1
|
Kim B, Kim HA, Woo J, Lee HJ, Kim TK, Min H, Lee CJ, Im HI. Striatal Cholinergic Interneurons Control Physical Nicotine Withdrawal via Muscarinic Receptor Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402274. [PMID: 39491887 DOI: 10.1002/advs.202402274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/26/2024] [Indexed: 11/05/2024]
Abstract
Striatal cholinergic interneurons (ChIs) provide acetylcholine tone to the striatum and govern motor functions. Nicotine withdrawal elicits physical symptoms that dysregulate motor behavior. Here, the role of striatal ChIs in physical nicotine withdrawal is investigated. Mice under RNAi-dependent genetic inhibition of striatal ChIs (ChIGI) by suppressing the sodium channel subunit NaV1.1, lessening action potential generation and activity-dependent acetylcholine release is first generated. ChIGI markedly reduced the somatic signs of nicotine withdrawal without affecting other nicotine-dependent or striatum-associated behaviors. Multielectrode array (MEA) recording revealed that ChIGI reversed ex vivo nicotine-induced alterations in the number of neural population spikes in the dorsal striatum. Notably, the drug repurposing strategy revealed that a clinically-approved antimuscarinic drug, procyclidine, fully mimicked the therapeutic electrophysiological effects of ChIGI. Furthermore, both ChIGI and procyclidine prevented the nicotine withdrawal-induced reduction in striatal dopamine release in vivo. Lastly, therapeutic intervention with procyclidine dose-dependently diminished the physical signs of nicotine withdrawal. The data demonstrated that the striatal ChIs are a critical substrate of physical nicotine withdrawal and that muscarinic antagonism holds therapeutic potential against nicotine withdrawal.
Collapse
Affiliation(s)
- Baeksun Kim
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Han Ah Kim
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Junsung Woo
- Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul, 02792, Republic of Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, KIST, Seoul, 02792, Republic of Korea
| | - Tae Kyoo Kim
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hophil Min
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Doping Control Center, KIST, Seoul, 02792, Republic of Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul, 02792, Republic of Korea
| | - Heh-In Im
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Scarduzio M, Eskow Jaunarajs KL, Standaert DG. Striatal cholinergic transmission in an inducible transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia. Neurobiol Dis 2024; 201:106685. [PMID: 39343248 DOI: 10.1016/j.nbd.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Altered interaction between striatonigral dopaminergic (DA) inputs and local acetylcholine (ACh) in striatum has long been hypothesized to play a central role in the pathophysiology of dystonia and dyskinesia. Indeed, previous research using several genetic mouse models of human isolated dystonia identified a shared endophenotype with paradoxical excitation of striatal cholinergic interneuron (ChIs) activity in response to activation of dopamine D2 receptors (D2R). These mouse models lack a dystonic motor phenotype, which leaves a critical gap in comprehending the role of DA and ACh transmission in the manifestations of dystonia. To tackle this question, we used a combination of ex vivo slice physiology and in vivo monitoring of striatal ACh dynamics in the inducible, phenotypically penetrant, transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia (PNKD), an animal with both dystonic and dyskinetic features. We found that, similarly to genetic models of isolated dystonia, the PNKD mouse displays D2R-induced paradoxical excitation of ChI firing in ex vivo striatal brain slices. In vivo, caffeine triggers dystonic symptoms while reversing the D2R-mediated excitation of ChIs and desynchronizing ACh release in PNKD mice. In WT littermate controls, caffeine stimulates spontaneous locomotion through a similar but reversed mechanism involving an excitatory switch of the D2R control of ChI activity, associated with enhanced synchronization of ACh release. These observations suggest that the "paradoxical excitation" of cholinergic interneurons described in isolated dystonia models could represent a compensatory or protective mechanism that prevents manifestation of movement abnormalities and that phenotypic dystonia is possible only when this is absent. These findings also suggest that D2Rs may play an important role in synchronizing the ChI network leading to rhythmic ACh release during heightened movement states. Dysfunction of this interaction and corresponding desynchrony of ACh release may contribute to aberrant movements.
Collapse
Affiliation(s)
- Mariangela Scarduzio
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA.
| | - Karen L Eskow Jaunarajs
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA
| |
Collapse
|
3
|
Zhao J, Longo N, Lewis RG, Nicholas TJ, Boyden SE, Andrews A, Larson A, Bayrak-Toydemir P, Botto LD, Mao R. Novel molecular mechanism in Malan syndrome uncovered through genome sequencing reanalysis, exon-level Array, and RNA sequencing. Am J Med Genet A 2024; 194:e63516. [PMID: 38168088 PMCID: PMC11003828 DOI: 10.1002/ajmg.a.63516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert G Lewis
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Thomas J Nicholas
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Steven E Boyden
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Ashley Andrews
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Arai M, Suzuki E, Kitamura S, Otaki M, Kanai K, Yamasaki M, Watanabe M, Kambe Y, Murata K, Takada Y, Arisawa T, Kobayashi K, Tajika R, Miyazaki T, Yamaguchi M, Lazarus M, Hayashi Y, Itohara S, de Kerchove d'Exaerde A, Nawa H, Kim R, Bito H, Momiyama T, Masukawa D, Goshima Y. Enhancement of Haloperidol-Induced Catalepsy by GPR143, an L-Dopa Receptor, in Striatal Cholinergic Interneurons. J Neurosci 2024; 44:e1504232024. [PMID: 38286627 PMCID: PMC10941237 DOI: 10.1523/jneurosci.1504-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.
Collapse
Affiliation(s)
- Masami Arai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Satoshi Kitamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Momoyo Otaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-0075, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui 910-0017, Japan
| | - Yuuki Takada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Radioisotope Research Center, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Rei Tajika
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Michael Lazarus
- Institute of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | | | - Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University. Wakayama-city, Wakayama 640-8156, Japan
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
5
|
Zhang Y, Ben Nathan J, Moreno A, Merkel R, Kahng MW, Hayes MR, Reiner BC, Crist RC, Schmidt HD. Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats. Neuropsychopharmacology 2023; 48:1878-1888. [PMID: 37355732 PMCID: PMC10584857 DOI: 10.1038/s41386-023-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ben Nathan
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda Moreno
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle W Kahng
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
7
|
Hetzler B, Donthamsetti P, Peitsinis Z, Stanley C, Trauner D, Isacoff EY. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. J Am Chem Soc 2023; 145:18778-18788. [PMID: 37586061 PMCID: PMC10472511 DOI: 10.1021/jacs.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.
Collapse
Affiliation(s)
- Belinda
E. Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant Donthamsetti
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zisis Peitsinis
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Cherise Stanley
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry and Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ehud Y. Isacoff
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Chancey JH, Kellendonk C, Javitch JA, Lovinger DM. Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554807. [PMID: 37693570 PMCID: PMC10491092 DOI: 10.1101/2023.08.28.554807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| | - Christoph Kellendonk
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| |
Collapse
|
9
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534429. [PMID: 37034819 PMCID: PMC10081263 DOI: 10.1101/2023.03.27.534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rationale Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| |
Collapse
|
10
|
Pardo M, Gregorio S, Montalban E, Pujadas L, Elias-Tersa A, Masachs N, Vílchez-Acosta A, Parent A, Auladell C, Girault JA, Vila M, Nairn AC, Manso Y, Soriano E. Adult-specific Reelin expression alters striatal neuronal organization: implications for neuropsychiatric disorders. Front Cell Neurosci 2023; 17:1143319. [PMID: 37153634 PMCID: PMC10157100 DOI: 10.3389/fncel.2023.1143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
In addition to neuronal migration, brain development, and adult plasticity, the extracellular matrix protein Reelin has been extensively implicated in human psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features reminiscent of these disorders, while overexpression of Reelin protects against its manifestation. However, how Reelin influences the structure and circuits of the striatal complex, a key region for the above-mentioned disorders, is far from being understood, especially when altered Reelin expression levels are found at adult stages. In the present study, we took advantage of complementary conditional gain- and loss-of-function mouse models to investigate how Reelin levels may modify adult brain striatal structure and neuronal composition. Using immunohistochemical techniques, we determined that Reelin does not seem to influence the striatal patch and matrix organization (studied by μ-opioid receptor immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied with DARPP-32). We show that overexpression of Reelin leads to increased numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight increase in tyrosine hydroxylase-positive projections. We conclude that increased Reelin levels might modulate the numbers of striatal interneurons and the density of the nigrostriatal dopaminergic projections, suggesting that these changes may be involved in the protection of Reelin against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mònica Pardo
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Gregorio
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrica Montalban
- Institut du Fer à Moulin UMR-S 1270, INSERM, Sorbonne University, Paris, France
| | - Lluís Pujadas
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Experimental Sciences and Methodology, Faculty of Health Science and Welfare, University of Vic – Central University of Catalonia (UVic-UCC), Vic, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Barcelona, Spain
| | - Alba Elias-Tersa
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Masachs
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Vílchez-Acosta
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Carme Auladell
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Vila
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yasmina Manso
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Yasmina Manso,
| | - Eduardo Soriano
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Eduardo Soriano,
| |
Collapse
|
11
|
Florio E, Serra M, Lewis RG, Kramár E, Freidberg M, Wood M, Morelli M, Borrelli E. D2R signaling in striatal spiny neurons modulates L-DOPA induced dyskinesia. iScience 2022; 25:105263. [PMID: 36274959 PMCID: PMC9579025 DOI: 10.1016/j.isci.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Degeneration of dopaminergic neurons leads to Parkinson's disease (PD), characterized by reduced levels of striatal dopamine (DA) and impaired voluntary movements. DA replacement is achieved by levodopa treatment which in long-term causes involuntary movements or dyskinesia. Dyskinesia is linked to the pulsatile activation of D1 receptors of the striatal medium spiny neurons (MSNs) forming the direct output pathway (dMSNs). The contribution of DA stimulation of D2R in MSNs of the indirect pathway (iMSNs) is less clear. Using the 6-hydroxydopamine model of PD, here we show that loss of DA-mediated inhibition of these neurons intensifies levodopa-induced dyskinesia (LID) leading to reprogramming of striatal gene expression. We propose that the motor impairments characteristic of PD and of its therapy are critically dependent on D2R-mediated iMSNs activity. D2R signaling not only filters inputs to the striatum but also indirectly regulates dMSNs mediated responses.
Collapse
Affiliation(s)
- Ermanno Florio
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Robert G. Lewis
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Michael Freidberg
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697, USA
| | - Marcello Wood
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Emiliana Borrelli
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
13
|
Fleming W, Lee J, Briones BA, Bolkan SS, Witten IB. Cholinergic interneurons mediate cocaine extinction in male mice through plasticity across medium spiny neuron subtypes. Cell Rep 2022; 39:110874. [PMID: 35649378 PMCID: PMC9196889 DOI: 10.1016/j.celrep.2022.110874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) have been implicated in the extinction of drug associations, as well as related plasticity in medium spiny neurons (MSNs). However, since most previous work relied on artificial manipulations, whether endogenous acetylcholine signaling relates to drug associations is unclear. Moreover, despite great interest in the opposing effects of dopamine on MSN subtypes, whether ChIN-mediated effects vary by MSN subtype is also unclear. Here, we find that high endogenous acetylcholine event frequency correlates with greater extinction of cocaine-context associations across male mice. Additionally, extinction is associated with a weakening of glutamatergic synapses across MSN subtypes. Manipulating ChIN activity bidirectionally controls both the rate of extinction and the associated plasticity at MSNs. Our findings indicate that NAc ChINs mediate drug-context extinction by reducing glutamatergic synaptic strength across MSN subtypes, and that natural variation in acetylcholine signaling may contribute to individual differences in extinction.
Collapse
Affiliation(s)
- Weston Fleming
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Brandy A Briones
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Del Rey NLG, Trigo-Damas I, Obeso JA, Cavada C, Blesa J. Neuron types in the primate striatum: stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys. Neuropathol Appl Neurobiol 2022; 48:e12812. [PMID: 35274336 DOI: 10.1111/nan.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
AIMS The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. METHODS Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. RESULTS In control monkeys, the projection neurons, which express the Dopamine-and-cAMP-Regulated-Phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing Calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18 %; 2.6%), Dinucleotide Phosphate-Diaphorase (NADPH+: ~13 %; 1.8%), Choline Acetyltransferase (ChAT+: ~11%; 1.5%) and Tyrosine Hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. CONCLUSIONS These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implications.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain.,PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - J A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Carmen Cavada
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, School of Medicine, Autónoma de Madrid University, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Lin L, Lan Y, Zhu H, Yu L, Wu S, Wan W, Shu Y, Xiang H, Hou T, Zhang H, Ma Y, Su W, Li M. Effects of Chemogenetic Inhibition of D1 or D2 Receptor-Containing Neurons of the Substantia Nigra and Striatum in Mice With Tourette Syndrome. Front Mol Neurosci 2021; 14:779436. [PMID: 34955745 PMCID: PMC8696039 DOI: 10.3389/fnmol.2021.779436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
As tourette syndrome (TS) is a common neurobehavioral disorder, the primary symptoms of which include behavioral stereotypies. Dysfunction of the substantia nigra-striatum network could be the main pathogenesis of TS, which is closely associated with dopamine (DA) and its receptors. TS is often resistant to conventional treatments. Therefore, it is necessary to investigate the neurobiological mechanisms underlying its pathogenesis. In this study, we investigated whether chemogenetic activation or inhibition of dopaminergic D1 receptor (D1R)- or D2 receptor (D2R)-containing neurons in the substantia nigra pars compacta (SNpc) or dorsal striatum (dSTR) affected the stereotyped behavior and motor functions of TS mice. Intraperitoneal injection of 3,3'-iminodipropionitrile (IDPN) was used to induce TS in mice. Stereotyped behavior test and open-field, rotarod, and grip strength tests were performed to evaluate stereotyped behavior and motor functions, respectively. Immunofluorescence labeling was used to detect the co-labeling of virus fluorescence and D1R or D2R. We found that chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies and motor functions in TS mice. Chemogenetic activation of D1R-containing neurons in the dSTR aggravated behavioral stereotypies and motor functions in vehicle-treated mice, but neither was aggravated in TS mice. In conclusion, chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies of TS, providing a new treatment target for TS. Moreover, the activation of D1R-containing neurons in the dSTR may contribute to the pathogenesis of TS, which can be chosen as a more precise target for treatment.
Collapse
Affiliation(s)
- Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan, China
| | - Yuye Lan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Institute of Clinical Medicine, Zhanjiang Central People's Hospital, Zhanjiang, China
| | - Lingling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyixuan Wan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongchun Xiang
- Department of Acupuncture and Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan, China
| | - Wen Su
- Department of Pediatrics, Wuhan No.1 Hospital, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Lewis RG, Florio E, Punzo D, Borrelli E. The Brain's Reward System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:57-69. [PMID: 34773226 DOI: 10.1007/978-3-030-81147-1_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.
Collapse
Affiliation(s)
- Robert G Lewis
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Ermanno Florio
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Daniela Punzo
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Emiliana Borrelli
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA. .,University of California - Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
Gong S, Fayette N, Heinsbroek JA, Ford CP. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron 2021; 109:3421-3435.e5. [PMID: 34506723 PMCID: PMC8571051 DOI: 10.1016/j.neuron.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a chronic, relapsing disorder characterized by maladaptation in the brain mesolimbic and nigrostriatal dopamine system. Although changes in the properties of D2-receptor-expressing medium spiny neurons (D2-MSNs) and connected striatal circuits following cocaine treatment are known, the contributions of altered D2-receptor (D2R) function in mediating the rewarding properties of cocaine remain unclear. Here, we describe how a 7-day exposure to cocaine alters dopamine signaling by selectively reducing the sensitivity, but not the expression, of nucleus accumbens D2-MSN D2Rs via an alteration in the relative expression and coupling of G protein subunits. This cocaine-induced reduction of D2R sensitivity facilitated the development of the rewarding effects of cocaine as blocking the reduction in G protein expression was sufficient to prevent cocaine-induced behavioral adaptations. These findings identify an initial maladaptive change in sensitivity by which mesolimbic dopamine signals are encoded by D2Rs following cocaine exposure.
Collapse
Affiliation(s)
- Sheng Gong
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas Fayette
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci 2021; 24:1414-1428. [PMID: 34385700 PMCID: PMC8823543 DOI: 10.1038/s41593-021-00898-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The long-range GABAergic input from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is relatively understudied, and therefore its role in reward processing has remained unknown. In the present study, we show, in both male and female mice, that long-range GABAergic projections from the VTA to the ventral NAc shell, but not to the dorsal NAc shell or NAc core, are engaged in reward and reinforcement behavior. We show that this GABAergic projection exclusively synapses on to cholinergic interneurons (CINs) in the ventral NAc shell, thereby serving a specialized function in modulating reinforced reward behavior through the inhibition of ventral NAc shell CINs. These findings highlight the diversity in the structural and functional topography of VTA GABAergic projections, and their neuromodulatory interactions across the dorsoventral gradient of the NAc shell. They also further our understanding of neuronal circuits that are directly implicated in neuropsychiatric conditions such as depression and addiction.
Collapse
|
20
|
Mitra S, Turconi G, Darreh-Shori T, Mätlik K, Aquilino M, Eriksdotter M, Andressoo JO. Increased Endogenous GDNF in Mice Protects Against Age-Related Decline in Neuronal Cholinergic Markers. Front Aging Neurosci 2021; 13:714186. [PMID: 34475820 PMCID: PMC8406776 DOI: 10.3389/fnagi.2021.714186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer’s disease (AD), Lewy body dementia (LBD), and Parkinson’s disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnfwt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnfwt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnfwt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnfwt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnfwt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Matilde Aquilino
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Nakamura Y, Longueville S, Nishi A, Hervé D, Girault JA, Nakamura Y. Dopamine D1 receptor-expressing neurons activity is essential for locomotor and sensitizing effects of a single injection of cocaine. Eur J Neurosci 2021; 54:5327-5340. [PMID: 34273137 DOI: 10.1111/ejn.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Dopamine D1 receptors play an important role in the effects of cocaine. Here, we investigated the role of neurons which express these receptors (D1-neurons) in the acute locomotor effects of cocaine and the locomotor sensitization observed after a second injection of this drug, using the previously established two-injection protocol of sensitization. We inhibited D1-neurons using double transgenic mice conditionally expressing the inhibitory Gi-coupled designer receptor exclusively activated by designer drugs (Gi-DREADD) in D1-neurons. Chemogenetic inhibition of D1-neurons by a low dose of clozapine (0.1 mg/kg) decreased the cocaine-induced expression of Fos in striatal neurons. It diminished the basal locomotor activity and acute hyper-locomotion induced by cocaine (20 mg/kg). Clozapine 0.1 mg/kg had no effect by itself and did not alter cocaine effects in wild-type mice. Inhibition of D1-neurons during the first cocaine administration prevented the sensitization of the locomotor response in response to a second cocaine administration 10 days later. On Day 11, inhibition of D1-neurons by clozapine stimulation of Gi-DREADD blocked cocaine-induced locomotion including in sensitized mice, whereas on Day 12, in the absence of clozapine and D1-neurons inhibition, all mice displayed a sensitized response to cocaine. These results show that chemogenetic inhibition of D1-neurons decreases spontaneous and cocaine-induced locomotor activity. It prevents sensitization induction and blocks sensitized locomotion in a two-injection protocol of sensitization but does not reverse established sensitization. Our study further supports the central role of D1-neurons in mediating the acute locomotor effects of cocaine and its sensitization.
Collapse
Affiliation(s)
- Yukari Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France.,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Sophie Longueville
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Denis Hervé
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
22
|
Lewis RG, Borrelli E. A Mechanism of Cocaine Addiction Susceptibility Through D 2 Receptor-Mediated Regulation of Nucleus Accumbens Cholinergic Interneurons. Biol Psychiatry 2020; 88:738-740. [PMID: 33092690 PMCID: PMC7971775 DOI: 10.1016/j.biopsych.2020.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Affiliation(s)
| | - Emiliana Borrelli
- Center for Epigenetics and Metabolism, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1233, Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California.
| |
Collapse
|
23
|
Brami-Cherrier K, Lewis RG, Cervantes M, Liu Y, Tognini P, Baldi P, Sassone-Corsi P, Borrelli E. Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation. Nat Commun 2020; 11:4448. [PMID: 32895370 PMCID: PMC7477550 DOI: 10.1038/s41467-020-18200-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Substance abuse disorders are linked to alteration of circadian rhythms, although the molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs, such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that acute administration of cocaine triggers reprogramming in circadian gene expression in the striatum, an area involved in psychomotor and rewarding effects of drugs. This process involves the activation of peroxisome protein activator receptor gamma (PPARγ), a nuclear receptor involved in inflammatory responses. PPARγ reprogramming is altered in mice with cell-specific ablation of the dopamine D2 receptor (D2R) in the striatal medium spiny neurons (MSNs) (iMSN-D2RKO). Administration of a specific PPARγ agonist in iMSN-D2RKO mice elicits substantial rescue of cocaine-dependent control of circadian genes. These findings have potential implications for development of strategies to treat substance abuse disorders. Drugs of abuse have been shown to perturb circadian rhythms. Here, the authors show in mice that cocaine exposure modulates circadian gene expression in the striatum through a previously unappreciated pathway that involves dopamine D2 receptors and the nuclear receptor PPARγ.
Collapse
Affiliation(s)
- Karen Brami-Cherrier
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert G Lewis
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Yu Liu
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Paola Tognini
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
| | - Emiliana Borrelli
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|