1
|
El-Said KS, Attia MS, Abdelmoaty BE, Salim EI. Synergistic antitumor effects of atorvastatin and chemotherapies: In vitro and in vivo studies. Biochem Biophys Res Commun 2025; 742:151078. [PMID: 39632292 DOI: 10.1016/j.bbrc.2024.151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Atorvastatin (ATOR) acts on certain antitumor pathways; the consequences of chemotherapies continue to be a major concern, notwithstanding the increased efficacy provided by contemporary therapies. This study investigated the synergistic effects and underlying mechanisms of different treatment protocols using ATOR on the THP-1 cell line and on lung cancer in mice. For the in vitro study, an MTT assay was performed, and then different combinations against the THP-1 cell line were used as follows: non-treated cells, THP-1/ATOR IC50, THP-1/cytarabine (CYT) IC50, THP-1/doxorubicin (DOX) IC50, THP-1/DOX/CYT, THP-1/ATOR/CYT, THP-1/ATOR/DOX, and THP-1/ATOR/CYT/DOX. For the in vivo study, CD-1 male mice were used; G1 was the normal control. Gs2-5 were administered with urethane (Ure) and butylated hydroxytoluene (BHT). G2 was the positive control. G3 was treated with ATOR (20 mg/kg). G4 was treated with Bevacizumab (Bev) (5 mg/kg). G5 was co-treated with ATOR/Bev. Histopathological and immunohistochemical investigations, flow cytometry and molecular analysis of PI3K, Akt, and mTOR genes were performed after different treatment protocols. The results showed that different combinatorial treatment settings of ATOR in vitro increase the apoptotic-inducing capacity and cell cycle arrest. Co-treatment with ATOR and Bev led to a significant decrease in S-phase and G2/M percentages. Furthermore, in vivo co-treatment with ATOR/Bev decreased tumor incidence and size with a significant reduction of the immunohistochemical PCNA (LI%) in lung parenchyma, targeting PI3K/Akt/mTOR, and VEGF-A signaling pathways. Co-treatment with ATOR and chemotherapies led to cell cycle arrest, modulation of the PI3K/Akt/mTOR, and VEGF-A signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Merna Saied Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant Ezzat Abdelmoaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed Ibrahim Salim
- Research Lab. of Molecular Carcinogenesis, Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Jiang X, Wang M, Cui G, Wu Y, Wei Z, Yu S, Wang A, Zou W, Pan Y, Li X, Lu Y. Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156344. [PMID: 39729781 DOI: 10.1016/j.phymed.2024.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood. PURPOSE Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics. METHODS Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7ADR) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed. RESULTS TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44+/CD24- population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR. CONCLUSION These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Manli Wang
- The first Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Cui
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Suyun Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yanhong Pan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Yoon SH, Lee S, Kim HS, Song J, Baek M, Ryu S, Lee HB, Moon HG, Noh DY, Jon S, Han W. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-β/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer 2024; 24:1370. [PMID: 39516821 PMCID: PMC11549796 DOI: 10.1186/s12885-024-13143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND NAD(P)-dependent steroid dehydrogenase-like protein (NSDHL), which is involved in breast tumor growth and metastasis, has been implicated in the maintenance of cancer stem cells. However, its role in regulating breast cancer stem-like cells (BCSCs) remains unclear. We have previously reported the clinical significance of NSDHL in patients with estrogen receptor-positive (ER +) breast cancer. This study aimed to elucidate the molecular mechanisms by which NSDHL regulates the capacity of BCSCs in the ER + human breast cancer cell line, MCF-7. METHODS NSDHL knockdown suppressed tumor spheroid formation in MCF-7 human breast cancer cells grown on ultralow-attachment plates. RNA sequencing revealed that NSDHL knockdown induced widespread transcriptional changes in the MCF-7 spheroids. TGF-β signaling pathway was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (fold change ≥ 2, P ≤ 0.05) identified in NSDHL-knockdown MCF-7 spheroids compared with the control. In orthotopic tumor models injected with NSDHL-knockdown MCF-7 spheroids, tumor initiation and growth were strongly suppressed compared with those in the control. RESULTS BCSC populations with CD44+/CD24- and CD49f+/EpCAM + phenotypes and high ALDH activity were decreased in NSDHL-knockdown MCF-7 spheroids and xenograft tumors relative to controls, along with decreased secretion of TGF-β1 and 3, phosphorylation of Smad2/3, and expression of SOX2. In RNA-sequencing data from The (TCGA) database, a positive correlation between the expression of NSDHL and SOX2 was found in luminal-type breast cancer specimens (n = 998). Our findings revealed that NSDHL plays an important role in maintaining the BCSC population and tumor-initiating capacity of ER-positive MCF-7 spheroids, suggesting that NSDHL is an attractive therapeutic target for eliminating BCSCs, thus preventing breast cancer initiation and progression. CONCLUSIONS Our findings suggest that NSDHL regulates the BCSC/tumor-initiating cell population in MCF-7 spheroids and xenograft tumors.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Junhyuk Song
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Seungyeon Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
5
|
Hillis AL, Martin TD, Manchester HE, Högström J, Zhang N, Lecky E, Kozlova N, Lee J, Persky NS, Root DE, Brown M, Cichowski K, Elledge SJ, Muranen T, Fruman DA, Barry ST, Clohessy JG, Madsen RR, Toker A. Targeting Cholesterol Biosynthesis with Statins Synergizes with AKT Inhibitors in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3250-3266. [PMID: 39024548 PMCID: PMC11443248 DOI: 10.1158/0008-5472.can-24-0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is responsible for a disproportionate number of breast cancer patient deaths due to extensive molecular heterogeneity, high recurrence rates, and lack of targeted therapies. Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway occurs in approximately 50% of TNBC patients. Here, we performed a genome-wide CRISPR/Cas9 screen with PI3Kα and AKT inhibitors to find targetable synthetic lethalities in TNBC. Cholesterol homeostasis was identified as a collateral vulnerability with AKT inhibition. Disruption of cholesterol homeostasis with pitavastatin synergized with AKT inhibition to induce TNBC cytotoxicity in vitro in mouse TNBC xenografts and in patient-derived estrogen receptor (ER)-negative breast cancer organoids. Neither ER-positive breast cancer cell lines nor ER-positive organoids were sensitive to combined AKT inhibitor and pitavastatin. Mechanistically, TNBC cells showed impaired sterol regulatory element-binding protein 2 (SREBP-2) activation in response to single-agent or combination treatment with AKT inhibitor and pitavastatin, which was rescued by inhibition of the cholesterol-trafficking protein Niemann-Pick C1 (NPC1). NPC1 loss caused lysosomal cholesterol accumulation, decreased endoplasmic reticulum cholesterol levels, and promoted SREBP-2 activation. Taken together, these data identify a TNBC-specific vulnerability to the combination of AKT inhibitors and pitavastatin mediated by dysregulated cholesterol trafficking. These findings support combining AKT inhibitors with pitavastatin as a therapeutic modality in TNBC. Significance: Two FDA-approved compounds, AKT inhibitors and pitavastatin, synergize to induce cell death in triple-negative breast cancer, motivating evaluation of the efficacy of this combination in clinical trials.
Collapse
Affiliation(s)
- Alissandra L. Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Timothy D. Martin
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts.
| | - Haley E. Manchester
- Genetics Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jenny Högström
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Na Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Emmalyn Lecky
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Nina Kozlova
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Jonah Lee
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Stephen J. Elledge
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts.
| | - Taru Muranen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California.
| | - Simon T. Barry
- Bioscience, Discovery, Oncology Research and Development, AstraZeneca, Cambridge, Massachusetts.
| | - John G. Clohessy
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Ralitsa R. Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
7
|
Vicente-Muñoz S, Davis JC, Lane A, Lane AN, Waltz SE, Wells SI. Lipid profiling of RON and DEK-dependent signaling in breast cancer guides discovery of gene networks predictive of poor outcomes. Front Oncol 2024; 14:1382986. [PMID: 39351361 PMCID: PMC11440356 DOI: 10.3389/fonc.2024.1382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Recurrent and metastatic breast cancer is frequently treatment resistant. A wealth of evidence suggests that reprogrammed lipid metabolism supports cancer recurrence. Overexpression of the RON and DEK oncoproteins in breast cancer is associated with poor outcome. Both proteins promote cancer metastasis in laboratory models, but their influence on lipid metabolite levels remain unknown. To measure RON- and DEK-dependent steady-state lipid metabolite levels, a nuclear magnetic resonance (NMR)-based approach was utilized. The observed differences identified a lipid metabolism-related gene expression signature that is prognostic of overall survival (OS), distant metastasis-free survival (DMFS), post-progression survival (PPS), and recurrence-free survival (RFS) in patients with breast cancer. RON loss led to decreased cholesterol and sphingomyelin levels, whereas DEK loss increased total fatty acid levels and decreased free glycerol levels. Lipid-related genes were then queried to define a signature that predicts poor outcomes for patients with breast cancer patients. Taken together, RON and DEK differentially regulate lipid metabolism in a manner that predicts and may promote breast cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Sara Vicente-Muñoz
- Translational Metabolomics Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Susanne I. Wells
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
Lauridsen AR, Skorda A, Winther NI, Bay ML, Kallunki T. Why make it if you can take it: review on extracellular cholesterol uptake and its importance in breast and ovarian cancers. J Exp Clin Cancer Res 2024; 43:254. [PMID: 39243069 PMCID: PMC11378638 DOI: 10.1186/s13046-024-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs. Tumors take up cholesterol from the blood stream through their vasculature. Breast cancer grows in, and ovarian cancer metastasizes into fatty tissue that provides them with an additional source of cholesterol. High levels of extracellular cholesterol are beneficial for tumors whose cancer cells master the uptake of extracellular cholesterol. In this review we concentrate on cholesterol uptake mechanisms, receptor-mediated endocytosis and macropinocytosis, and how these are utilized and manipulated by cancer cells to overcome their possible intrinsic or pharmacological limitations in cholesterol synthesis. We focus especially on the involvement of lysosomes in cholesterol uptake. Identifying the vulnerabilities of cholesterol metabolism and manipulating them could provide novel efficient therapeutic strategies for treatment of cancers that manifest dependency for extracellular cholesterol.
Collapse
Affiliation(s)
- Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, Li Z, Shen G, Ren Y, Li Z, Wang W, Ou J, Guo W, Hu Y. SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol 2024; 275:133698. [PMID: 38972654 DOI: 10.1016/j.ijbiomac.2024.133698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.
Collapse
Affiliation(s)
- Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jialin Chen
- Hepatobiliary and Pancreatic Center, The First Affiliated Hospital, Sun Yat-sen University, 510515, PR China
| | - Jin Su
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of General Surgery, Zhuzhou Hospital affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412000, PR China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
10
|
Kamra M, Chen YI, Delgado P, Seeley E, Seidlits S, Yeh HC, Brock A, Parekh SH. Ketomimetic Nutrients Trigger a Dual Metabolic Defense in Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601966. [PMID: 39005423 PMCID: PMC11244981 DOI: 10.1101/2024.07.03.601966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
While the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decode the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization. These measurements were coupled with single-cell metabolic imaging, bulk migration studies, along with transcriptomic and metabolomic analyses. Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid synthesis. We propose that the crosstalk between these pathways, juxtaposed at the synthesis of the glycan precursor UDP-GlcNAc, furthers advancement of a metastatic phenotype in BC cells under ketomimetic conditions.
Collapse
|
11
|
Stiff T, Bayraktar S, Dama P, Stebbing J, Castellano L. CRISPR screens in 3D tumourspheres identified miR-4787-3p as a transcriptional start site miRNA essential for breast tumour-initiating cell growth. Commun Biol 2024; 7:859. [PMID: 39003349 PMCID: PMC11246431 DOI: 10.1038/s42003-024-06555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Our study employs pooled CRISPR screens, integrating 2D and 3D culture models, to identify miRNAs critical in Breast Cancer (BC) tumoursphere formation. These screens combine with RNA-seq experiments allowing identification of miRNA signatures and targets essential for tumoursphere growth. miR-4787-3p exhibits significant up-regulation in BC, particularly in basal-like BCs, suggesting its association with aggressive disease. Surprisingly, despite its location within the 5'UTR of a protein coding gene, which defines DROSHA-independent transcription start site (TSS)-miRNAs, we find it dependant on both DROSHA and DICER1 for maturation. Inhibition of miR-4787-3p hinders tumoursphere formation, highlighting its potential as a therapeutic target in BC. Our study proposes elevated miR-4787-3p expression as a potential prognostic biomarker for adverse outcomes in BC. We find that protein-coding genes positively selected in the CRISPR screens are enriched of miR-4787-3p targets. Of these targets, we select ARHGAP17, FOXO3A, and PDCD4 as known tumour suppressors in cancer and experimentally validate the interaction of miR-4787-3p with their 3'UTRs. Our work illuminates the molecular mechanisms underpinning miR-4787-3p's oncogenic role in BC. These findings advocate for clinical investigations targeting miR-4787-3p and underscore its prognostic significance, offering promising avenues for tailored therapeutic interventions and prognostic assessments in BC.
Collapse
Affiliation(s)
- Tom Stiff
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | - Salih Bayraktar
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | - Paola Dama
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | | | - Leandro Castellano
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK.
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK.
| |
Collapse
|
12
|
Gao W, Guo X, Sun L, Gai J, Cao Y, Zhang S. PKMYT1 knockdown inhibits cholesterol biosynthesis and promotes the drug sensitivity of triple-negative breast cancer cells to atorvastatin. PeerJ 2024; 12:e17749. [PMID: 39011373 PMCID: PMC11249011 DOI: 10.7717/peerj.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Triple negative breast cancer (TNBC) as the most aggressive molecular subtype of breast cancer is characterized by high cancer cell proliferation and poor patient prognosis. Abnormal lipid metabolism contributes to the malignant process of cancers. Study observed significantly enhanced cholesterol biosynthesis in TNBC. However, the mechanisms underlying the abnormal increase of cholesterol biosynthesis in TNBC are still unclear. Hence, we identified a member of the serine/threonine protein kinase family PKMYT1 as a key driver of cholesterol synthesis in TNBC cells. Aberrantly high-expressed PKMYT1 in TNBC was indicative of unfavorable prognostic outcomes. In addition, PKMYT1 promoted sterol regulatory element-binding protein 2 (SREBP2)-mediated expression of enzymes related to cholesterol biosynthesis through activating the TNF/ TNF receptor-associated factor 1 (TRAF1)/AKT pathway. Notably, downregulation of PKMYT1 significantly inhibited the feedback upregulation of statin-mediated cholesterol biosynthesis, whereas knockdown of PKMYT1 promoted the drug sensitivity of atorvastatin in TNBC cells. Overall, our study revealed a novel function of PKMYT1 in TNBC cholesterol biosynthesis, providing a new target for targeting tumor metabolic reprogramming in the cancer.
Collapse
Affiliation(s)
- Wei Gao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Guo
- Department of Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linlin Sun
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Jinwei Gai
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Yinan Cao
- Graduate School of Dalian Medical University, Dalian, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
14
|
Liu P, Zhang B, Li Y, Yuan Q. Potential mechanisms of cancer prevention and treatment by sulforaphane, a natural small molecule compound of plant-derived. Mol Med 2024; 30:94. [PMID: 38902597 PMCID: PMC11191161 DOI: 10.1186/s10020-024-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.
Collapse
Affiliation(s)
- Pengtao Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
15
|
Bucci T, Gue Y, Dobson R, Palmieri C, Pignatelli P, Lip GYH. Statin use is associated with a lower risk of all-cause death in patients with breast cancer treated with anthracycline containing regimens: a global federated health database analysis. Clin Exp Med 2024; 24:124. [PMID: 38865021 PMCID: PMC11168976 DOI: 10.1007/s10238-024-01395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Anthracyclines are associated with enhanced oxidative stress responsible for adverse events in patients with breast cancer. However, no study has investigated the potential anti-inflammatory role of statins in counteracting anthracycline toxicity. In this retrospective study utilizing a federated health network (TriNetX), patients with breast cancer (ICD code C50) treated with anthracyclines were categorized into two groups: statin users (for at least 6 months); and statin non-users. The primary outcome was the 5-year risk of all-cause death. Secondary outcomes were the risk of myocardial infarction, stroke, atrial fibrillation, ventricular arrhythmias, heart failure, and pulmonary embolism. Cox-regression analyses were used to produce hazard ratios (HRs) and 95% confidence intervals (CI) following 1:1 propensity score matching (PSM). We identified 3,701 statin users (68.8 ± 10.4 years) and 37,185 statin non-users (59.6 ± 12.8 years). After PSM, the 5-year risk of all-cause death was significantly lower in statin users (HR 0.82, 95% CI 0.74-0.91) compared to statins non-users. Analyzing the risk for secondary outcomes, only the risk of stroke was significantly increased in statin users (HR 1.27, 95% CI 1.01-1.61), while no associations were found for the other cardiovascular events. The risk of all-cause death in statin users was the lowest during the first year after the anthracycline's initiation. No significant difference was found between lipophilic and hydrophilic statins. In patients with breast cancer treated with anthracyclines, statin use is associated with a reduced risk of all-cause death. Prospective studies are needed to investigate the potential beneficial effect of statin initiation in cancer patients without other indications.
Collapse
Affiliation(s)
- Tommaso Bucci
- Liverpool Centre of Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK.
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| | - Ying Gue
- Liverpool Centre of Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Rebecca Dobson
- Liverpool Centre of Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Carlo Palmieri
- Liverpool Centre of Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Gregory Y H Lip
- Liverpool Centre of Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK.
- Department of Clinical Medicine, Danish Center for Health Services Research, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
16
|
Yang Q, Gao W, Li X, Li X, Zhou X, Li W, Zhou C, Luo A, Liu Z. Targeting ABCA1 via Extracellular Vesicle-Encapsulated Staurosporine as a Therapeutic Strategy to Enhance Radiosensitivity. Adv Healthc Mater 2024; 13:e2400381. [PMID: 38467587 DOI: 10.1002/adhm.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.
Collapse
Affiliation(s)
- Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
17
|
Wang X, Zhong F, Chen T, Wang H, Wang W, Jin H, Li C, Guo X, Liu Y, Zhang Y, Li B. Cholesterol neutralized vemurafenib treatment by promoting melanoma stem-like cells via its metabolite 27-hydroxycholesterol. Cell Mol Life Sci 2024; 81:226. [PMID: 38775844 PMCID: PMC11111659 DOI: 10.1007/s00018-024-05267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Vemurafenib has been used as first-line therapy for unresectable or metastatic melanoma with BRAFV600E mutation. However, overall survival is still limited due to treatment resistance after about one year. Therefore, identifying new therapeutic targets for melanoma is crucial for improving clinical outcomes. In the present study, we found that lowering intracellular cholesterol by knocking down DHCR24, the limiting synthetase, impaired tumor cell proliferation and migration and abrogated the ability to xenotransplant tumors. More importantly, administration of DHCR24 or cholesterol mediated resistance to vemurafenib and promoted the growth of melanoma spheroids. Mechanistically, we identified that 27-hydroxycholesterol (27HC), a primary metabolite of cholesterol synthesized by the enzyme cytochrome P450 27A1 (CYP27A1), reproduces the phenotypes induced by DHCR24 or cholesterol administration and activates Rap1-PI3K/AKT signaling. Accordingly, CYP27A1 is highly expressed in melanoma patients and upregulated by DHCR24 induction. Dafadine-A, a CYP27A1 inhibitor, attenuates cholesterol-induced growth of melanoma spheroids and abrogates the resistance property of vemurafenib-resistant melanoma cells. Finally, we confirmed that the effects of cholesterol on melanoma resistance require its metabolite 27HC through CYP27A1 catalysis, and that 27HC further upregulates Rap1A/Rap1B expression and increases AKT phosphorylation. Thus, our results suggest that targeting 27HC may be a useful strategy to overcome treatment resistance in metastatic melanoma.
Collapse
Affiliation(s)
- Xiaohong Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Hongbo Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Weifang Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongkai Jin
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Chouyang Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuan Guo
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Liu
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu Zhang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Bo Li
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
18
|
Fotinós J, Marks MP, Barberis L, Vellón L. Assessing the distribution of cancer stem cells in tumorspheres. Sci Rep 2024; 14:11013. [PMID: 38745039 PMCID: PMC11094167 DOI: 10.1038/s41598-024-61558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.
Collapse
Affiliation(s)
- Jerónimo Fotinós
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Lucas Barberis
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | |
Collapse
|
19
|
Shi J, Liu T, Liu C, Zhang H, Ruan G, Xie H, Lin S, Zheng X, Chen Y, Zhang Q, Zhang X, Li X, Liu X, Deng L, Shi HP. Remnant cholesterol is an effective biomarker for predicting survival in patients with breast cancer. Nutr J 2024; 23:45. [PMID: 38644466 PMCID: PMC11034071 DOI: 10.1186/s12937-024-00951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. The relationship between remnant cholesterol (RC) and the prognosis of patients with breast cancer has not been clearly reported. This study investigated the prognostic value of RC in predicting mortality in patients with breast cancer. METHODS This study prospectively analysed 709 women patients with breast cancer from the Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) project. Restricted cubic splines were used to analyse the dose-response relationship between RC and breast cancer mortality. The Kaplan-Meier method was used to evaluate the overall survival of patients with breast cancer. A Cox regression analyses was performed to assess the independent association between RC and breast cancer mortality. Inverse probability of treatment weighting (IPTW) using the propensity score was used to reduce confounding. Sensitivity analysis was performed after excluding patients with underlying diseases and survival times shorter than one year. RESULTS A linear dose-response relationship was identified between RC and the risk of all-cause mortality in patients with breast cancer (p = 0.036). Kaplan-Meier survival analysis and log-rank test showed that patients with high RC levels had poorer survival than those with low RC levels (p = 0.007). Univariate and multivariate Cox regression analyses showed that RC was an independent risk factor for mortality in women patients with breast cancer. IPTW-adjusted analyses and sensitivity analyses showed that CR remained a prognostic factor. CONCLUSIONS RC is an independent risk factor for the prognosis of patients with breast cancer, and patients with higher RC levels have poorer survival.
Collapse
Affiliation(s)
- Jinyu Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Tong Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Hailun Xie
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Shiqi Lin
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Yue Chen
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Qi Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Xiaowei Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xiangrui Li
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xiaoyue Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
20
|
Pagliari F, Jansen J, Knoll J, Hanley R, Seco J, Tirinato L. Cancer radioresistance is characterized by a differential lipid droplet content along the cell cycle. Cell Div 2024; 19:14. [PMID: 38643120 PMCID: PMC11031927 DOI: 10.1186/s13008-024-00116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines. RESULTS Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern. CONCLUSIONS In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Rachel Hanley
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany.
| | - Luca Tirinato
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy.
| |
Collapse
|
21
|
Chan AM, Aguirre B, Liu L, Mah V, Balko JM, Tsui J, Wadehra NP, Moatamed NA, Khoshchehreh M, Dillard CM, Kiyohara M, Elshimali Y, Chang HR, Marquez-Garban D, Hamilton N, Pietras RJ, Gordon LK, Wadehra M. EMP2 Serves as a Functional Biomarker for Chemotherapy-Resistant Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:1481. [PMID: 38672563 PMCID: PMC11048488 DOI: 10.3390/cancers16081481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) remains among the most commonly diagnosed cancers in women worldwide. Triple-negative BC (TNBC) is a subset of BC characterized by aggressive behavior, a high risk of distant recurrence, and poor overall survival rates. Chemotherapy is the backbone for treatment in patients with TNBC, but outcomes remain poor compared to other BC subtypes, in part due to the lack of recognized functional targets. In this study, the expression of the tetraspan protein epithelial membrane protein 2 (EMP2) was explored as a predictor of TNBC response to standard chemotherapy. We demonstrate that EMP2 functions as a prognostic biomarker for patients treated with taxane-based chemotherapy, with high expression at both transcriptomic and protein levels following treatment correlating with poor overall survival. Moreover, we show that targeting EMP2 in combination with docetaxel reduces tumor load in syngeneic and xenograft models of TNBC. These results provide support for the prognostic and therapeutic potential of this tetraspan protein, suggesting that anti-EMP2 therapy may be beneficial for the treatment of select chemotherapy-resistant TNBC tumors.
Collapse
Affiliation(s)
- Ann M. Chan
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Brian Aguirre
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Lucia Liu
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Vei Mah
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Tsui
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Navin P. Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Neda A. Moatamed
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Mahdi Khoshchehreh
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Christen M. Dillard
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Meagan Kiyohara
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
| | - Helena R. Chang
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Diana Marquez-Garban
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Lynn K. Gordon
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Zhang J, Liu B, Xu C, Ji C, Yin A, Liu Y, Yao Y, Li B, Chen T, Shen L, Wu Y. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol 2024; 26:684-700. [PMID: 38070488 PMCID: PMC10995519 DOI: 10.1093/neuonc/noad233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is a significant characteristic of glioma, yet the underlying mechanisms are largely unknown. N6-methyladenosine (m6A) modification has been implicated in promoting tumor development and progression. The aim of this study was to determine the key m6A regulatory proteins involved in the progression of glioma, which is potentially associated with the reprogramming of cholesterol homeostasis. METHODS Bioinformatics analysis was performed to determine the association of m6A modification with glioma malignancy from The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Glioma stem cell (GSC) self-renewal was determined by tumor sphere formation and bioluminescence image assay. RNA sequencing and lipidomic analysis were performed for cholesterol homeostasis analysis. RNA immunoprecipitation and luciferase reporter assay were performed to determine hnRNPA2B1-dependent regulation of sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR) mRNA. The methylation status of hnRNPA2B1 promoter was determined by bioinformatic analysis and methylation-specific PCR assay. RESULTS Among the m6A-regulatory proteins, hnRNPA2B1 was demonstrated the most important independent prognostic risk factor for glioma. hnRNPA2B1 ablation exhibited a significant tumor-suppressive effect on glioma cell proliferation, GSC self-renewal and tumorigenesis. hnRNPA2B1 triggers de novo cholesterol synthesis by inducing HMGCR through the stabilization of SREBP2 mRNA. m6A modification of SREBP2 or LDLR mRNA is required for hnRNPA2B1-mediated mRNA stability. The hypomethylation of cg21815882 site on hnRNPA2B1 promoter confers elevated expression of hnRNPA2B1 in glioma tissues. The combination of targeting hnRNPA2B1 and cholesterol metabolism exhibited remarkable antitumor effects, suggesting valuable clinical implications for glioma treatment. CONCLUSIONS hnRNPA2B1 facilitates cholesterol uptake and de novo synthesis, thereby contributing to glioma stemness and malignancy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Changwei Xu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenchen Ji
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Anan Yin
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yifeng Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Min J, Wu Y, Huang S, Li Y, Lv X, Tang R, Zhao H, Wang J. Serum cholesterol level as a predictive biomarker for prognosis of Neuroblastoma. BMC Pediatr 2024; 24:205. [PMID: 38519890 PMCID: PMC10958969 DOI: 10.1186/s12887-024-04700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB), a type of solid tumor in children, has a poor prognosis. Few blood biomarkers can accurately predict the prognosis, including recurrence and survival, in children with NB. In this study, we found that the serum total cholesterol (Tchol) level was associated with the prognosis of patients through a retrospective study. METHODS Multivariate Cox regression model was used to identify the independent risk factors in the children with NB. Kaplan-Meier method was used to analyze the correlation between the common biomarkers, including the serum Tchol level, and the prognosis of the patients. ROC curves were used to predict the accuracy of the International Neuroblastoma Staging System (INSS) stage and Children's Oncology Group (COG) risk stratification after adding the serum Tchol level. RESULTS Compared with the other patients, serum Tchol level was significantly increased in the relapsed and died patients (P < 0.05). Subsequently, serum Tchol level was found as an independent risk factor to affect the outcome of patients (P < 0.05). Finally, we added serum Tchol level into traditional stage and risk classification system to form the new INSS stage and COG risk classification system. It was found that the areas under the ROC curve (AUC) of recurrence-free survival in the new INSS stage and COG risk classification system were increased to 0.691 (95%CI: 0.535-0.847) and 0.748 (95%CI: 0.622-0.874), respectively. Moreover, the AUC areas of overall survival in the new INSS stage and COG risk classification system were increased to 0.722 (95%CI: 0.561-0.883) and 0.668 (95%CI: 0.496-0.819), respectively. CONCLUSION We found that serum Tchol level, a clinical biomarker, is a risk factor for recurrence and death among the children with NB. The serum Tchol level could significantly increase the accuracy of the prediction for NB prognosis.
Collapse
Affiliation(s)
- Jie Min
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yi Wu
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shungen Huang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yanhong Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinjing Lv
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruze Tang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
24
|
Mei X, Xiong J, Liu J, Huang A, Zhu D, Huang Y, Wang H. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion. Cancer Lett 2024; 584:216609. [PMID: 38211648 DOI: 10.1016/j.canlet.2024.216609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. However, the molecular mechanism of LNM in CC is unclear, and there is no effective clinical treatment. Here, we found that 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the last step of cholesterol synthesis, was upregulated in CC and closely related to LNM. Gain-of-function and loss-of-function experiments proved that DHCR7 promoted the invasion ability of CC cells and lymphangiogenesis in vitro and induced LNM in vivo. The LNM-promoting effect of DHCR7 was partly mediated by upregulating KN motif and ankyrin repeat domains 4 (KANK4) expression and subsequently activating the PI3K/AKT signaling pathway. Alternatively, DHCR7 promoted the secretion of vascular endothelial growth factor-C (VEGF-C), and thereby lymphangiogenesis. Interestingly, cholesterol reprogramming was needed for the DHCR7-mediated promotion of activation of the KANK4/PI3K/AKT axis, VEGF-C secretion, and subsequent LNM. Importantly, treatment with the DHCR7 inhibitors AY9944 and tamoxifen (TAM) significantly inhibited LNM of CC, suggesting the clinical application potential of DHCR7 inhibitors in CC. Collectively, our results uncover a novel molecular mechanism of LNM in CC and identify DHCR7 as a new potential therapeutic target.
Collapse
Affiliation(s)
- Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jinfeng Xiong
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Anni Huang
- Department of Medical, Guangxi Hospital, The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, And State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
25
|
Marks MP, Giménez CA, Isaja L, Vera MB, Borzone FR, Pereyra-Bonnet F, Romorini L, Videla-Richardson GA, Chasseing NA, Calvo JC, Vellón L. Role of hydroxymethylglutharyl-coenzyme A reductase in the induction of stem-like states in breast cancer. J Cancer Res Clin Oncol 2024; 150:106. [PMID: 38418798 PMCID: PMC10902018 DOI: 10.1007/s00432-024-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.
Collapse
Affiliation(s)
- María Paula Marks
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Alejandra Giménez
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Luciana Isaja
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Mariana Belén Vera
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Guillermo Agustín Videla-Richardson
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Inmunohematología, (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Vellón
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
26
|
Wu J, Hu W, Yang W, Long Y, Chen K, Li F, Ma X, Li X. Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal 2024; 114:110983. [PMID: 37993027 DOI: 10.1016/j.cellsig.2023.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Weibin Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Wenhui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China.
| | - Xun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
27
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
28
|
Maja M, Verfaillie M, Van Der Smissen P, Henriet P, Pierreux CE, Sounni NE, Tyteca D. Targeting cholesterol impairs cell invasion of all breast cancer types. Cancer Cell Int 2024; 24:27. [PMID: 38200575 PMCID: PMC10782689 DOI: 10.1186/s12935-023-03206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Breast cancer clinical outcome relies on its intrinsic molecular subtype and mortality is almost exclusively due to metastasis, whose mechanism remains unclear. We recently revealed the specific contribution of plasma membrane cholesterol to the invasion of malignant MCF10CAIa but not premalignant MCF10AT and normal MCF10A cell lines in 2D, through invadopodia formation and extracellular matrix (ECM) degradation. In the present study, we address the impact of breast cancer subtypes, mutations and aggressiveness on cholesterol implication in breast cancer cell invasion and 3D spheroid invasion and growth. METHODS We used nine breast cancer cell lines grouped in four subtypes matching breast tumor classification. Four of these cell lines were also used to generate 3D spheroids. These cell lines were compared for cell invasion in 2D and 3D, spheroid growth in 3D, gelatin degradation, cortactin expression, activation and subcellular distribution as well as cell surface cholesterol distribution and lipid droplets. The effect of plasma membrane cholesterol depletion on all these parameters was determined in parallel and systematically compared with the impact of global matrix metalloproteinase (MMP) inhibition. RESULTS The six invasive cell lines in 2D were sensitive to partial cholesterol depletion, independently of their subtype, aggressiveness or mutation. Nevertheless, the effect was stronger in the three cell lines able to degrade gelatin. 3D spheroid invasion was also reduced after cholesterol depletion in all breast cancer subtypes tested. Notably, targeting cholesterol was more powerful than MMP inhibition in reducing invasion in both 2D and 3D culture models. Moreover, cholesterol depletion in the six invasive cell lines impaired cortactin distribution in the perinuclear region where invadopodia localized. Breast cancer cell line aggressiveness relied on cholesterol-enriched domains at the ECM-free side and intracellular lipid droplets. Furthermore, the three gelatin-degrading cell lines were characterized by increased cholesterol-enriched submicrometric domains at their ECM-contact side. CONCLUSION Together, our data suggest cell surface cholesterol combined with lipid droplet labeling as a breast cancer cell aggressiveness marker. They also open the way to test other cholesterol-targeting drugs in more complex models to further evaluate whether cholesterol could represent a strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Marie Verfaillie
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | | | - Patrick Henriet
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Christophe E Pierreux
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium.
| |
Collapse
|
29
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
30
|
Kumari P, Dang S. Evaluation of Enhanced Cytotoxicity Effect of Repurposed Drug Simvastatin/Thymoquinone Combination against Breast Cancer Cell Line. Cardiovasc Hematol Agents Med Chem 2024; 22:348-366. [PMID: 37907488 DOI: 10.2174/0118715257259037231012182741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Repurposing of drugs for their anticancer potential is gaining a lot of importance in drug discovery. AIMS The present study aims to explore the potential of Simvastatin (SIM), a drug used in the treatment of high cholesterol, and Thymoquinone (Nigella Sativa) (THY) for its anti-cancer activity on breast cancer cell lines. Thymoquinone is reported to have many potential medicinal properties exhibiting antioxidant, antiinflammatory, anti-cancer, activities like inhibition of tissue growth and division. METHODS In this analysis, we explored the inhibitory effects of the combination of Simvastatin ad Thymoquinone on two breast cancer cell lines viz MCF-7 and MDA-MB-231 cells. The combined effect of Simvastatin and Thymoquinone on Cell viability, Colony formation, Cell migration, and orientation of more programmed cell death in vitro was studied. Cell cycle arrest in the G2/M phase was concomitant with the combined effect of SIM and THY persuading apoptosis and generating reactive oxygen species (ROS). RESULTS The cell cycle arrest with combined treatment was observed that only 1.8% and 1.1% cells gated in G2/M phase in MCF-7 & MDA-MB-231 cell. An increased apoptosis was observed when cells were treated in combination which was about 76.20% and 58.15% respectively for MCF-7 and MDA-MB-231 cells. CONCLUSION It was concluded that the combined effect of simvastatin and thymoquinone stimulates apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, Sector 62, U.P., 201309, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, Sector 62, U.P., 201309, India
| |
Collapse
|
31
|
Feng W, Xu B, Zhu X. Multi-dimension metabolic prognostic model for gastric cancer. Front Endocrinol (Lausanne) 2023; 14:1228136. [PMID: 38144563 PMCID: PMC10748418 DOI: 10.3389/fendo.2023.1228136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background Metabolic reprogramming is involved in different stages of tumorigenesis. There are six widely recognized tumor-associated metabolic pathways, including cholesterol catabolism process, fatty acid metabolism, glutamine metabolic process, glycolysis, one carbon metabolic process, and pentose phosphate process. This study aimed to classify gastric cancer patients into different metabolic bio-similar clusters. Method We analyzed six tumor-associated metabolic pathways and calculated the metabolic pathway score through RNA-seq data using single sample gene set enrichment analysis. The consensus clustering analysis was performed to classify patients into different bio-similar clusters by multi-dimensional scaling. Kaplan-Meier curves were presented between different metabolic bio-similar groups for OS analysis. Results A training set of 370 patients from the Cancer Genome Atlas database with primary gastric cancer was chosen. Patients were classified into four metabolic bio-similar clusters, which were identified as metabolic non-specificity, metabolic-active, cholesterol-silence, and metabolic-silence clusters. Survival analysis showed that patients in metabolic-active cluster and metabolic-silence cluster have significantly poor prognosis than other patients (p=0.031). Patients in metabolic-active cluster and metabolic-silence cluster had significantly higher intra-tumor heterogeneity than other patients (p=0.032). Further analysis was performed in metabolic-active cluster and cholesterol-silence cluster. Three cell-cycle-related pathways, including G2M checkpoints, E2F targets, and MYC targets, were significantly upregulated in metabolic-active cluster than in cholesterol-silence cluster. A validation set of 192 gastric cancer patients from the Gene Expression Omnibus data portal verified that metabolic bio-similar cluster can predict prognosis in gastric cancer. Conclusion Our study established a multi-dimension metabolic prognostic model in gastric cancer, which may be feasible for predicting clinical outcome.
Collapse
Affiliation(s)
- Wanjing Feng
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bei Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhu M, Zhao Q, Zhang W, Xu H, Zhang B, Zhang S, Duan Y, Liao C, Yang X, Chen Y. Hydroxypropyl-β-cyclodextrin inhibits the development of triple negative breast cancer by enhancing antitumor immunity. Int Immunopharmacol 2023; 125:111168. [PMID: 37939513 DOI: 10.1016/j.intimp.2023.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-β-cyclodextrin (HP-β-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-β-CD on TNBC are not fully understood. To examine the influence of HP-β-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-β-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-β-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-β-CD-inhibited TNBC growth. Mechanistically, HP-β-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-β-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-β-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-β-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-β signaling pathway. In summary, our study suggests that HP-β-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-β-CD may hold promise as a potential antitumor drug.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
33
|
Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, Yu H. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol 2023; 218:115907. [PMID: 37931664 DOI: 10.1016/j.bcp.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.
Collapse
Affiliation(s)
- Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuejiao Bai
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Li Y, Tuerxun H, Liu X, Zhao Y, Wen S, Li Y, Cao J, Zhao Y. Nrf2--a hidden bridge linking cancer stem cells to ferroptosis. Crit Rev Oncol Hematol 2023; 190:104105. [PMID: 37598896 DOI: 10.1016/j.critrevonc.2023.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023] Open
Abstract
Cancer stem cells (CSCs), a small population of stem cells existing in cancer cells, are considered as the "culprits" of tumor recurrence, metastasis, and drug resistance. Ferroptosis is a promising new lead in anti-cancer therapy. Because of unique metabolic characteristics, CSCs' growth is more dependent on the iron and lipid than ordinary cancer cells. When the metabolism of iron/lipid is disordered, that is, imbalanced redox homeostasis, CSCs are more susceptible to ferroptosis. The expression of Nuclear factor E2-related factor 2 (Nrf2), a molecule playing a major regulatory role in redox homeostasis, determines whether the cells are under oxidative stress and ferroptosis occurs. Nrf2 expression level is higher in CSCs, indicating stronger dependence on Nrf2. Here we expound the unique biological and metabolic characteristics of CSCs, explore the mechanism of inducing ferroptosis by targeting Nrf2, thus providing promising new targets for eliminating aggressive tumors and achieving the goal of curing tumors.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaping Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jingjing Cao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
35
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
36
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
37
|
Ajabnoor GMA. The Molecular and Genetic Interactions between Obesity and Breast Cancer Risk. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1338. [PMID: 37512149 PMCID: PMC10384495 DOI: 10.3390/medicina59071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Breast cancer (BC) is considered the leading cause of death among females worldwide. Various risk factors contribute to BC development, such as age, genetics, reproductive factors, obesity, alcohol intake, and lifestyle. Obesity is considered to be a pandemic health problem globally, affecting millions of people worldwide. Obesity has been associated with a high risk of BC development. Determining the impact of obesity on BC development risk in women by demonstrating the molecular and genetic association in pre- and post-menopause females and risk to BC initiation is crucial in order to improve the diagnosis and prognosis of BC disease. In epidemiological studies, BC in premenopausal women was shown to be protective in a certain pattern. These altered effects between the two phases could be due to various physiological changes, such as estrogen/progesterone fluctuating levels. In addition, the relationship between BC risk and obesity is indicated by different molecular alterations as metabolic pathways and genetic mutation or epigenetic DNA changes supporting a strong connection between obesity and BC risk. However, these molecular and genetic alteration remain incompletely understood. The aim of this review is to highlight and elucidate the different molecular mechanisms and genetic changes occurring in obese women and their association with BC risk and development.
Collapse
Affiliation(s)
- Ghada M A Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21551, Saudi Arabia
- Saudi Diabetes Research Group, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
39
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Dianat-Moghadam H, Abbasspour-Ravasjani S, Hamishehkar H, Rahbarghazi R, Nouri M. LXR inhibitor SR9243-loaded immunoliposomes modulate lipid metabolism and stemness in colorectal cancer cells. Med Oncol 2023; 40:156. [PMID: 37093287 DOI: 10.1007/s12032-023-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Reprogrammed metabolism and active stemness contribute to cancer stem cells' (CSCs) survival and tumorigenesis. LXR signaling regulates the metabolism of different cancers. A selective LXR inhibitor, SR9243 (SR), can target and eradicate non-CSC tumor cells. CD133 is a stem marker in solid tumors-associated CSCs within the active lipogenesis, and anti-CD133 mAb targeting liposomal drug delivery systems expected to increase drug internalization and improve the therapeutic efficacy of poor-in water solubility drugs, e, g., SR. In this study, anti-CD133 mAbs-targeted Immunoliposomes (ILipo) were developed for specific delivery of SR into MACS-enriched CD133 + CSCs and induce their functional effects. Results have shown that ILipo having an average size of 64.79 nm can encapsulate SR in maximum proportion, and cell association studies have shown cationic ILipo and targeting CD133 provide the CSCs binding. Also, FCM analysis of RhoB has demonstrated that the ILipo uptake was higher in CD133 + CSCs than in the non-targeted liposomes. ILipo-SR was significantly more toxic in CD133 + CSCs compared to the free SR and non-targeted ones. More efficient than Lipo-SR, ILipo-SR improved the reduction of clonogenicity, stemness, and lipogenesis in CD133 + CSCs in vitro, boosted ROS generation, and induced apoptosis. Our study revealed the dual targeting of CD133 and LXR appears to be a promising strategy for targeting CD133 + CSCs-presenting dynamic metabolism and self-renewal potentials.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
42
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Scully T, Ettela A, Kase N, LeRoith D, Gallagher EJ. Unregulated LDL cholesterol uptake is detrimental to breast cancer cells. Endocr Relat Cancer 2023; 30:ERC-22-0234. [PMID: 36256855 DOI: 10.1530/erc-22-0234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Tumor uptake of exogenous cholesterol has been associated with the proliferation of various cancers. Previously, we and others have shown that hypercholesterolemia promotes tumor growth and silencing of the LDL receptor (LDLR) in high LDLR-expressing tumors reduces growth. To advance understanding of how LDL uptake promotes tumor growth, LDLR expression was amplified in breast cancer cell lines with endogenously low LDLR expression. Murine (Mvt1) and human (MDA-MB-468) breast cancer cell lines were transduced to overexpress human LDLR (LDLROE). Successful transduction was confirmed by RNA and protein analysis. Fluorescence-labeled LDL uptake was increased in both Mvt1 and MDA-MD-468 LDLROE cells. The expression of the cholesterol-metabolizing genes, ABCA1 and ABCG1, was increased, while HMGCR was decreased in the MDA-MB-468 LDLROE cells. In contrast, Mvt1 LDLROE cells showed no differences in Abca1 and Abcg1 expression and increased Hmgcr expression. Using a Seahorse analyzer, Mvt1 LDLROE cells showed increased respiration (ATP-linked and maximal) relative to controls, while no statistically significant changes in respiration in MDA-MB-468 LDLROE cells were observed. Growth of LDLROE cells was reduced in culture and in hypercholesterolemic mice by two-fold. However, the expression of proliferation-associated markers (Ki67, PCNA and BrdU-label incorporation) was not decreased in the Mvt1 LDLROE tumors and cells. Caspase-3 cleavage, which is associated with apoptosis, was increased in both the Mvt1 and MDA-MB-468 LDLROE cells relative to controls, with the Mvt1 LDLROE cells also showing decreased phosphorylation of p44/42MAPK. Taken together, our work suggests that while additional LDL can promote tumor growth, unregulated and prolonged LDL uptake is detrimental.
Collapse
Affiliation(s)
- Tiffany Scully
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Kase
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
44
|
Xia W, Wang H, Zhou X, Wang Y, Xue L, Cao B, Song J. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol 2023; 14:928821. [PMID: 37089950 PMCID: PMC10117684 DOI: 10.3389/fphar.2023.928821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cholesterol and its metabolites have important biological functions. Cholesterol is able to maintain the physical properties of cell membrane, play an important role in cellular signaling, and cellular cholesterol levels reflect the dynamic balance between biosynthesis, uptake, efflux and esterification. Cholesterol metabolism participates in bile acid production and steroid hormone biosynthesis. Increasing evidence suggests a strict link between cholesterol homeostasis and tumors. Cholesterol metabolism in tumor cells is reprogrammed to differ significantly from normal cells, and disturbances of cholesterol balance also induce tumorigenesis and progression. Preclinical and clinical studies have shown that controlling cholesterol metabolism suppresses tumor growth, suggesting that targeting cholesterol metabolism may provide new possibilities for tumor therapy. In this review, we summarized the metabolic pathways of cholesterol in normal and tumor cells and reviewed the pre-clinical and clinical progression of novel tumor therapeutic strategy with the drugs targeting different stages of cholesterol metabolism from bench to bedside.
Collapse
Affiliation(s)
- Wenhao Xia
- Cancer Center of Peking University Third Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaozhu Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, Beijing, China
| | - Yan Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Baoshan Cao
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Jiagui Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University as the Third Responsibility Unit of Song Jiagui, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| |
Collapse
|
45
|
Sun XB, Liu WW, Wang B, Yang ZP, Tang HZ, Lu S, Wang YY, Qu JX, Rao BQ. Correlations between serum lipid and Ki-67 levels in different breast cancer molecular subcategories. Oncol Lett 2022; 25:53. [PMID: 36644143 PMCID: PMC9827470 DOI: 10.3892/ol.2022.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has the highest incidence rate among all cancer types worldwide, seriously threatening women's health. The present retrospective study explored differences in serum lipid contents in different breast cancer (BC) subcategories and their correlation with Ki-67 expression levels in patients with invasive BC with the aim of identifying novel diagnostic and prognostic indicators for personalized BC treatment. The study included 170 patients diagnosed with BC who were diagnosed with invasive BC by postoperative pathological examination. Data on patient age, body mass index and menopausal status were collected, in addition to estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2) and antigen Ki-67 expression levels and pathological tumor type. Preoperative circulating lipid levels, specifically the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and apolipoproteins A1 (ApoA1) and B (ApoB) were also obtained. Molecular subcategories of BC were grouped based on their immunohistochemistry. Differences in serum lipid levels between the groups were assessed, and correlations between serum lipid and Ki-67 expression levels were explored. While TC, LDL-C, HDL-C and ApoA1 levels differed significantly among molecular subcategories. TG and ApoB levels did not. Circulating TC and LDL-C levels were considerably higher in patients with triple-negative BC (TNBC) and HER2-positive [hormone receptor (HR)-negative] BC than in those with luminal A and B (HER2-negative) BC. Serum HDL-C levels were significantly diminished in the TNBC and HER2-positive (HR-negative) groups compared with the luminal A and B (HER2-negative) groups. ApoA1 levels were significantly reduced in cases of TNBC and HER2-positive (HR-negative) BC compared with luminal A and B BC. Ki-67 expression levels were positively correlated with circulating TC and LDL-C levels and inversely correlated with circulating HDL-C and ApoA1 levels but exhibited no correlation with serum ApoB and TG levels. The results indicate that elevated TC and LDL-C levels and diminished HDL-C and ApoA1 levels were high-risk factors in patients with TNBC and HER2-positive (HR-negative) BC, but not patients with luminal subcategories of BC. Abnormal serum lipid levels were correlated with Ki-67 expression levels, with elevated circulating TC and LDL-C levels and reduced circulating HDL-C and ApoA1 levels indicating a poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Xi-Bo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| | - Wen-Wen Liu
- The Second Department of General Surgery, Shanxian Central Hospital, He'ze, Shandong 274300, P.R. China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China,Correspondence to: Professor Ben-Qiang Rao, Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, 115 Yangfangdian, Haidian, Beijing 100038, P.R. China, E-mail:
| |
Collapse
|
46
|
Wen GM, Xu XY, Xia P. Metabolism in Cancer Stem Cells: Targets for Clinical Treatment. Cells 2022; 11:3790. [PMID: 36497050 PMCID: PMC9736883 DOI: 10.3390/cells11233790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumorigenicity, high metastasis and high resistance to treatment. They are the key factors for the growth, metastasis and drug resistance of malignant tumors, and are also the important reason for the occurrence and recurrence of tumors. Metabolic reprogramming refers to the metabolic changes that occur when tumor cells provide sufficient energy and nutrients for themselves. Metabolic reprogramming plays an important role in regulating the growth and activity of cancer cells and cancer stem cells. In addition, the immune cells or stromal cells in the tumor microenvironment (TME) will change due to the metabolic reprogramming of cancer cells. Summarizing the characteristics and molecular mechanisms of metabolic reprogramming of cancer stem cells will provide new ideas for the comprehensive treatment of malignant tumors. In this review, we summarized the changes of the main metabolic pathways in cancer cells and cancer stem cells.
Collapse
Affiliation(s)
- Gui-Min Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiao-Yan Xu
- College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
47
|
Halimi H, Farjadian S. Cholesterol: An important actor on the cancer immune scene. Front Immunol 2022; 13:1057546. [PMID: 36479100 PMCID: PMC9719946 DOI: 10.3389/fimmu.2022.1057546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Based on the structural and signaling roles of cholesterol, which are necessary for immune cell activity, high concentrations of cholesterol and its metabolites not only trigger malignant cell activities but also impede immune responses against cancer cells. To proliferate and evade immune responses, tumor cells overcome environmental restrictions by changing their metabolic and signaling pathways. Overexpression of mevalonate pathway enzymes and low-density lipoprotein receptor cause elevated cholesterol synthesis and uptake, respectively. Accordingly, cholesterol can be considered as both a cause and an effect of cancer. Variations in the effects of blood cholesterol levels on the outcome of different types of cancer may depend on the stage of cancer. However, positive effects of cholesterol-lowering drugs have been reported in the treatment of patients with some malignancies.
Collapse
|
48
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
49
|
Research progress on the role of cholesterol in hepatocellular carcinoma. Eur J Pharmacol 2022; 938:175410. [DOI: 10.1016/j.ejphar.2022.175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
|
50
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|