1
|
Zhou W, Zheng M, Hu Z, Zhang B, Zhao M, Lu Q. Single-cell transcriptomics reveals the alteration of immune cell profile in peripheral blood of Henoch-Schonlein purpura. Clin Immunol 2025; 272:110443. [PMID: 39924084 DOI: 10.1016/j.clim.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Henoch-Schönlein purpura (HSP) is an autoimmune vasculitis affecting multiple organs, and the understanding of circulating immune cell types and their states associated with disease subtypes of HSP remains incomplete. Here, we performed a comprehensive assessment of peripheral blood mononuclear cells of healthy donors and HSP patients, using both single-cell RNA sequencing and multiparameter flow cytometry. We revealed that HSP patients exhibited broad immune activation, evidenced by increased proportions of Effector memory CD8+ T, CD14+ monocytes, Tfh, Th2, Th17, Plasma, and B cells and decreased proportions of Naïve CD4+ T, Treg, Th1, and NK cells. Notably, we identified that cytotoxic effector T cell subsets were enriched in skin and renal type of HSP, whereas Plasma, B, and Tfh cells were expanded in joint and abdominal type of HSP. In conclusion, our findings highlight the dynamic nature of immune responses throughout the progression of HSP with different clinical manifestations.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Meiling Zheng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Bo Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
2
|
Jung JM, Won CH, Chang SE, Lee MW, Lee WJ. Spatially Resolved Single-Cell Transcriptome Analysis of Mycosis Fungoides Reveals Distinct Biomarkers GNLY and FYB1 Compared With Psoriasis and Chronic Spongiotic Dermatitis. Mod Pathol 2024; 38:100681. [PMID: 39675427 DOI: 10.1016/j.modpat.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Early mycosis fungoides (MF) and inflammatory dermatoses including psoriasis and chronic spongiotic dermatitis are often difficult to differentiate. We explored diagnostic markers differentiating MF from psoriasis and chronic spongiotic dermatitis via spatially resolved single-cell transcriptome analysis. Single-cell transcriptomics of intraepidermal T cells of MF patches, psoriasis, and chronic spongiotic dermatitis were analyzed using CosMx spatial molecular imager utilizing surface markers, including CD3 and CD4. An immunohistochemical study with potential markers was performed to verify clinical utility. Compared with psoriasis and chronic spongiotic dermatitis, 41 upregulated differentially expressed genes (DEGs) in MF were associated with the T-cell receptor (TCR) signaling pathway and apoptosis regulation. Protein-protein interaction network analysis of these DEGs revealed a main cluster associated with TCR signaling. Pathway enrichment analysis showed that apoptosis, Th17 cell differentiation, and TCR signaling pathways were enriched in MF. GNLY and FYB1, DEGs with the highest fold-change values, were selected as potential diagnostic biomarkers for MF. For immunohistochemistry, biopsy specimens from 150 patients diagnosed with patch MF with CD4+ immunophenotype (n = 56), psoriasis (n = 48), and chronic eczema (n = 46) were included. The sensitivity and specificity of granulysin (GNLY) for distinguishing MF and psoriasis/chronic spongiotic dermatitis were 67.9% and 93.6%, respectively. For FYN-binding protein 1 (FYB1), those values were 73.2% and 69.2%, respectively. The area under the receiver operating characteristic curve values of GNLY and FYB1 were 0.86 and 0.79, respectively. In conclusion, granulysin and FYB1 can be promising diagnostic biomarkers for differentiating early-stage MF from psoriasis and chronic spongiotic dermatitis.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Serrano K, Tedeschi F, Andersen SU, Scheller HV. Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics. TRENDS IN PLANT SCIENCE 2024; 29:1356-1367. [PMID: 38991926 DOI: 10.1016/j.tplants.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.
Collapse
Affiliation(s)
- Karen Serrano
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark.
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Shin YJ, Chae SY, Lee H, Fang X, Cui S, Lim SW, Lee KI, Lee JY, Li C, Yang CW, Chung BH. CRISPR/Cas9-mediated suppression of A4GALT rescues endothelial cell dysfunction in a fabry disease vasculopathy model derived from human induced pluripotent stem cells. Atherosclerosis 2024; 397:118549. [PMID: 39141976 DOI: 10.1016/j.atherosclerosis.2024.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS The objective of this study was to investigate the efficacy of CRISPR/Cas9-mediated A4GALT suppression in rescuing endothelial dysfunction in Fabry disease (FD) endothelial cells (FD-ECs) derived from human induced pluripotent stem cells (hiPSCs). METHODS We differentiated hiPSCs (WT (wild-type), WTC-11), GLA-mutant hiPSCs (GLA-KO, CMC-Fb-002), and CRISPR/Cas9-mediated A4GALT-KO hiPSCs (GLA/A4GALT-KO, Fb-002-A4GALT-KO) into ECs and compared FD phenotypes and endothelial dysfunction. We also analyzed the effect of A4GALT suppression on reactive oxygen species (ROS) formation and transcriptome profiles through RNA sequencing. RESULTS GLA-mutant hiPSC-ECs (GLA-KO and CMC-Fb-002) showed downregulated expression of EC markers and significantly reduced α-GalA expression with increased Gb-3 deposition and intra-lysosomal inclusion bodies. However, CRISPR/Cas9-mediated A4GALT suppression in GLA/A4GALT-KO and Fb-002-A4GALT-KO hiPSC-ECs increased expression levels of EC markers and rescued these FD phenotypes. GLA-mutant hiPSC-ECs failed to form tube-like structure in tube formation assays, showing significantly decreased migration of cells into the scratched wound area. In contrast, A4GALT suppression improved tube formation and cell migration capacity. Western blot analysis revealed that MAPK and AKT phosphorylation levels were downregulated while SOD and catalase were upregulated in GLA-KO hiPSC-ECs. However, suppression of A4GALT restored these protein alterations. RNA sequencing analysis demonstrated significant transcriptome changes in GLA-mutant EC, especially in angiogenesis, cell death, and cellular response to oxidative stress. However, these were effectively restored in GLA/A4GALT-KO hiPSC-ECs. CONCLUSIONS CRISPR/Cas9-mediated A4GALT suppression rescued FD phenotype and endothelial dysfunction in GLA-mutant hiPSC-ECs, presenting a potential therapeutic approach for FD-vasculopathy.
Collapse
Affiliation(s)
- Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea.
| |
Collapse
|
5
|
Kaushik A, Chang I, Han X, He Z, Komlosi ZI, Ji X, Cao S, Akdis CA, Boyd S, Pulendran B, Maecker HT, Davis MM, Chinthrajah RS, DeKruyff RH, Nadeau KC. Single cell multi-omic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients. Front Immunol 2024; 15:1374828. [PMID: 39026668 PMCID: PMC11255397 DOI: 10.3389/fimmu.2024.1374828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Innate lymphoid cells (ILCs) are enriched at mucosal surfaces where they respond rapidly to environmental stimuli and contribute to both tissue inflammation and healing. Methods To gain insight into the role of ILCs in the pathology and recovery from COVID-19 infection, we employed a multi-omics approach consisting of Abseq and targeted mRNA sequencing to respectively probe the surface marker expression, transcriptional profile and heterogeneity of ILCs in peripheral blood of patients with COVID-19 compared with healthy controls. Results We found that the frequency of ILC1 and ILC2 cells was significantly increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly higher frequency of CD69-expressing cells, indicating a heightened state of activation. ILC2s from COVID-19 patients had the highest number of significantly differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs healthy participants included a) genes associated with responses to virus infections and b) genes that support ILC self-proliferation, activation and homeostasis. In addition, differential gene regulatory network analysis revealed ILC-specific regulons and their interactions driving the differential gene expression in each ILC. Discussion Overall, this study provides mechanistic insights into the characteristics of ILC subsets activated during COVID-19 infection.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Zsolt I. Komlosi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Swiss Institute of Allergy and Asthma (SIAF), University of Zurich, Davos, Switzerland
| | - Xuhuai Ji
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Scott Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Bali Pulendran
- Department of Pathology, Stanford University, Stanford, CA, United States
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | - Mark M. Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemarie H. DeKruyff
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Borrelli C, Gurtner A, Arnold IC, Moor AE. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc 2024; 19:1679-1709. [PMID: 38504138 DOI: 10.1038/s41596-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2-3 d, while functional genomics assays may require up to 1 month.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
7
|
Tian T, Lin S, Yang C. Beyond single cells: microfluidics empowering multiomics analysis. Anal Bioanal Chem 2024; 416:2203-2220. [PMID: 38008783 DOI: 10.1007/s00216-023-05028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Single-cell multiomics technologies empower simultaneous measurement of multiple types of molecules within individual cells, providing a more profound comprehension compared with the analysis of discrete molecular layers from different cells. Microfluidic technology, on the other hand, has emerged as a pivotal facilitator for high-throughput single-cell analysis, offering precise control and manipulation of individual cells. The primary focus of this review encompasses an appraisal of cutting-edge microfluidic platforms employed in the realm of single-cell multiomics analysis. Furthermore, it discusses technological advancements in various single-cell omics such as genomics, transcriptomics, epigenomics, and proteomics, with their perspective applications. Finally, it provides future prospects of these integrated single-cell multiomics methodologies, shedding light on the possibilities for future biological research.
Collapse
Affiliation(s)
- Tian Tian
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shichao Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361005, China
| | - Chaoyong Yang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361005, China.
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
8
|
Tan Z, Chiu MS, Yue M, Kwok HY, Tse MH, Wen Y, Chen B, Yang D, Zhou D, Song YQ, Man K, Chen Z. Enhancing the efficacy of vaccinia-based oncolytic virotherapy by inhibiting CXCR2-mediated MDSC trafficking. J Leukoc Biol 2024; 115:633-646. [PMID: 38066571 DOI: 10.1093/jleuko/qiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 04/02/2024] Open
Abstract
Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.
Collapse
Affiliation(s)
- Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Mei Sum Chiu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hau Yee Kwok
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Man Ho Tse
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yang Wen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Dawei Yang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Dongyan Zhou
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong - Shenzhen Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, N.T., Hong Kong SAR, People's Republic of China
| |
Collapse
|
9
|
Soni J, Chattopadhyay P, Mehta P, Mohite R, Tardalkar K, Joshi M, Pandey R. Dynamics of Whole Transcriptome Analysis (WTA) and Surface markers expression (AbSeq) in Immune Cells of COVID-19 Patients and Recovered captured through Single Cell Genomics. Front Med (Lausanne) 2024; 11:1297001. [PMID: 38357647 PMCID: PMC10864604 DOI: 10.3389/fmed.2024.1297001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Single-cell multi-omics studies, such as multidimensional transcriptomics (whole transcriptomic analysis, WTA), and surface marker analysis (antibody sequencing, AbSeq), have turned out to be valuable techniques that offer inaccessible possibilities for single-cell profiling of mRNA, lncRNA, and proteins. Methods We used this technique to understand the dynamics of mRNA and protein-level differences in healthy, COVID-19-infected and recovered individuals using peripheral blood mononuclear cells (PBMCs). Our results demonstrate that compared to mRNA expression, protein abundance is a better indicator of the disease state. Results We demonstrate that compared to mRNA expression, protein abundance is a better indicator of the disease state. We observed high levels of cell identity and regulatory markers, CD3E, CD4, CD8A, CD5, CD7, GITR, and KLRB1 in healthy individuals, whereas markers related to cell activation, CD38, CD28, CD69, CD62L, CD14, and CD16 elevated in the SARS-CoV-2 infected patients at both WTA and AbSeq levels. Curiously, in recovered individuals, there was a high expression of cytokine and chemokine receptors (CCR5, CCR7, CCR4, CXCR3, and PTGRD2). We also observed variations in the expression of markers within cell populations under different states. Discussion Furthermore, our study emphasizes the significance of employing an oligo-based method (AbSeq) that can help in diagnosis, prognosis, and protection from disease/s by identifying cell surface markers that are unique to different cell types or states. It also allows simultaneous study of a vast array of markers, surpassing the constraints of techniques like FACS to query the vast repertoire of proteins.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kishore Tardalkar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | - Meghnad Joshi
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Shi X, Baracho GV, Lomas WE, Song HW, Widmann SJ, Tyznik AJ. Co-staining with Fluorescent Antibodies and Antibody-Derived Tags for Cell Sorting Prior to CITE-Seq. Methods Mol Biol 2024; 2779:287-303. [PMID: 38526791 DOI: 10.1007/978-1-0716-3738-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The paired detection of the transcriptome and proteome at single-cell resolution provides exquisite insight to immune mechanisms in health and disease. Here, we describe a detailed protocol wherein we combine cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), a technique utilizing antibody-derived tags (ADTs) to profile mRNA and proteins simultaneously via sequencing, with fluorescence-activated cell sorting to enrich cell populations. Our protocol provides step-by-step guidance on co-staining cells with both fluorescent antibodies and ADTs simultaneously, instructions on cell sorting and an overview of the single-cell capture workflow using the BD Rhapsody™ system. This method is useful for in-depth single-cell characterization on sorted rare cell populations.
Collapse
|
11
|
Mohan NH, Pathak P, Buragohain L, Deka J, Bharati J, Das AK, Thomas R, Singh R, Sarma DK, Gupta VK, Das BC. Comparative muscle transcriptome of Mali and Hampshire breeds of pigs: a preliminary study. Anim Biotechnol 2023; 34:3946-3961. [PMID: 37587839 DOI: 10.1080/10495398.2023.2244988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Muscle development is an important priority of pig breeding programs. There is a considerable variation in muscularity between the breeds, but the regulation mechanisms of genes underlying myogenesis are still unclear. Transcriptome data from two breeds of pigs with divergent muscularity (Mali and Hampshire) were integrated with histology, immunofluorescence and meat yield to identify differences in myogenesis during the early growth phase. The muscle transcriptomics analysis revealed 17,721 common, 1413 and 1115 unique transcripts to Hampshire and Mali, respectively. This study identified 908 differentially expressed genes (p < 0.05; log2FC > ±1) in the muscle samples, of which 550 were upregulated and 358 were downregulated in Hampshire pigs, indicating differences in physiological process related to muscle function and development. Expression of genes related to myoblast fusion (MYMK), skeletal muscle satellite cell proliferation (ANGPT1, CDON) and growth factors (HGF, IGF1, IGF2) were higher in Hampshire than Mali, even though transcript levels of several other myogenesis-related genes (MYF6, MYOG, MSTN) were similar. The number of fibers per fascicle and the expression of myogenic marker proteins (MYOD1, MYOG and PAX7) were more in Hampshire as compared to Mali breed of pig, supporting results of transcriptome studies. The results suggest that differences in muscularity between breeds could be related to the regulation of myoblast fusion and myogenic activities. The present study will help to identify genes that could be explored for their utility in the selection of animals with different muscularities.
Collapse
Affiliation(s)
| | | | | | - Juri Deka
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Anil Kumar Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | | | - Rajendra Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
12
|
Lischetti U, Tastanova A, Singer F, Grob L, Carrara M, Cheng PF, Martínez Gómez JM, Sella F, Haunerdinger V, Beisel C, Levesque MP. Dynamic thresholding and tissue dissociation optimization for CITE-seq identifies differential surface protein abundance in metastatic melanoma. Commun Biol 2023; 6:830. [PMID: 37563418 PMCID: PMC10415364 DOI: 10.1038/s42003-023-05182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Multi-omics profiling by CITE-seq bridges the RNA-protein gap in single-cell analysis but has been largely applied to liquid biopsies. Applying CITE-seq to clinically relevant solid biopsies to characterize healthy tissue and the tumor microenvironment is an essential next step in single-cell translational studies. In this study, gating of cell populations based on their transcriptome signatures for use in cell type-specific ridge plots allowed identification of positive antibody signals and setting of manual thresholds. Next, we compare five skin dissociation protocols by taking into account dissociation efficiency, captured cell type heterogeneity and recovered surface proteome. To assess the effect of enzymatic digestion on transcriptome and epitope expression in immune cell populations, we analyze peripheral blood mononuclear cells (PBMCs) with and without dissociation. To further assess the RNA-protein gap, RNA-protein we perform codetection and correlation analyses on thresholded protein values. Finally, in a proof-of-concept study, using protein abundance analysis on selected surface markers in a cohort of healthy skin, primary, and metastatic melanoma we identify CD56 surface marker expression on metastatic melanoma cells, which was further confirmed by multiplex immunohistochemistry. This work provides practical guidelines for processing and analysis of clinically relevant solid tissue biopsies for biomarker discovery.
Collapse
Affiliation(s)
- Ulrike Lischetti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Franziska Singer
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Linda Grob
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Matteo Carrara
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veronika Haunerdinger
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Tan Z, Chiu MS, Yang X, Yue M, Cheung TT, Zhou D, Wang Y, Chan AWH, Yan CW, Kwan KY, Wong YC, Li X, Zhou J, To KF, Zhu J, Lo CM, Cheng ASL, Chan SL, Liu L, Song YQ, Man K, Chen Z. Isoformic PD-1-mediated immunosuppression underlies resistance to PD-1 blockade in hepatocellular carcinoma patients. Gut 2023; 72:1568-1580. [PMID: 36450387 DOI: 10.1136/gutjnl-2022-327133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Immune checkpoint blockade (ICB) has improved cancer treatment, yet why most hepatocellular carcinoma (HCC) patients are resistant to PD-1 ICB remains elusive. Here, we elucidated the role of a programmed cell death protein 1 (PD-1) isoform, Δ42PD-1, in HCC progression and resistance to nivolumab ICB. DESIGN We investigated 74 HCC patients in three cohorts, including 41 untreated, 28 treated with nivolumab and 5 treated with pembrolizumab. Peripheral blood mononuclear cells from blood samples and tumour infiltrating lymphocytes from tumour tissues were isolated for immunophenotyping. The functional significance of Δ42PD-1 was explored by single-cell RNA sequencing analysis and validated by functional and mechanistic studies. The immunotherapeutic efficacy of Δ42PD-1 monoclonal antibody was determined in HCC humanised mouse models. RESULTS We found distinct T cell subsets, which did not express PD-1 but expressed its isoform Δ42PD-1, accounting for up to 71% of cytotoxic T lymphocytes in untreated HCC patients. Δ42PD-1+ T cells were tumour-infiltrating and correlated positively with HCC severity. Moreover, they were more exhausted than PD-1+ T cells by single T cell and functional analysis. HCC patients treated with anti-PD-1 ICB showed effective PD-1 blockade but increased frequencies of Δ42PD-1+ T cells over time especially in patients with progressive disease. Tumour-infiltrated Δ42PD-1+ T cells likely sustained HCC through toll-like receptors-4-signalling for tumourigenesis. Anti-Δ42PD-1 antibody, but not nivolumab, inhibited tumour growth in three murine HCC models. CONCLUSION Our findings not only revealed a mechanism underlying resistance to PD-1 ICB but also identified anti-Δ42PD-1 antibody for HCC immunotherapy.
Collapse
Affiliation(s)
- Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - Mei Sum Chiu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xinxiang Yang
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tan To Cheung
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Dongyan Zhou
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - Yuewen Wang
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi Wing Yan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Yi Kwan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xin Li
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jiye Zhu
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chung Mau Lo
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Stephen Lam Chan
- Department of Clinical Oncology and State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kwan Man
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| |
Collapse
|
14
|
Chasman DA, Welch Schwartz R, Vazquez J, Chavarria M, Jenkins ET, Lopez GE, Tyler CT, Stanic AK, Ong IM. Proteogenomic and V(D)J Analysis of Human Decidual T Cells Highlights Unique Transcriptional Programming and Clonal Distribution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:154-162. [PMID: 37195197 PMCID: PMC10330249 DOI: 10.4049/jimmunol.2200061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Immunological tolerance toward the semiallogeneic fetus is one of many maternal adaptations required for a successful pregnancy. T cells are major players of the adaptive immune system and balance tolerance and protection at the maternal-fetal interface; however, their repertoire and subset programming are still poorly understood. Using emerging single-cell RNA sequencing technologies, we simultaneously obtained transcript, limited protein, and receptor repertoire at the single-cell level, from decidual and matched maternal peripheral human T cells. The decidua maintains a tissue-specific distribution of T cell subsets compared with the periphery. We find that decidual T cells maintain a unique transcriptome programming, characterized by restraint of inflammatory pathways by overexpression of negative regulators (DUSP, TNFAIP3, ZFP36) and expression of PD-1, CTLA-4, TIGIT, and LAG3 in some CD8 clusters. Finally, analyzing TCR clonotypes demonstrated decreased diversity in specific decidual T cell populations. Overall, our data demonstrate the power of multiomics analysis in revealing regulation of fetal-maternal immune coexistence.
Collapse
Affiliation(s)
- Deborah A. Chasman
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jessica Vazquez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Eryne T. Jenkins
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Chanel T. Tyler
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Irene M. Ong
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
15
|
Evrard M, Becht E, Fonseca R, Obers A, Park SL, Ghabdan-Zanluqui N, Schroeder J, Christo SN, Schienstock D, Lai J, Burn TN, Clatch A, House IG, Beavis P, Kallies A, Ginhoux F, Mueller SN, Gottardo R, Newell EW, Mackay LK. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. Immunity 2023:S1074-7613(23)00262-5. [PMID: 37392736 DOI: 10.1016/j.immuni.2023.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| | - Etienne Becht
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Nagela Ghabdan-Zanluqui
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Junyun Lai
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Imran G House
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Paul Beavis
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Centre Hospitalier Universitaire du Vaud and University of Lausanne, Lausanne 1011, Switzerland
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| |
Collapse
|
16
|
Bonnett SA, Rosenbloom AB, Ong GT, Conner M, Rininger AB, Newhouse D, New F, Phan CQ, Ilcisin S, Sato H, Lyssand JS, Geiss G, Beechem JM. Ultra High-plex Spatial Proteogenomic Investigation of Giant Cell Glioblastoma Multiforme Immune Infiltrates Reveals Distinct Protein and RNA Expression Profiles. CANCER RESEARCH COMMUNICATIONS 2023; 3:763-779. [PMID: 37377888 PMCID: PMC10155752 DOI: 10.1158/2767-9764.crc-22-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
A deeper understanding of complex biological processes, including tumor development and immune response, requires ultra high-plex, spatial interrogation of multiple "omes". Here we present the development and implementation of a novel spatial proteogenomic (SPG) assay on the GeoMx Digital Spatial Profiler platform with next-generation sequencing readout that enables ultra high-plex digital quantitation of proteins (>100-plex) and RNA (whole transcriptome, >18,000-plex) from a single formalin-fixed paraffin-embedded (FFPE) sample. This study highlighted the high concordance, R > 0.85 and <15% change in sensitivity between the SPG assay and the single-analyte assays on various cell lines and tissues from human and mouse. Furthermore, we demonstrate that the SPG assay was reproducible across multiple users. When used in conjunction with advanced cellular neighborhood segmentation, distinct immune or tumor RNA and protein targets were spatially resolved within individual cell subpopulations in human colorectal cancer and non-small cell lung cancer. We used the SPG assay to interrogate 23 different glioblastoma multiforme (GBM) samples across four pathologies. The study revealed distinct clustering of both RNA and protein based on pathology and anatomic location. The in-depth investigation of giant cell glioblastoma multiforme (gcGBM) revealed distinct protein and RNA expression profiles compared with that of the more common GBM. More importantly, the use of spatial proteogenomics allowed simultaneous interrogation of critical protein posttranslational modifications alongside whole transcriptomic profiles within the same distinct cellular neighborhoods. Significance We describe ultra high-plex spatial proteogenomics; profiling whole transcriptome and high-plex proteomics on a single FFPE tissue section with spatial resolution. Investigation of gcGBM versus GBM revealed distinct protein and RNA expression profiles.
Collapse
Affiliation(s)
| | | | | | - Mark Conner
- NanoString Technologies, Seattle, Washington
| | | | | | - Felicia New
- NanoString Technologies, Seattle, Washington
| | - Chi Q. Phan
- NanoString Technologies, Seattle, Washington
| | | | - Hiromi Sato
- NanoString Technologies, Seattle, Washington
| | | | - Gary Geiss
- NanoString Technologies, Seattle, Washington
| | | |
Collapse
|
17
|
Bae H, Lee H, Ko EJ, Kim CD, Lee SH, Yang CW, Oh EJ, Chung BH. Discovery of cellular and genetic signatures of immune tolerance in kidney transplant recipients through single cell RNA sequencing analysis. HLA 2023. [PMID: 37038287 DOI: 10.1111/tan.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
The objective of this study was to uncover distinct cellular and genetic signatures of transplant operational tolerance (TOT) in kidney transplant recipients (KTRs) through single cell RNA sequencing (scRNA-seq) using peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from 12 KTRs, including those with TOT (TOT, n = 4), stable allograft function on maintenance immunosuppression (STA, n = 4) and biopsy-proven allograft rejection (BPAR, n = 4). ScRNA-seq of PBMCs was analyzed using 20 cell surface marker antibody sequencing to annotate clusters and 399 immune response panel to identify gene expression. Differences in cellular distribution and gene expression were compared among the three groups. Heatmap hierarchical clustering showed that overall cellular distribution pattern was distinct in TOT in comparison with those in the other two groups, with the proportion of B cells being higher in TOT, attributed to immature B cell fraction (TOT vs. STA vs. BPAR: 4.61% vs. 1.27% vs. 2.53%, p = 0.01). Transcript analysis of B cells revealed that genes involved in allo-immune pathway were downregulated in TOT. In T cell subset analysis, the proportion of naïve T cells and regulatory T cells (Tregs) was increased. In transcript analysis, genes associated with inflammation were decreased, while expression levels of CCR6 in Tregs were increased in TOT. Proportions of NKT and NK cells were increased in TOT than in the other two groups. This study showed that TOT has distinct cellular and genetic signatures such as increases of immature B cells, naïve T cells and Tregs and high expression levels of CCR6 in Tregs.
Collapse
Affiliation(s)
- Hyunjoo Bae
- Department of Biomedical Science, Graduated School, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanbi Lee
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gandong, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
18
|
Sheu KM, Guru AA, Hoffmann A. Quantifying stimulus-response specificity to probe the functional state of macrophages. Cell Syst 2023; 14:180-195.e5. [PMID: 36657439 PMCID: PMC10023480 DOI: 10.1016/j.cels.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Immune sentinel macrophages initiate responses to pathogens via hundreds of immune response genes. Each immune threat demands a tailored response, suggesting that the capacity for stimulus-specific gene expression is a key functional hallmark of healthy macrophages. To quantify this property, termed "stimulus-response specificity" (SRS), we developed a single-cell experimental workflow and analytical approaches based on information theory and machine learning. We found that the response specificity of macrophages is driven by combinations of specific immune genes that show low cell-to-cell heterogeneity and are targets of separate signaling pathways. The "response specificity profile," a systematic comparison of multiple stimulus-response distributions, was distinctly altered by polarizing cytokines, and it enabled an assessment of the functional state of macrophages. Indeed, the response specificity profile of peritoneal macrophages from old and obese mice showed characteristic differences, suggesting that SRS may be a basis for measuring the functional state of innate immune cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Aditya A Guru
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA.
| |
Collapse
|
19
|
Ma J, Song R, Liu C, Cao G, Zhang G, Wu Z, Zhang H, Sun R, Chen A, Wang Y, Yin S. Single-cell RNA-Seq analysis of diabetic wound macrophages in STZ-induced mice. J Cell Commun Signal 2023; 17:103-120. [PMID: 36445632 PMCID: PMC10030741 DOI: 10.1007/s12079-022-00707-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/15/2022] [Indexed: 12/03/2022] Open
Abstract
The crucial role of macrophages in the healing of chronic diabetic wounds is widely known, but previous in vitro classification and marker genes of macrophages may not be fully applicable to cells in the microenvironment of chronic wounds. The heterogeneity of macrophages was studied and classified at the single-cell level in a chronic wound model. We performed single-cell sequencing of CD45 + immune cells within the wound edge and obtained 17 clusters of cells, including 4 clusters of macrophages. One of these clusters is a previously undescribed population of macrophages possessing osteoclast gene expression, for which analysis of differential genes revealed possible functions. We also analysed the differences in gene expression between groups of macrophages in the control and diabetic wound groups at different sampling times. We described the differentiation profile of mononuclear macrophages, which has provided an important reference for the study of immune-related mechanisms in diabetic chronic wounds.
Collapse
Affiliation(s)
- Jiaxu Ma
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Ru Song
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Chunyan Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guoqi Cao
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guang Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Zhenjie Wu
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Huayu Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Rui Sun
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Aoyu Chen
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Yibing Wang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China.
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China.
| | - Siyuan Yin
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| |
Collapse
|
20
|
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood 2023; 141:345-355. [PMID: 35926108 PMCID: PMC10082362 DOI: 10.1182/blood.2021014670] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Andrew J. Gentles
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
21
|
Labuz DR, Lewis G, Fleming ID, Thompson CM, Zhai Y, Firpo MA, Leung DT. Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. eLife 2023; 12:82626. [PMID: 36790939 PMCID: PMC9931389 DOI: 10.7554/elife.82626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Collapse
Affiliation(s)
- Daniel R Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Giavonni Lewis
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Irma D Fleming
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Callie M Thompson
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Yan Zhai
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
22
|
Lukhele S, Rabbo DA, Guo M, Shen J, Elsaesser HJ, Quevedo R, Carew M, Gadalla R, Snell LM, Mahesh L, Ciudad MT, Snow BE, You-Ten A, Haight J, Wakeham A, Ohashi PS, Mak TW, Cui W, McGaha TL, Brooks DG. The transcription factor IRF2 drives interferon-mediated CD8 + T cell exhaustion to restrict anti-tumor immunity. Immunity 2022; 55:2369-2385.e10. [PMID: 36370712 PMCID: PMC9809269 DOI: 10.1016/j.immuni.2022.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.
Collapse
Affiliation(s)
- Sabelo Lukhele
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada.
| | - Diala Abd Rabbo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Mengdi Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Jian Shen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Rene Quevedo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Madeleine Carew
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Laura M Snell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawanya Mahesh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - M Teresa Ciudad
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Bryan E Snow
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Annick You-Ten
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Jillian Haight
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Tak W Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada.
| |
Collapse
|
23
|
Cervantes-Pérez SA, Thibivillliers S, Tennant S, Libault M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111486. [PMID: 36202294 DOI: 10.1016/j.plantsci.2022.111486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes. We will discuss the benefit and limitations of using plant protoplasts vs. nuclei to conduct single-cell RNA-seq experiments on various plant species and organs, the functional annotation of plant cell types based on their transcriptomic profile, the characterization of the dynamic regulation of the plant genes during cell development or in response to environmental stress, the need to characterize and integrate additional layers of -omics datasets to capture new molecular modalities at the single-cell level and reveal their causalities, the deposition and access to single-cell datasets, and the accessibility of this technology to plant scientists.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Sandra Thibivillliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA
| | - Sutton Tennant
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA.
| |
Collapse
|
24
|
Li Z, Chen X, Dan J, Hu T, Hu Y, Liu S, Chai Y, Shi Y, Wu J, Ni H, Zhu J, Wu Y, Li N, Yu Y, Wang Z, Zhao J, Zhong N, Ren X, Shen Z, Cao X. Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduct Target Ther 2022; 7:377. [PMID: 36379915 PMCID: PMC9666472 DOI: 10.1038/s41392-022-01237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1β-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1β-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1β, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1β responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1β- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.
Collapse
Affiliation(s)
- Zhiqing Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Xiaosu Chen
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Junyan Dan
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Tianju Hu
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Ye Hu
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuxun Liu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yangyang Chai
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yansong Shi
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jian Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Hailai Ni
- grid.411525.60000 0004 0369 1599The Health Care Department, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Jiaqi Zhu
- grid.411525.60000 0004 0369 1599Department of Cardiology, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Yanfeng Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Nan Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yizhi Yu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | | | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou, 510300 China
| | | | | | - Zhongyang Shen
- grid.216938.70000 0000 9878 7032Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192 China
| | - Xuetao Cao
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China ,grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| |
Collapse
|
25
|
Liu Z, Li H, Dang Q, Weng S, Duo M, Lv J, Han X. Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cell Mol Life Sci 2022; 79:577. [PMID: 36316529 PMCID: PMC11803023 DOI: 10.1007/s00018-022-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2022]
Abstract
Recently, immunotherapy has gained increasing popularity in oncology. Several immunotherapies obtained remarkable clinical effects, but the efficacy varied, and only subsets of cancer patients benefited. Breaking the constraints and improving immunotherapy efficacy is extremely important in precision medicine. Whereas traditional sequencing approaches mask the characteristics of individual cells, single-cell sequencing provides multiple dimensions of cellular characterization at the single-cell level, including genomic, transcriptomic, epigenomic, proteomic, and multi-omics. Hence, the complexity of the tumor microenvironment, the universality of tumor heterogeneity, cell composition and cell-cell interactions, cell lineage tracking, and tumor drug resistance mechanisms are revealed in-depth. However, the clinical transformation of single-cell technology is not to the point of in-depth study, especially in the application of immunotherapy. The newly discovered vital cells and tremendous biomarkers facilitate the development of more efficient individualized therapeutic regimens to guide clinical treatment and predict prognosis. This review provided an overview of the progress in distinct single-cell sequencing methods and emerging strategies. For perspective, the expanding utility of combining single-cell sequencing and other technologies was discussed.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Huanyun Li
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
26
|
Abstract
The immune system is highly complex and distributed throughout an organism, with hundreds to thousands of cell states existing in parallel with diverse molecular pathways interacting in a highly dynamic and coordinated fashion. Although the characterization of individual genes and molecules is of the utmost importance for understanding immune-system function, high-throughput, high-resolution omics technologies combined with sophisticated computational modeling and machine-learning approaches are creating opportunities to complement standard immunological methods with new insights into immune-system dynamics. Like systems immunology itself, immunology researchers must take advantage of these technologies and form their own diverse networks, connecting with researchers from other disciplines. This Review is an introduction and 'how-to guide' for immunologists with no particular experience in the field of omics but with the intention to learn about and apply these systems-level approaches, and for immunologists who want to make the most of interdisciplinary networks.
Collapse
|
27
|
Vallejo J, Saigusa R, Gulati R, Armstrong Suthahar SS, Suryawanshi V, Alimadadi A, Durant CP, Ghosheh Y, Roy P, Ehinger E, Pattarabanjird T, Hanna DB, Landay AL, Tracy RP, Lazar JM, Mack WJ, Weber KM, Adimora AA, Hodis HN, Tien PC, Ofotokun I, Heath SL, Shemesh A, McNamara CA, Lanier LL, Hedrick CC, Kaplan RC, Ley K. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol 2022; 20:193. [PMID: 36045343 PMCID: PMC9434837 DOI: 10.1186/s12915-022-01382-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.
Collapse
Affiliation(s)
- Jenifer Vallejo
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ryosuke Saigusa
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Ahmad Alimadadi
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Payel Roy
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Erik Ehinger
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tanyaporn Pattarabanjird
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Jason M Lazar
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wendy J Mack
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard N Hodis
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Igho Ofotokun
- Department of Medicine, Infectious Disease Division and Grady Health Care System, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avishai Shemesh
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Coleen A McNamara
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
28
|
Maltz E, Wollman R. Quantifying the phenotypic information in mRNA abundance. Mol Syst Biol 2022; 18:e11001. [PMID: 35965452 PMCID: PMC9376724 DOI: 10.15252/msb.202211001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Quantifying the dependency between mRNA abundance and downstream cellular phenotypes is a fundamental open problem in biology. Advances in multimodal single-cell measurement technologies provide an opportunity to apply new computational frameworks to dissect the contribution of individual genes and gene combinations to a given phenotype. Using an information theory approach, we analyzed multimodal data of the expression of 83 genes in the Ca2+ signaling network and the dynamic Ca2+ response in the same cell. We found that the overall expression levels of these 83 genes explain approximately 60% of Ca2+ signal entropy. The average contribution of each single gene was 17%, revealing a large degree of redundancy between genes. Using different heuristics, we estimated the dependency between the size of a gene set and its information content, revealing that on average, a set of 53 genes contains 54% of the information about Ca2+ signaling. Our results provide the first direct quantification of information content about complex cellular phenotype that exists in mRNA abundance measurements.
Collapse
Affiliation(s)
- Evan Maltz
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Institute of Quantitative and Computational BioscienceUCLALos AngelesCAUSA
| | - Roy Wollman
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Institute of Quantitative and Computational BioscienceUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| |
Collapse
|
29
|
Källberg J, Xiao W, Van Assche D, Baret JC, Taly V. Frontiers in single cell analysis: multimodal technologies and their clinical perspectives. LAB ON A CHIP 2022; 22:2403-2422. [PMID: 35703438 DOI: 10.1039/d2lc00220e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single cell multimodal analysis is at the frontier of single cell research: it defines the roles and functions of distinct cell types through simultaneous analysis to provide unprecedented insight into cellular processes. Current single cell approaches are rapidly moving toward multimodal characterizations. It replaces one-dimensional single cell analysis, for example by allowing for simultaneous measurement of transcription and post-transcriptional regulation, epigenetic modifications and/or surface protein expression. By providing deeper insights into single cell processes, multimodal single cell analyses paves the way to new understandings in various cellular processes such as cell fate decisions, physiological heterogeneity or genotype-phenotype linkages. At the forefront of this, microfluidics is key for high-throughput single cell analysis. Here, we present an overview of the recent multimodal microfluidic platforms having a potential in biomedical research, with a specific focus on their potential clinical applications.
Collapse
Affiliation(s)
- Julia Källberg
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| | - David Van Assche
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France.
| | - Jean-Christophe Baret
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France.
- Institut Universitaire de France, Paris 75005, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| |
Collapse
|
30
|
Luo Y, Xue Y, Lin Q, Tang G, Song H, Liu W, Mao L, Sun Z, Wang F. CD39 pathway inhibits Th1 cell function in tuberculosis. Immunology 2022; 166:522-538. [PMID: 35574713 PMCID: PMC9426615 DOI: 10.1111/imm.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022] Open
Abstract
The role of CD39 pathway in Th1 cell function in tuberculosis (TB) is rarely elucidated. The present study aims to investigate the modulating mechanism of CD39 pathway during Mycobacterium tuberculosis (MTB) infection. CD39 expression was examined on host immune cells among patients with TB. The relationship between CD39 expression and Th1 cell function was analysed. Patients with TB displayed dramatically higher CD39 expression on Th1 cells than healthy controls, and a significantly increased expression of surface markers, including activation, exhaustion and apoptosis markers, were noted in CD39+ Th1 cells in comparison with CD39− Th1 cells. Conversely, CD39 expression on Th1 cells was associated with diminished number of polyfunctional cells producing Th1‐type cytokines, and CD39+ Th1 cells showed obviously lower proliferation potential. Notably, tetramer analysis demonstrated a predominant CD39 expression on TB‐specific CD4+ cells, which was associated with higher apoptosis and lower cytokine‐producing ability. Transcriptome sequencing identified 27 genes that were differentially expressed between CD39+ and CD39− Th1 cells, such as IL32, DUSP4 and RGS1. Inhibition of CD39 pathway could enhance the activation, proliferation and cytokine‐producing ability of Th1 cells. Furthermore, there was a significantly negative correlation between CD39 expression on Th1 cells and nutritional status indicators such as lymphocyte count and albumin levels, and we observed a significant decline in CD39 expression on Th1 cells after anti‐TB treatment. CD39 is predominantly expressed on TB‐specific Th1 cells and correlated with their exhausted function, which suggests that CD39 could serve as a prominent target for TB therapy.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mair F, Erickson JR, Frutoso M, Konecny AJ, Greene E, Voillet V, Maurice NJ, Rongvaux A, Dixon D, Barber B, Gottardo R, Prlic M. Extricating human tumour immune alterations from tissue inflammation. Nature 2022; 605:728-735. [PMID: 35545675 PMCID: PMC9132772 DOI: 10.1038/s41586-022-04718-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.
Collapse
Affiliation(s)
- Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Jami R Erickson
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Marie Frutoso
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Andrew J Konecny
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan Greene
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Valentin Voillet
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town, South Africa
| | - Nicholas J Maurice
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Douglas Dixon
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA
- Department of Periodontics, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN, USA
| | - Brittany Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- University of Lausanne and Lausanne University Hospital, Switzerland, Lausanne, Switzerland
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
33
|
Toth A, Steinmeyer S, Kannan P, Gray J, Jackson CM, Mukherjee S, Demmert M, Sheak JR, Benson D, Kitzmiller J, Wayman JA, Presicce P, Cates C, Rubin R, Chetal K, Du Y, Miao Y, Gu M, Guo M, Kalinichenko VV, Kallapur SG, Miraldi ER, Xu Y, Swarr D, Lewkowich I, Salomonis N, Miller L, Sucre JS, Whitsett JA, Chougnet CA, Jobe AH, Deshmukh H, Zacharias WJ. Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates. Sci Transl Med 2022; 14:eabl8574. [PMID: 35353543 PMCID: PMC9082785 DOI: 10.1126/scitranslmed.abl8574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Shelby Steinmeyer
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jerilyn Gray
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester, Rochester, NY USA
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Martin Demmert
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Institute for Systemic Inflammation Research, University of Lϋbeck, Lϋbeck, Germany
| | - Joshua R. Sheak
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Daniel Benson
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph Kitzmiller
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph A. Wayman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Christopher Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rhea Rubin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yina Du
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yifei Miao
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mingxia Gu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Minzhe Guo
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Vladimir V. Kalinichenko
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Emily R. Miraldi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Yan Xu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lisa Miller
- California National Primate Research Center, University of California Davis, Davis, CA USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA USA
| | - Jennifer S. Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jeffrey A. Whitsett
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Alan H. Jobe
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Hitesh Deshmukh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - William J. Zacharias
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
34
|
Saigusa R, Durant CP, Suryawanshi V, Ley K. Single-Cell Antibody Sequencing in Atherosclerosis Research. Methods Mol Biol 2022; 2419:765-778. [PMID: 35238000 PMCID: PMC10155217 DOI: 10.1007/978-1-0716-1924-7_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptomic information obtained by single cell RNA sequencing (scRNA-seq) can be supplemented by information on the cell surface phenotype by using oligonucleotide-tagged monoclonal antibodies (scAb-Seq). This is of particular importance in immune cells, where the correlation between mRNA and cell surface expression is very weak. scAb-Seq is facilitated by the availability of commercial antibodies and antibody mixes. Now panels of up to 200 antibodies are available for human and mouse cells. Proteins are detected by antibodies conjugated to a tripartite DNA sequence that contains a primer for amplification and sequencing, a unique oligonucleotide that acts as an antibody barcode and a poly(dA) sequence, simultaneously detecting extension of antibody-specific DNA sequences and cDNAs in the same poly(dT)-primed reaction. For each cell, surface protein expression is captured and sequenced along with the cell's transcriptome. Here, we list the steps needed to produce antibody sequencing data from tissue or blood cells.
Collapse
Affiliation(s)
| | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
35
|
Cervantes-Gracia K, Chahwan R, Husi H. Integrative OMICS Data-Driven Procedure Using a Derivatized Meta-Analysis Approach. Front Genet 2022; 13:828786. [PMID: 35186042 PMCID: PMC8855827 DOI: 10.3389/fgene.2022.828786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
The wealth of high-throughput data has opened up new opportunities to analyze and describe biological processes at higher resolution, ultimately leading to a significant acceleration of scientific output using high-throughput data from the different omics layers and the generation of databases to store and report raw datasets. The great variability among the techniques and the heterogeneous methodologies used to produce this data have placed meta-analysis methods as one of the approaches of choice to correlate the resultant large-scale datasets from different research groups. Through multi-study meta-analyses, it is possible to generate results with greater statistical power compared to individual analyses. Gene signatures, biomarkers and pathways that provide new insights of a phenotype of interest have been identified by the analysis of large-scale datasets in several fields of science. However, despite all the efforts, a standardized regulation to report large-scale data and to identify the molecular targets and signaling networks is still lacking. Integrative analyses have also been introduced as complementation and augmentation for meta-analysis methodologies to generate novel hypotheses. Currently, there is no universal method established and the different methods available follow different purposes. Herein we describe a new unifying, scalable and straightforward methodology to meta-analyze different omics outputs, but also to integrate the significant outcomes into novel pathways describing biological processes of interest. The significance of using proper molecular identifiers is highlighted as well as the potential to further correlate molecules from different regulatory levels. To show the methodology’s potential, a set of transcriptomic datasets are meta-analyzed as an example.
Collapse
Affiliation(s)
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Richard Chahwan, ; Holger Husi,
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, United Kingdom
- *Correspondence: Richard Chahwan, ; Holger Husi,
| |
Collapse
|
36
|
Abstract
The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.
Collapse
|
37
|
Lee DP, Ray WJ, Mei TP, Hoon S, Scolnick J, Yeo GW. Antibody-Oligonucleotide Conjugation Using a SPAAC Copper-Free Method Compatible with 10× Genomics' Single-Cell RNA-Seq. Methods Mol Biol 2022; 2463:67-80. [PMID: 35344168 DOI: 10.1007/978-1-0716-2160-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in multimodal approaches toward single-cell analyses present valuable data points that can complement standard flow cytometry data. In particular, the overlay of cell-surface proteome data with gene expression analysis presents a necessary advancement, particularly in the field of immunology. Here we describe a copper-free click chemistry method for the generation of antibody-oligonucleotide complexes and present the steps for its employment in the context of the 10× genomics droplet-based single-cell RNA-seq workflow, providing a method for coupling proteomic and transcriptomic analyses in an efficient and cost-effect manner.
Collapse
Affiliation(s)
- Dominic Paul Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wang Jiehao Ray
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tan Pee Mei
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Jonathan Scolnick
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Abstract
Single-cell RNA sequencing (sc-RNAseq) has become a critical approach for the analysis of immune cell function and heterogeneity. So far, the immune cell isolation, based on surface marker expression predicted by the RNA expression profiles, is often limited by the poor correlation between transcript and protein expression patterns. To overcome these difficulties, novel single-cell multi-omic approaches based on the combined analysis of transcript and surface protein expression have been developed. One of the major benefits of these technologies is the possibility to use a high number of antibodies conjugated with oligonucleotide (AbOs) for the surface marker detection, thus overcoming the limit of using few surface markers as occurs in flow cytometry. Here we describe the BD Rhapsody single-cell analysis system protocol for 3' mRNA whole transcriptome analysis (WTA), combined with AbO- and Sample Tag library preparation.
Collapse
|
39
|
Rødahl I, Gotley J, Andersen SB, Yu M, Mehdi AM, Christ AN, Hamilton-Williams EE, Frazer IH, Lukowski SW, Chandra J. Acquisition of murine splenic myeloid cells for protein and gene expression profiling by advanced flow cytometry and CITE-seq. STAR Protoc 2021; 2:100842. [PMID: 34585169 PMCID: PMC8456112 DOI: 10.1016/j.xpro.2021.100842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we outline detailed protocols to isolate and profile murine splenic dendritic cells (DCs) through advanced flow cytometry of the myeloid compartment and single-cell transcriptomic profiling with integrated cell surface protein expression through CITE-seq. This protocol provides a general transferrable road map for different tissues and species. For complete details on the use and execution of this protocol, please refer to Lukowski et al. (2021). Protocol to obtain integrated single-cell gene and protein expression data Optimized flow cytometry panel for confident delineation of six main myeloid lineages Gating strategy identifies large cell state heterogeneity within each lineage
Collapse
Affiliation(s)
- Inga Rødahl
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.,The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - James Gotley
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Stacey B Andersen
- The Institute for Molecular Bioscience, The University of Queensland, Woolloongabba, QLD 4067, Australia
| | - Meihua Yu
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed M Mehdi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Angelika N Christ
- The Institute for Molecular Bioscience, The University of Queensland, Woolloongabba, QLD 4067, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Samuel W Lukowski
- The Institute for Molecular Bioscience, The University of Queensland, Woolloongabba, QLD 4067, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
40
|
Shi X, Baracho GV, Lomas WE, Widmann SJ, Tyznik AJ. Co-staining human PBMCs with fluorescent antibodies and antibody-oligonucleotide conjugates for cell sorting prior to single-cell CITE-Seq. STAR Protoc 2021; 2:100893. [PMID: 34712996 PMCID: PMC8529558 DOI: 10.1016/j.xpro.2021.100893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The dual interrogation of the transcriptome and proteome with single-cell resolution provides exquisite insights into immune mechanisms in health and disease. Here, we describe a cutting-edge protocol wherein we combine Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), a technique utilizing antibody-oligonucleotide conjugates (AOCs), with fluorescence-activated cell sorting to enrich rare cell populations. Our protocol incorporates co-staining of cells with both fluorescent antibodies and AOCs simultaneously for subsequent input into the cell sorting and CITE-Seq pipeline. For complete details on the use and execution of this protocol, please refer to Mair et al. (2020). Flow cytometry analysis to evaluate signals from cells at co-staining Step-by-step protocol for co-staining cells with fluorescent antibodies and AOCs Strategy to choose clones for the same protein marker with two antibodies
Collapse
Affiliation(s)
- Xiaoshan Shi
- BD Biosciences, 2350 Qume Drive, San Jose, CA 95131, USA
| | - Gisele V Baracho
- BD Biosciences, 11077 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Aaron J Tyznik
- BD Biosciences, 11077 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Charitidis FT, Adabi E, Thalheimer FB, Clarke C, Buchholz CJ. Monitoring CAR T cell generation with a CD8-targeted lentiviral vector by single-cell transcriptomics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:359-369. [PMID: 34729382 PMCID: PMC8546366 DOI: 10.1016/j.omtm.2021.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/03/2022]
Abstract
Quantifying gene expression in individual cells can substantially improve our understanding about complex genetically engineered cell products such as chimeric antigen receptor (CAR) T cells. Here we designed a single-cell RNA sequencing (scRNA-seq) approach to monitor the delivery of a CD19-CAR gene via lentiviral vectors (LVs), i.e., the conventional vesicular stomatitis virus (VSV)-LV and the CD8-targeted CD8-LV. LV-exposed human donor peripheral blood mononuclear cells (PBMCs) were evaluated for a panel of 400 immune response-related genes including LV-specific probes. The resulting data revealed a trimodal expression for the CAR and CD8A, demanding a careful distribution-based identification of CAR T cells and CD8+ lymphocytes in scRNA-seq analysis. The fraction of T cells expressing high CAR levels was in concordance with flow cytometry results. More than 97% of the cells hit by CD8-LV expressed the CD8A gene. Remarkably, the majority of the potential off-target cells were in fact on-target cells, resulting in a target cell selectivity of more than 99%. Beyond that, differential gene expression analysis revealed the upregulation of restriction factors in CAR-negative cells, thus explaining their protection from CAR gene transfer. In summary, we provide a workflow and subsetting approach for scRNA-seq enabling reliable distinction between transduced and untransduced cells during CAR T cell generation.
Collapse
Affiliation(s)
- Filippos T Charitidis
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, A94 X099 Co. Dublin, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany.,Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| |
Collapse
|
42
|
Ma KY, Schonnesen AA, He C, Xia AY, Sun E, Chen E, Sebastian KR, Guo YW, Balderas R, Kulkarni-Date M, Jiang N. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8 + T cells. Nat Immunol 2021; 22:1590-1598. [PMID: 34811538 PMCID: PMC9184244 DOI: 10.1038/s41590-021-01073-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Although critical to T cell function, antigen specificity is often omitted in high-throughput multiomics-based T cell profiling due to technical challenges. We describe a high-dimensional, tetramer-associated T cell antigen receptor (TCR) sequencing (TetTCR-SeqHD) method to simultaneously profile cognate antigen specificities, TCR sequences, targeted gene expression and surface-protein expression from tens of thousands of single cells. Using human polyclonal CD8+ T cells with known antigen specificity and TCR sequences, we demonstrate over 98% precision for detecting the correct antigen specificity. We also evaluate gene expression and phenotypic differences among antigen-specific CD8+ T cells and characterize phenotype signatures of influenza- and Epstein-Barr virus-specific CD8+ T cells that are unique to their pathogen targets. Moreover, with the high-throughput capacity of profiling hundreds of antigens simultaneously, we apply TetTCR-SeqHD to identify antigens that preferentially enrich cognate CD8+ T cells in patients with type 1 diabetes compared to healthy controls and discover a TCR that cross-reacts with diabetes-related and microbiome antigens. TetTCR-SeqHD is a powerful approach for profiling T cell responses in humans and mice.
Collapse
MESH Headings
- Antigens/immunology
- Antigens/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Autoantigens/immunology
- Autoantigens/metabolism
- Autoimmunity
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Case-Control Studies
- Cell Separation
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/pathogenicity
- High-Throughput Nucleotide Sequencing
- Humans
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis
Collapse
Affiliation(s)
- Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra A Schonnesen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chenfeng He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amanda Y Xia
- Department of Molecular Biosciences, The University of Texas atAustin, Austin, TX, USA
| | - Eric Sun
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eunise Chen
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Katherine R Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Wan Guo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mrinalini Kulkarni-Date
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Application of Domain- and Genotype-Specific Models to Infer Post-Transcriptional Regulation of Segmentation Gene Expression in Drosophila. Life (Basel) 2021; 11:life11111232. [PMID: 34833107 PMCID: PMC8618293 DOI: 10.3390/life11111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early Drosophila embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of Drosophila hb, gt, and eve genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For hb expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in hb anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and Kr mutants are genotype-specific. The spatial discrepancy between gt mRNA and protein posterior expression in Kr mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of eve expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Correspondence:
| |
Collapse
|
44
|
Wang VE, Blaser BW, Patel RK, Behbehani GK, Rao AA, Durbin-Johnson B, Jiang T, Logan AC, Settles M, Mannis GN, Olin R, Damon LE, Martin TG, Sayre PH, Gaensler KM, McMahon E, Flanders M, Weinberg V, Ye CJ, Carbone DP, Munster PN, Fragiadakis GK, McCormick F, Andreadis C. Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis. Blood Cancer Discov 2021; 2:434-449. [PMID: 34514432 DOI: 10.1158/2643-3230.bcd-21-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia patients refractory to induction therapy or relapsed within one year have poor outcomes. Autocrine production of hepatocyte growth factor by myeloid blasts drives leukemogenesis in pre-clinical models. A phase Ib trial evaluated ficlatuzumab, a first-in-class anti-HGF antibody, in combination with cytarabine in this high-risk population. Dose-limiting toxicities were not observed, and 20 mg/kg was established as the recommended phase II dose. The most frequent treatment-related adverse event was febrile neutropenia. Among 17 evaluable patients, the overall response rate was 53%, all complete remissions. Phospho-proteomic mass cytometry showed potent on-target suppression of p-MET after ficlatuzumab treatment and that attenuation of p-S6 was associated with clinical response. Multiplexed single cell RNA sequencing using prospectively acquired patient specimens identified interferon response genes as adverse predictive factors. The ficlatuzumab and cytarabine combination is well-tolerated with favorable efficacy. High-dimensional analyses at single-cell resolution represent promising approaches for identifying biomarkers of response and mechanisms of resistance in prospective clinical studies.
Collapse
Affiliation(s)
- Victoria E Wang
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Bradley W Blaser
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ravi K Patel
- CoLabs, University of California, San Francisco, CA 94143, USA
| | - Gregory K Behbehani
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Arjun A Rao
- CoLabs, University of California, San Francisco, CA 94143, USA
| | | | - Tommy Jiang
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Aaron C Logan
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Matthew Settles
- Bioinformatics Core, Genome Center, University of California, Davis, CA 95616, USA
| | - Gabriel N Mannis
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Rebecca Olin
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Lloyd E Damon
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Thomas G Martin
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Peter H Sayre
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Karin M Gaensler
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Emma McMahon
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Michael Flanders
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Vivian Weinberg
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Chun J Ye
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pamela N Munster
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San Francisco, CA 94143, USA.,Bakar ImmunoX Initiative, University of California, San Francisco, CA 94143, USA.,Department of Medicine, Division of Rheumatology, University of California, San Francisco, CA 94143, USA
| | - Frank McCormick
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Charalambos Andreadis
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
45
|
Blériot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S, Ficht X, De Simone G, Andreata F, Fumagalli V, Guo W, Wan G, Gessain G, Khalilnezhad A, Zhang XM, Ang N, Chen P, Morgantini C, Azzimato V, Kong WT, Liu Z, Pai R, Lum J, Shihui F, Low I, Xu C, Malleret B, Kairi MFM, Balachander A, Cexus O, Larbi A, Lee B, Newell EW, Ng LG, Phoo WW, Sobota RM, Sharma A, Howland SW, Chen J, Bajenoff M, Yvan-Charvet L, Venteclef N, Iannacone M, Aouadi M, Ginhoux F. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 2021; 54:2101-2116.e6. [PMID: 34469775 DOI: 10.1016/j.immuni.2021.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.
Collapse
Affiliation(s)
- Camille Blériot
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Inserm U1015, Gustave Roussy, Villejuif 94800, France.
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | | | | | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giorgia De Simone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Wei Guo
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guochen Wan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Gregoire Gessain
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Cecilia Morgantini
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rhea Pai
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Connie Xu
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Muhammad Faris Mohd Kairi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Olivier Cexus
- Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ankur Sharma
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | | | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, IMMEDIAB Laboratory, Paris 75006, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
46
|
Corselli M, Saksena S, Nakamoto M, Lomas WE, Taylor I, Chattopadhyay PK. Single cell multiomic analysis of T cell exhaustion in vitro. Cytometry A 2021; 101:27-44. [PMID: 34390166 PMCID: PMC9293072 DOI: 10.1002/cyto.a.24496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
T-cell activation is a key step in the amplification of an immune response. Over the course of an immune response, cells may be chronically stimulated, with some proportion becoming exhausted; an enormous number of molecules are involved in this process. There remain a number of questions about the process, namely: 1) what degree of heterogeneity and plasticity do T-cells exhibit during stimulation? 2) how many unique cell states define chronic stimulation? and 3) what markers discriminate activated from exhausted cells? We addressed these questions by performing single-cell multiomic analysis to simultaneously measure expression of 38 proteins and 399 genes in human T cells expanded in vitro. This approach allowed us to study - with unprecedented depth - how T cells change over the course of chronic stimulation. Comprehensive immunophenotypic and transcriptomic analysis at day 0 enabled a refined characterization of T-cell maturational states and the identification of a donor-specific subset of terminally differentiated T-cells that would have been otherwise overlooked using canonical cell classification schema. As expected, activation downregulated naïve-cell markers and upregulated effector molecules, proliferation regulators, co-inhibitory and co-stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins and genes identifying unique states of activation, defined by markers temporarily expressed upon 3 days of stimulation (PD-1, CD69, LTA), markers constitutively expressed throughout chronic activation (CD25, GITR, LGALS1), and markers uniquely up-regulated upon 14 days of stimulation (CD39, ENTPD1, TNFDF10); expression of these markers could be associated with the emergence of short-lived cell types. Notably, different ratios of cells expressing activation or exhaustion markers were measured at each time point. These data reveal the high heterogeneity and plasticity of chronically stimulated T cells. Our study demonstrates the power of a single-cell multiomic approach to comprehensively characterize T-cells and to precisely monitor changes in differentiation, activation, and exhaustion signatures during cell stimulation.
Collapse
Affiliation(s)
| | | | | | | | - Ian Taylor
- BD Biosciences, San Jose, California, USA
| | - Pratip K Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
47
|
Su FY, Mac QD, Sivakumar A, Kwong GA. Interfacing Biomaterials with Synthetic T Cell Immunity. Adv Healthc Mater 2021; 10:e2100157. [PMID: 33887123 PMCID: PMC8349871 DOI: 10.1002/adhm.202100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Indexed: 12/14/2022]
Abstract
The clinical success of cancer immunotherapy is providing exciting opportunities for the development of new methods to detect and treat cancer more effectively. A new generation of biomaterials is being developed to interface with molecular and cellular features of immunity and ultimately shape or control anti-tumor responses. Recent advances that are supporting the advancement of engineered T cells are focused here. This class of cancer therapy has the potential to cure disease in subsets of patients, yet there remain challenges such as the need to improve response rates and safety while lowering costs to expand their use. To provide a focused overview, recent strategies in three areas of biomaterials research are highlighted: low-cost cell manufacturing to broaden patient access, noninvasive diagnostics for predictive monitoring of immune responses, and strategies for in vivo control that enhance anti-tumor immunity. These research efforts shed light on some of the challenges associated with T cell immunotherapy and how engineered biomaterials that interface with synthetic immunity are gaining traction to solve these challenges.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Quoc D Mac
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Anirudh Sivakumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute of Bioengineering and Bioscience, Integrated Cancer Research Center, Georgia Immunoengineering Consortium, Winship Cancer Institute, Emory University, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, Chen Y, Ehrlich AM, Bernhardsson AK, Mugabo CH, Ambrosiani Y, Gustafsson A, Chew S, Brown HK, Prambs J, Bohlin K, Mitchell RD, Underwood MA, Smilowitz JT, German JB, Frese SA, Brodin P. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021; 184:3884-3898.e11. [PMID: 34143954 DOI: 10.1016/j.cell.2021.05.030] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon β (IFNβ) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.
Collapse
Affiliation(s)
- Bethany M Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA.
| | - Lucie Rodriguez
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ewa Henckel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Aron Arzoomand
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Axel Olin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | | | - Anna Karin Bernhardsson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Constantin Habimana Mugabo
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ylva Ambrosiani
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | | | | | - Kajsa Bohlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | - Mark A Underwood
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Pediatrics, University of California Davis Children's Hospital, Sacramento, CA 95817, USA
| | - Jennifer T Smilowitz
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA; Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Pediatric Rheumatology, Karolinska University Hospital, 17176 Solna, Sweden.
| |
Collapse
|
49
|
Zheng M. Cellular Tropism of SARS-CoV-2 across Human Tissues and Age-related Expression of ACE2 and TMPRSS2 in Immune-inflammatory Stromal Cells. Aging Dis 2021; 12:718-725. [PMID: 34094637 PMCID: PMC8139212 DOI: 10.14336/ad.2021.0429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Recently, emerging evidence has indicated that COVID-19 represents a major threat to older populations, but the underlying mechanisms remain unclear. The pathogen causing COVID-19 is acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection depends on the key entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Recognizing the importance of ACE2 and TMPRSS2 for the cellular tropism of SARS-CoV-2, we analyzed and presented the landscape of cell-type identities for ACE2+ TMPRSS2+ cells across different human tissues and the age-related alterations in ACE2 and TMPRSS2 expression across different cell types. Additionally, most of the post-acute COVID-19 sequelae could attribute to the ACE2-expressing organ systems. Therefore, these SARS-CoV-2 tropism data should be an essential resource for guiding clinical treatment and pathological studies, which should draw attention toward the prioritization of COVID-19 research in the future. Notably, we discovered the age-related expression of ACE2 and TMPRSS2 in the immune-inflammatory stromal cells, implying the potential interplay between COVID-19, stromal cells, and aging. In this study, we developed a novel and practical analysis framework for mapping the cellular tropism of SARS-CoV-2. This approach was built to aid the identification of viral-specific cell types and age-related alterations of viral tropism, highlighting the power of single-cell RNA sequencing (scRNA-seq) to address viral pathogenesis systematically. With the rapid accumulation of scRNA-seq data and the continuously increasing insight into viral entry factors, we anticipate that this scRNA-seq-based approach will attract broader interest in the virus research communities.
Collapse
Affiliation(s)
- Ming Zheng
- 1Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,2Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, China
| |
Collapse
|
50
|
Buus TB, Herrera A, Ivanova E, Mimitou E, Cheng A, Herati RS, Papagiannakopoulos T, Smibert P, Odum N, Koralov SB. Improving oligo-conjugated antibody signal in multimodal single-cell analysis. eLife 2021; 10:e61973. [PMID: 33861199 PMCID: PMC8051954 DOI: 10.7554/elife.61973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simultaneous measurement of surface proteins and gene expression within single cells using oligo-conjugated antibodies offers high-resolution snapshots of complex cell populations. Signal from oligo-conjugated antibodies is quantified by high-throughput sequencing and is highly scalable and sensitive. We investigated the response of oligo-conjugated antibodies towards four variables: concentration, staining volume, cell number at staining, and tissue. We find that staining with recommended antibody concentrations causes unnecessarily high background and amount of antibody used can be drastically reduced without loss of biological information. Reducing staining volume only affects antibodies targeting abundant epitopes used at low concentrations and is counteracted by reducing cell numbers. Adjusting concentrations increases signal, lowers background, and reduces costs. Background signal can account for a major fraction of total sequencing and is primarily derived from antibodies used at high concentrations. This study provides new insight into titration response and background of oligo-conjugated antibodies and offers concrete guidelines to improve such panels.
Collapse
Affiliation(s)
- Terkild B Buus
- Department of Pathology, New York University School of MedicineNew YorkUnited States
- LEO Foundation Skin Immunology Research Center, University of CopenhagenCopenhagenDenmark
- Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
| | - Alberto Herrera
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ellie Ivanova
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Eleni Mimitou
- Technology Innovation Lab, New York Genome CenterNew YorkUnited States
| | - Anthony Cheng
- Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of MassachusettsAmherstUnited States
| | - Ramin S Herati
- NYU Langone Vaccine Center, Department of Medicine, New York University School of MedicineNew YorkUnited States
| | | | - Peter Smibert
- Technology Innovation Lab, New York Genome CenterNew YorkUnited States
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, University of CopenhagenCopenhagenDenmark
- Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
| | - Sergei B Koralov
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|