapse
Affiliation(s)
- Filip Bäckström
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden; Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jenny Wickham
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Nukala KM, Lilienthal AJ, Lye SH, Bassuk AG, Chtarbanova S, Manak JR. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep 2023; 42:112004. [PMID: 36641750 PMCID: PMC9942582 DOI: 10.1016/j.celrep.2023.112004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Previous work in our laboratory has shown that mutations in prickle (pk) cause myoclonic-like seizures and ataxia in Drosophila, similar to what is observed in humans carrying mutations in orthologous PRICKLE genes. Here, we show that pk mutant brains show elevated, sustained neuronal cell death that correlates with increasing seizure penetrance, as well as an upregulation of mitochondrial oxidative stress and innate immune response (IIR) genes. Moreover, flies exhibiting more robust seizures show increased levels of IIR-associated target gene expression suggesting they may be linked. Genetic knockdown in glia of either arm of the IIR (Immune Deficiency [Imd] or Toll) leads to a reduction in neuronal death, which in turn suppresses seizure activity, with oxidative stress acting upstream of IIR. These data provide direct genetic evidence that oxidative stress in combination with glial-mediated IIR leads to progression of an epilepsy disorder.
Collapse
Affiliation(s)
- Krishna M Nukala
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Shu Hui Lye
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; The Iowa Neuroscience Institute, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
34
|
Kang M, Zhang Y, Kang HR, Kim S, Ma R, Yi Y, Lee S, Kim Y, Li H, Jin C, Lee D, Kim E, Han K. CYFIP2 p.Arg87Cys Causes Neurological Defects and Degradation of CYFIP2. Ann Neurol 2023; 93:155-163. [PMID: 36251395 DOI: 10.1002/ana.26535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Here, we report the generation and comprehensive characterization of a knockin mouse model for the hotspot p.Arg87Cys variant of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) gene, which was recently identified in individuals diagnosed with West syndrome, a developmental and epileptic encephalopathy. The Cyfip2+/R87C mice recapitulated many neurological and neurobehavioral phenotypes of the patients, including spasmlike movements, microcephaly, and impaired social communication. Age-progressive cytoarchitectural disorganization and gliosis were also identified in the hippocampus of Cyfip2+/R87C mice. Beyond identifying a decrease in CYFIP2 protein levels in the Cyfip2+/R87C brains, we demonstrated that the p.Arg87Cys variant enhances ubiquitination and proteasomal degradation of CYFIP2. ANN NEUROL 2023;93:155-163.
Collapse
Affiliation(s)
- Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chunmei Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongmin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Shimada T, Yamagata K. Spine morphogenesis and synapse formation in tubular sclerosis complex models. Front Mol Neurosci 2022; 15:1019343. [PMID: 36606143 PMCID: PMC9807618 DOI: 10.3389/fnmol.2022.1019343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,*Correspondence: Tadayuki Shimada,
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Department of Psychiatry, Takada Nishishiro Hospital, Niigata, Japan,Kanato Yamagata,
| |
Collapse
|
36
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
37
|
De Felice E, Gonçalves de Andrade E, Golia MT, González Ibáñez F, Khakpour M, Di Castro MA, Garofalo S, Di Pietro E, Benatti C, Brunello N, Tascedda F, Kaminska B, Limatola C, Ragozzino D, Tremblay ME, Alboni S, Maggi L. Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male mice under homeostatic conditions. J Neuroinflammation 2022; 19:292. [PMID: 36482444 PMCID: PMC9730634 DOI: 10.1186/s12974-022-02655-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is a plastic brain area that shows functional segregation along its longitudinal axis, reflected by a higher level of long-term potentiation (LTP) in the CA1 region of the dorsal hippocampus (DH) compared to the ventral hippocampus (VH), but the mechanisms underlying this difference remain elusive. Numerous studies have highlighted the importance of microglia-neuronal communication in modulating synaptic transmission and hippocampal plasticity, although its role in physiological contexts is still largely unknown. We characterized in depth the features of microglia in the two hippocampal poles and investigated their contribution to CA1 plasticity under physiological conditions. We unveiled the influence of microglia in differentially modulating the amplitude of LTP in the DH and VH, showing that minocycline or PLX5622 treatment reduced LTP amplitude in the DH, while increasing it in the VH. This was recapitulated in Cx3cr1 knockout mice, indicating that microglia have a key role in setting the conditions for plasticity processes in a region-specific manner, and that the CX3CL1-CX3CR1 pathway is a key element in determining the basal level of CA1 LTP in the two regions. The observed LTP differences at the two poles were associated with transcriptional changes in the expression of genes encoding for Il-1, Tnf-α, Il-6, and Bdnf, essential players of neuronal plasticity. Furthermore, microglia in the CA1 SR region showed an increase in soma and a more extensive arborization, an increased prevalence of immature lysosomes accompanied by an elevation in mRNA expression of phagocytic markers Mertk and Cd68 and a surge in the expression of microglial outward K+ currents in the VH compared to DH, suggesting a distinct basal phenotypic state of microglia across the two hippocampal poles. Overall, we characterized the molecular, morphological, ultrastructural, and functional profile of microglia at the two poles, suggesting that modifications in hippocampal subregions related to different microglial statuses can contribute to dissect the phenotypical aspects of many diseases in which microglia are known to be involved.
Collapse
Affiliation(s)
- E. De Felice
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Gonçalves de Andrade
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. T. Golia
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - F. González Ibáñez
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - M. Khakpour
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. A. Di Castro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - S. Garofalo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Di Pietro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - C. Benatti
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N. Brunello
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F. Tascedda
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - B. Kaminska
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - C. Limatola
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - D. Ragozzino
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy ,grid.417778.a0000 0001 0692 3437Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - M. E. Tremblay
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - S. Alboni
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - L. Maggi
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
38
|
Rava A, La Rosa P, Palladino G, Dragotto J, Totaro A, Tiberi J, Canterini S, Oddi S, Fiorenza MT. The appearance of phagocytic microglia in the postnatal brain of Niemann Pick type C mice is developmentally regulated and underscores shortfalls in fine odor discrimination. J Cell Physiol 2022; 237:4563-4579. [PMID: 36322609 PMCID: PMC7613956 DOI: 10.1002/jcp.30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.
Collapse
Affiliation(s)
- Alessandro Rava
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Jessica Dragotto
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Antonio Totaro
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Jessica Tiberi
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
| | - Sergio Oddi
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
- Faculty of Veterinary Medicine University of Teramo Teramo Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
39
|
Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis 2022; 174:105895. [DOI: 10.1016/j.nbd.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
40
|
Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS One 2022; 17:e0271995. [PMID: 35972937 PMCID: PMC9380933 DOI: 10.1371/journal.pone.0271995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling. Upon activation, it leads to the release of interleukin 1 beta and inflammation-mediated neurodegeneration. Transient brain insults, like status epilepticus (SE), can render hippocampi chronically hyperexcitable and induce segmental neurodegeneration. The underlying mechanisms are referred to as epileptogenesis. Here, we have tested the hypothesis that distinct NLRP3-dependent transcript and protein signalling dynamics are induced by SE and whether they differ between two classical SE models. We further correlated the association of NLRP3-related transcript abundance with convulsive activity in human TLE hippocampi of patients with and without associated neurodegenerative damage. Methods Hippocampal mRNA- and protein-expression of NLRP3 and associated signalling molecules were analysed longitudinally in pilocarpine- and kainic acid-induced SE TLE mouse models. Complementarily, we studied NLRP3 inflammasome-associated transcript patterns in epileptogenic hippocampi with different damage patterns of pharmacoresistant TLE patients that had undergone epilepsy surgery for seizure relief. Results Pilocarpine- and kainic acid-induced SE elicit distinct hippocampal Nlrp3-associated molecular signalling. Transcriptional activation of NLRP3 pathway elements is associated with seizure activity but independent of the particular neuronal damage phenotype in KA-induced and in human TLE hippocampi. Significance These data suggest highly dynamic inflammasome signalling in SE-induced TLE and highlight a vicious cycle associated with seizure activity. Our results provide promising perspectives for the inflammasome signalling pathway as a target for anti-epileptogenic and -convulsive therapeutic strategies. The latter may even applicable to a particularly broad spectrum of TLE patients with currently pharmacoresistant disease.
Collapse
|
41
|
Narvaiz DA, Sullens DG, Santana-Coelho D, Lugo JN. Neuronal subset-specific phosphatase and tensin homolog knockout mice exhibit age and brain region-associated alterations in microglia/macrophage activation. Neuroreport 2022; 33:476-480. [PMID: 35775322 PMCID: PMC9479702 DOI: 10.1097/wnr.0000000000001808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Seizures induce brain region-dependent enhancements in microglia/macrophage activation. Neuronal subset-specific phosphatase and tensin homolog (PTEN) knockout (KO) mice display hyperactive mammalian target of rapamycin (mTOR) signaling in the hippocampus, cerebellum, and cortex followed by seizures that increase in severity with age. To determine if KO mice also exhibit alterations in the spatiotemporal activation pattern of microglia, we used flow cytometry to compare the percentage of major histocompatibility complex-II activated microglia/macrophages between KO and wildtype (WT) mice at 5, 10, and 15 weeks of age. At 5 weeks, microglia/macrophage activation was greater in the cortex, P < 0.001, cerebellum, P < 0.001, and hippocampus, P < 0.001, of KO compared to WT mice. At 10 weeks, activation was greatest in the cortex of KO mice, P < 0.001, in the cerebellum of WT mice, P < 0.001, but similar in the hippocampus, P > 0.05. By 15 weeks, activation in the hippocampus was more than 25 times greater in KO mice compared to WT mice, P < 0.001. We show that hyperactive mTOR signaling is associated with an altered spatiotemporal pattern of microglia/macrophage activation in the brain and induces an enhanced neuroimmune response in the hippocampus.
Collapse
Affiliation(s)
- David A. Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | | | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
- Department of Biology, Baylor University, Waco, TX, 76798 USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798 USA
| |
Collapse
|
42
|
Shi Q, Chang C, Saliba A, Bhat MA. Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer's Disease Model. J Neurosci 2022; 42:5294-5313. [PMID: 35672148 PMCID: PMC9270922 DOI: 10.1523/jneurosci.2427-21.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway plays a major role in key cellular processes including metabolism and differentiation; however, the role of mTOR in microglia and its importance in Alzheimer's disease (AD) have remained largely uncharacterized. We report that selective loss of Tsc1, a negative regulator of mTOR, in microglia in mice of both sexes, caused mTOR activation and upregulation of Trem2 with enhanced β-Amyloid (Aβ) clearance, reduced spine loss, and improved cognitive function in the 5XFAD AD mouse model. Combined loss of Tsc1 and Trem2 in microglia led to reduced Aβ clearance and increased Aβ plaque burden revealing that Trem2 functions downstream of mTOR. Tsc1 mutant microglia showed increased phagocytosis with upregulation of CD68 and Lamp1 lysosomal proteins. In vitro studies using Tsc1-deficient microglia revealed enhanced endocytosis of the lysosomal tracker indicator Green DND-26 suggesting increased lysosomal activity. Incubation of Tsc1-deficient microglia with fluorescent-labeled Aβ revealed enhanced Aβ uptake and clearance, which was blunted by rapamycin, an mTOR inhibitor. In vivo treatment of mice of relevant genotypes in the 5XFAD background with rapamycin, affected microglial activity, decreased Trem2 expression and reduced Aβ clearance causing an increase in Aβ plaque burden. Prolonged treatment with rapamycin caused even further reduction of mTOR activity, reduction in Trem2 expression, and increase in Aβ levels. Together, our findings reveal that mTOR signaling in microglia is critically linked to Trem2 regulation and lysosomal biogenesis, and that the upregulation of Trem2 in microglia through mTOR activation could be exploited toward better therapeutic avenues to Aβ-related AD pathologies.SIGNIFICANCE STATEMENT Mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator for major cellular metabolic processes. However, the link between mTOR signaling and Alzheimer's disease (AD) is not well understood. In this study, we provide compelling in vivo evidence that mTOR activation in microglia would benefit β-Amyloid (Aβ)-related AD pathologies, as it upregulates Trem2, a key receptor for Aβ plaque uptake. Inhibition of mTOR pathway with rapamycin, a well-established immunosuppressant, downregulated Trem2 in microglia and reduced Aβ plaque clearance indicating that mTOR inactivation may be detrimental in Aβ-associated AD patients. This finding will have a significant public health impact and benefit, regarding the usage of rapamycin in AD patients, which we believe will aggravate the Aβ-related AD pathologies.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Cheng Chang
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Afaf Saliba
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
43
|
Yu T, Huo L, Lei J, Sun JJ, Wang H. Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus. Inflammation 2022; 45:2223-2242. [PMID: 35789312 DOI: 10.1007/s10753-022-01686-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level. The miRNA miR-106b-5p has been linked to epilepsy, but its specific role and mechanism of action remain unclear. This was investigated in the present study using a mouse model of pilocarpine-induced status epilepticus and an in vitro system of HT22 hippocampal cells treated with Mg2+-free solution and cocultured with BV2 microglia cells. We found that inhibiting miR-106b-5p expression promoted microglia M2 polarization, reduced the inflammatory response, and alleviated neuronal injury. These effects involved modulation of the repulsive guidance molecule A (RGMa)-Rac1-c-Jun N-terminal kinase (JNK)/p38-mitogen-activated protein kinase (MAPK) signaling axis. Our results suggest that therapeutic strategies targeting miR-106b-5p or downstream factors can be effective in preventing epileptogenesis or treating epilepsy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Jie Lei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Jing-Jing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
44
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Liao S, Luo Y, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Apaijai N, Chattipakorn N, Chattipakorn SC. An apoptosis inhibitor suppresses microglial and astrocytic activation after cardiac ischemia/reperfusion injury. Inflamm Res 2022; 71:861-872. [PMID: 35655102 DOI: 10.1007/s00011-022-01590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Microglial hyperactivation and apoptosis were observed following myocardial infarction and ischemia reperfusion (I/R) injury. This study aimed to test the hypothesis that the apoptosis inhibitor, Z-VAD, attenuates microglial and astrocytic hyperactivation and brain inflammation in rats with cardiac I/R injury. MATERIALS AND METHODS Rats were subjected to either sham or cardiac I/R operation (30 min-ischemia followed by 120-min reperfusion), rats in the cardiac I/R group were given either normal saline solution or Z-VAD at 3.3 mg/kg via intravenous injection 15 min prior to cardiac ischemia. Left ventricular ejection fraction (% LVEF) was determined during the cardiac I/R protocol. The brain tissues were removed and used to determine brain apoptosis, brain inflammation, microglial and astrocyte morphology. RESULTS Cardiac dysfunction was observed in rats with cardiac I/R injury as indicated by decreased %LVEF. In the brain, we found brain apoptosis, brain inflammation, microglia hyperactivation, and reactive astrogliosis occurred following cardiac I/R injury. Pretreatment with Z-VAD effectively increased %LVEF, reduced brain apoptosis, attenuated brain inflammation by decreasing IL-1β mRNA levels, suppressed microglial and astrocytic hyperactivation and proliferation after cardiac I/R injury. CONCLUSION Z-VAD exerts neuroprotective effects against cardiac I/R injury not only targeting apoptosis but also microglial and astrocyte activation.
Collapse
Affiliation(s)
- Suchan Liao
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ying Luo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kodchanan Singhanat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
46
|
Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. Microglia in brain development and regeneration. Development 2022; 149:275253. [PMID: 35502782 PMCID: PMC9124570 DOI: 10.1242/dev.200425] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has recently emerged that microglia, the tissue-resident macrophages of the central nervous system, play significant non-innate immune roles to support the development, maintenance, homeostasis and repair of the brain. Apart from being highly specialized brain phagocytes, microglia modulate the development and functions of neurons and glial cells through both direct and indirect interactions. Thus, recognizing the elements that influence the homeostasis and heterogeneity of microglia in normal brain development is crucial to understanding the mechanisms that lead to early disease pathogenesis of neurodevelopmental disorders. In this Review, we discuss recent studies that have elucidated the physiological development of microglia and summarize our knowledge of their non-innate immune functions in brain development and tissue repair.
Collapse
Affiliation(s)
- Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tuan L Tay
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, 79110, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
47
|
Takahashi K, Nelvagal HR, Lange J, Cooper JD. Glial Dysfunction and Its Contribution to the Pathogenesis of the Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:886567. [PMID: 35444603 PMCID: PMC9013902 DOI: 10.3389/fneur.2022.886567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023] Open
Abstract
While significant efforts have been made in developing pre-clinical treatments for the neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a better understanding of pathophysiology, but little is known about the mechanisms by which loss of lysosomal proteins causes such devastating neurodegeneration. Research into glial cells including astrocytes, microglia, and oligodendrocytes have revealed many of their critical functions in brain homeostasis and potential contributions to neurodegenerative diseases. Genetically modified mouse models have served as a useful platform to define the disease progression in the central nervous system across NCL subtypes, revealing a wide range of glial responses to disease. The emerging evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs, and would suggest that directly targeting glia in addition to neurons could lead to better therapeutic outcomes. This review summarizes the most up-to-date understanding of glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Keigo Takahashi
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Hemanth R. Nelvagal
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Jenny Lange
- Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Jonathan D. Cooper
| |
Collapse
|
48
|
Kim JH, Kwon O, Bhusal A, Lee J, Hwang EM, Ryu H, Park JY, Suk K. Neuroinflammation Induced by Transgenic Expression of Lipocalin-2 in Astrocytes. Front Cell Neurosci 2022; 16:839118. [PMID: 35281301 PMCID: PMC8904391 DOI: 10.3389/fncel.2022.839118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Transgenic mice are a useful tool for exploring various aspects of gene function. A key element of this approach is the targeted overexpression of specific genes in cells or tissues. Herein, we report for the first time, the generation and characterization of conditional transgenic (cTg) mice for lipocalin-2 (LCN2) expression. We generated the R26-LCN2-transgenic (LCN2-cTg) mice that carried a loxP-flanked STOP (neo) cassette, Lcn2 cDNA, and a GFP sequence. When bred with Tg mice expressing Cre recombinase under the control of various tissues or cell-specific promoters, Cre-mediated recombination deletes the STOP cassette and allows the expression of LCN2 and GFP. In this study, we achieved the recombination of loxP-flanked LCN2 in hippocampal astrocytes of cTg mouse brain, using a targeted delivery of adeno-associated virus (AAVs) bearing Cre recombinase under the control of a GFAP promoter (AAVs-GFAP-mCherry-Cre). These mice with localized LCN2 overexpression in astrocytes of the hippocampus developed neuroinflammation with enhanced glial activation and increased mRNA and protein levels of proinflammatory cytokines. Furthermore, mice showed impairment in cognitive functions as a typical symptom of hippocampal inflammation. Taken together, our study demonstrates the usefulness of LCN2-cTg mice in targeting specific cells at various organs for conditional LCN2 expression and for subsequent investigation of the functional role of cell-type-specific LCN2 within these sites. Moreover, the LCN2-cTg mice with targeted expression of LCN2 in hippocampal astrocytes are a new in vivo model of neuroinflammation.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Osung Kwon
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
| | - Anup Bhusal
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jiyoun Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
- *Correspondence: Kyoungho Suk Jae-Yong Park
| | - Kyoungho Suk
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
- *Correspondence: Kyoungho Suk Jae-Yong Park
| |
Collapse
|
49
|
Park S, Zhu J, Jeong KH, Kim WJ. Adjudin prevents neuronal damage and neuroinflammation via inhibiting mTOR activation against pilocarpine-induced status epilepticus. Brain Res Bull 2022; 182:80-89. [PMID: 35182690 DOI: 10.1016/j.brainresbull.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
Inflammatory responses in the brain play an etiological role in the development of epilepsy, suggesting that finding novel molecules for controlling neuroinflammation may have clinical value in developing the disease-modifying strategies for epileptogenesis. Adjudin, a multi-functional small molecule compound, has pleiotropic effects, including anti-inflammatory properties. In the present study, we aimed to investigate the effects of adjudin on pilocarpine-induced status epilepticus (SE) and its role in the regulation of reactive gliosis and neuroinflammation. SE was induced in male C57BL/6 mice that were then treated with adjudin (50mg/kg) for 3 days after SE onset. Immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and western blot analysis were used to evaluate the effects of adjudin treatment in the hippocampus after SE. Our results showed that adjudin treatment significantly mitigated apoptotic cell death in the hippocampus after SE onset. Moreover, adjudin treatment suppressed SE-induced glial activation and activation of mammalian target of rapamycin signaling in the hippocampus. Concomitantly, adjudin treatment significantly reduced SE-induced inflammatory processes, as confirmed by changes in the expression of inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and arginase-1. In conclusion, these findings suggest that adjudin may serve as a potential neuroprotective agent for preventing pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Soojin Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jing Zhu
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun Biol 2022; 5:26. [PMID: 35017640 PMCID: PMC8752761 DOI: 10.1038/s42003-021-02947-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various environmental exposures during pregnancy, like maternal diet, can compromise, at critical periods of development, the neurovascular maturation of the offspring. Foetal exposure to maternal high-fat diet (mHFD), common to Western societies, has been shown to disturb neurovascular development in neonates and long-term permeability of the neurovasculature. Nevertheless, the effects of mHFD on the offspring’s cerebrovascular health remains largely elusive. Here, we sought to address this knowledge gap by using a translational mouse model of mHFD exposure. Three-dimensional and ultrastructure analysis of the neurovascular unit (vasculature and parenchymal cells) in mHFD-exposed offspring revealed major alterations of the neurovascular organization and metabolism. These alterations were accompanied by changes in the expression of genes involved in metabolism and immunity, indicating that neurovascular changes may result from abnormal brain metabolism and immune regulation. In addition, mHFD-exposed offspring showed persisting behavioural alterations reminiscent of neurodevelopmental disorders, specifically an increase in stereotyped and repetitive behaviours into adulthood. In order to advance our understanding of the effects of maternal high-fat diet (mHFD) on the cerebrovascular health of offspring, Bordeleau et al. use a translational mouse model of mHFD exposure. They demonstrate that mHFD induces cerebrovascular and microglial changes in the offspring as well as behavioural alterations that are reminiscent of neurodevelopmental disorders associated with repetitive behaviours at adulthood.
Collapse
|